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Abstract— Humanoid robots are inherently unstable because
their center of mass is high, compared to the support polygon’s
size. Bipedal walking currently works well only under controlled
conditions with limited external disturbances. In less controlled
dynamic environments, such as RoboCup soccer fields, external
disturbances might be large. While some disturbances might be
too large to prevent a fall, some disturbances can be dealt with
by specific rescue behaviors.

This paper proposes a method to detect instabilities that
occur during omnidirectional walking. We model the readings of
attitude sensors using sinusoids. The model takes the gait target
vector into account. We estimate model parameters from a gait
test sequence and detect deviations of the actual sensor readings
from the model later on. These deviations are aggregated to an
instability indicator that triggers one of two reflexes, based on
indicator strength. For small instabilities the robot is slowing
down, but continues walking. For stronger instabilities the robot
stops and is brought into a stable posture with a low center of
mass. Walking continues as soon as the instability disappears.

We extensively evaluated our approach in simulation by dis-
turbing the robot with a variety of impulses. The results indicate
that our method is very effective. For smaller disturbances,
the probability of a fall could be reduced to zero. Most of
the medium-sized disturbances could also be rejected. For the
evaluation with the real robot, we used a walking against a wall
with different speeds and at various angles. Here the results show
a similar outcome to the ones in the simulations.

I. INTRODUCTION

To act in the real world, a robot must be able to cope
with the dynamics of the environment. Humanoid robots are
much more flexible in comparison to wheeled or multi-legged
robots, but are frequently not very stable during locomotion.
Bipedal walking currently works well only under controlled
conditions with limited external disturbances. This is due to
a relatively high center of mass (CoM), compared to the size
of the support polygon. Especially in the single-support phase
of bipedal walking small external disturbances are sometimes
sufficient to make a robot fall.

Although reliable standing up routines exist [1], falls should
be avoided, as falling robots might damage themselves or parts
of their environment. Hence, it is important to be able to detect
instabilities and to prevent possible falls by specific rescue
behaviors. If a fall cannot be avoided, the robot might try to
minimize the damage by going into a protective pose [2].

Our robot makes use of omnidirectional walking [3] for flex-
ible locomotion and has acceleration and gyroscope sensors for

lateral and sagittal planes, which are fused to estimates of the
tilt in roll and pitch direction. We use this attitude estimate
and its derivative to detect disturbances during walking.

The sensor readings captured during undisturbed omnidirec-
tional walking are modeled for some predefined gait speeds
(support speeds). We model the means and standard deviations
of the two tilts and their derivatives. Each model consists of
the low-frequency coefficients of the Fourier decomposition,
which is synchronized to the gait cycle. Models for interme-
diate speeds are obtained by interpolation of the models of
support speeds (support models).

We compute a stability indicator by comparing the actual
sensor readings with the model for the actual gait speed. De-
pending on indicator strength, one of two reflexes is activated
to stabilize the robot. For smaller instabilities, the robot is
slowed down by decreasing the gait target speed. Thereby the
robot still advances in the desired direction and we can further
use the attitude model to detect instabilities. For stronger
instabilities, a stop walk reflex is activated, which brings the
robot into a standing posture with a lowered CoM in order
to regain stability. A dynamical instability indicator is used
to detect, whether the stop walk reflex is able to stabilize the
robot. If not, further reactions like a lunge step or damage
protection are needed, which are part of future work. The
dynamic instability is based on the distance of the capture
point (CP) [4] to the border of the support polygon.

We evaluated the proposed approach in a physics-based
simulation by disturbing the robot with a variety of impulses.
The results indicate that our method is highly effective. For
smaller disturbances, the probability of a fall could be reduced
to zero. Most of the medium-sized disturbances could also be
rejected. The evaluation on the real robot, by walking against a
wall at different angles and velocities, showed similar results.
Another set of experiments showed that the proposed attitude-
based instability indicator outperforms a zero moment point
(ZMP)-based indicator.

The structure of this paper is as follows. After reviewing the
related word in the next section, we introduce our humanoid
robot in Section III. Section IV describes the model used for
instability detection and details its parameter estimation proce-
dure. In Section V, we present the reflexive behaviors, which
are used to stabilize the robot when instability is detected.
Section VI describes the experimental results obtained from

1-4244-0259-X/06/$20.00 ©2006 IEEE



systematic evaluation.

II. RELATED WORK

An often used dynamic stability criterion, which was sug-
gested by Vukobratović, is based on the ZMP [5], [6]. Some
of the humanoid robots using the ZMP for gait stabilization
are Sony’s QRIO [7], [8] and Honda’s Asimo [9]. However,
during human gait this criterion is violated [4].

Baltes et al. [10] proposed a method to stabilize the walking
gait of a humanoid robot using gyroscope sensors, which are
similar to the derivative of our attitude estimates. However,
they use it to control the gait itself by adjusting the starting
points of the ankle patterns. The method is restricted to a fixed
gait speed. In contrast, our approach is valid for any admissible
omnidirectional gait speed. We also take the tilt into account,
which yields a better instability detection.

Another approach to prevent falls was presented by
Höhn et al. [11]. The authors also suggest that the ZMP has
little significance as an instability indicator, instead they use
pattern recognition to detect and classify instabilities. The
classification uses feature vectors, consisting of the transla-
tional and rotational velocity and the tilts of the torso and
the foot, the center of pressure (CoP) and the gait phase. A
stabilizing reflex is initiated depending on the type of detected
instability. The classification was trained on the simulator and
transferred to the real robot. The resulting classification time
of instabilities was between 60 and 100ms, which is similar to
the results of our approach. However, we use only the tilt of
the robot and its derivatives for instability detection. Moreover,
we don’t need negative examples during learning.

Morisawa et al. [12] proposed an emergency stopping
method. When being in the single support phase, the robot first
makes a final step to obtain double support. Then movements
are computed to slow down the robot, based on approximated
mathematical models using the CoM and the ZMP. The CoM
is also lowered to increase stability. In our case, the double
support is achieved by the continuously increasing activation
of the stopping reflex. This moves the robot smoothly into a
stable standing posture.

III. KIDSIZE HUMANOID ROBOT

Fig. 1 shows our humanoid robot Jupp, ready to kick the
ball. Jupp and its twin Sepp have been constructed in our lab to
participate in the RoboCupSoccer Humanoid League [13]. In
the 2005 competition, which took place in Osaka, Japan, they
performed very well. As KidSize team NimbRo they came in
second in the overall Best Humanoid ranking, next only to the
titleholder Team Osaka.

Jupp is driven by 19 servos: six in each leg, three in each
arm, and one in the trunk. Its mechanical design focused
on human-like proportions and light weight. The robot has
a size of 60cm and a total weight of only 2.3kg. Jupp is
fully autonomous. It is powered by Lithium-polymer batteries
and equipped with a Pocket-PC and a wide-angle CF-camera.
It has also two accelerometers and two gyros, which are
used to estimate the tilt of the robot. The Pocket PC runs

Fig. 1. KidSize robot Jupp of RoboCup Humanoid League team NimbRo.

computer vision, behavior control, and communication. Using
a hierarchical framework for reactive behavior control, we
implemented omnidirectional walking [3], kicking, and basic
soccer skills.

The 2 vs. 2 soccer games at RoboCup 2005 led to consid-
erable physical contact between the robots, as multiple robots
were going for the ball. Consequently, several falls occurred
during the final match, which was played between NimbRo
and Team Osaka1. While both teams had implemented reliable
standing-up routines for their robots [1], it would have been
desirable to detect and to reject disturbances.

We used the attitude sensor of Jupp to detect a fall and to
classify the robot posture (prone or supine). This sensor is also
suitable to detect instabilities that occur during omnidirectional
walking, which are mostly caused by external disturbances.

The attitude sensor is located in the trunk of the robot. It
consists of a dual-axis accelerometer (ADXL203, ±1.5g) and
two gyroscopes (ADXRS 150/300, ±150/300 deg/s). The four
analog sensor signals are digitized with A/D converters of the
HCS12 microcontroller and are preprocessed before sending
them to the Pocket-PC.

On the Pocket PC, the readings of accelerometers and
gyros are fused to estimate the robot’s tilt in roll and pitch
direction. For each axis, the gyro bias is calibrated, assuming
that over intervals of 2.4s the integrated bias-corrected gyro
rates equal the difference between the tilts estimated from the
accelerometers. Here we assume that, in the long run, the ac-
celerometers measure the decomposition of the gravity vector.
Combining the low-frequency components of the tilt estimated
from accelerometers with the integrated bias-corrected gyro
rates yields an estimate of the robot’s attitude that is insensitive
to short linear accelerations.

IV. ATTITUDE MODEL

Due to the periodic nature of walking, a gait-cycle syn-
chronous Fourier transform seems to be appropriate to model

1A video of the game can be downloaded from http://www.NimbRo.net.



Fig. 2. A single model parameter, i.e. one Fourier coefficient, vs. the sagittal
speed vy . Points denote support speeds. Circles are placed at arbitrary speeds.
Parameters for intermediate speeds are interpolated linearly (solid line). For
speeds outside the support range, nearest neighbors are used (dashed line).

Fig. 3. Attitude sensor readings for six gait cycles vs. gait phase Θ at speed
(0, 0.5, 0) with means and standard deviations obtained by inverse Fourier
transform of the model.

the attitude estimates. We use only the low-frequency co-
efficients of the transformed signals to keep the number of
parameters small. The omnidirectional walking is parameter-
ized by the gait target vector (vx, vy, vθ), where vx, vy, vθ ∈
[−1, 1] are the lateral, sagittal and rotational speed compo-
nents, respectively. The speeds are normalized, such that vy=1
represents the maximal speed in forward direction.

The model of one constant gait speed consists of the first
Fourier coefficients C = (c0, c1, . . . , cM ) of the means µi and
standard deviations σi at the gait phase Θ ∈ [−π, π). M spec-
ifies the highest frequency used and i ∈ S = {ϕl, ϕ̇l, ϕs, ϕ̇s}
enumerates the attitude sensors (ϕ) and their derivatives (ϕ̇)
in the lateral (l) and sagittal (s) planes. The gait engine which
generates omnidirectional walking is driven by a periodic gait
phase Θ. Θ = ±π occurs during the left foot single support
phase, Θ = 0 during the right foot single support phase, and
Θ = ±π

2 during the double support phases.
In order to obtain an attitude model for arbitrary gait

speeds, we model attitude at few support speeds and inter-
polate between the support models in a tri-linear fashion. For
speeds outside the available support models we use the nearest
neighbor. Fig. 2 depicts the speed range for one dimension.

Fig. 3 shows attitude sensor data with its mean and standard
deviation after inverse Fourier transform of the models, while
walking at maximum forward support speed (0, 0.5, 0).

Support speeds should be selected as zero and the maximum
stable walking speeds and if the maximum speeds are high,
also intermediate speeds, such that the differences between

the support speeds are equal, e.g. (−0.3, 0, 0.25, 0.5) for the
sagittal speed.

A. Estimating Model Parameters

In order to estimate the parameters for the attitude models
of the support speeds, the robot needs to walk at these speeds
for a sufficiently long time. To explore the predefined support
speeds, a walking test sequence is executed. The sequence
consists of three parts:

• Walking with only one non-zero speed component (pure
lateral, sagittal and rotational speeds) up to the predefined
maximum speeds,

• Walking with two speed components active at a time up
to their absolute value maxima,

• Walking with all three speed components active.
As we cannot assume the sensor data to be linearly

dependant on gait speed in general, many support speeds
would be required to represent models for intermediate
speeds. On the other hand, we wish to keep the length
of the test sequence short. The total number of support
models is NxNyNθ, where Nx, Ny, Nθ are the number
of support speeds for the three speed components. In our
simulation experiments we examined the detection for various
parameter settings. It turned out, that already one or two
support speeds for each speed component and direction
(i.e. moving left, right, forward, backward and rotating
left, right) gave an sufficient approximation. We chose
({−0.25, 0, 0.25}, {−0.3, 0, 0.25, 0.5}, {−1,−0.5, 0, 0.5, 1})
as the support speeds, so that the total number of support
models was 3 · 4 · 5 = 60. The number of Fourier coefficients
for the models were selected as Mϕl

= (4, 6), Mϕ̇l
= (4, 7),

Mϕs = (5, 6), Mϕ̇s = (5, 7).
Since the gait speed is changing continuously during the

gait test sequence and thus never corresponds to any support
speed, the sensor data is distributed to the adjacent support
models by weighting it with the same weights that are used
for interpolation. The weights are proportional to the distance
between the gait periods’ average speed v and the support
speeds vj and vk, which are next to v with vj ≤ v < vk. The
mean µ and standard deviation σ for support speed vu∈{j,k}
is given by

µ(vu) =
1∑N

i=1 ρi

N∑
i=1

ρisi (1)

σ(vu) =

√√√√ N

N − 1
1∑N

i=1 ρi

N∑
i=1

ρi(si − µ̃(vu))2 (2)

ρi = 1− |v − vu|
vk − vj

, (3)

where N is the number of gait periods belonging to the support
speed vu, µ̃(vu) is the inverse Fourier transformed mean of
µ(vu), si is the sensor data of ith gait period and ρi are the
weights. As the standard deviation can be computed only at
the end of the learning phase, it is useful to rewrite the sum



Fig. 4. Lateral attitude sensor at gait speed (0, 0.5, 0) for 40 walking steps:
original (left), with symmetry elimination (right). The dotted lines display the
mean and standard deviation of the sensor values.

in incremental form:

σ(vu) =

√√√√ N

N − 1

(∑N
i=1 ρis2

i∑N
i=1 ρi

− µ̃(2µ− µ̃)

)
. (4)

In this way, we need to maintain only the sums∑
ρi,
∑

ρisi,
∑

ρis
2
i for each support speed.

Although the gait engine is symmetrical for the two legs,
we observed that frequently the robot motion was not symmet-
rical. For example, the upper body might swing from left to
right faster than from right to left. After some steps, the robot
switches symmetry. If this effect is not accounted for, it leads
to averaging between the two symmetrical cases, yielding a
blurred model with high standard deviations. We eliminated
this problem by converting the sensor data to one of the
symmetric cases:

sl,s1(Θ) ≈ −sl,s2(Θ + π) (5)
ss,s1(Θ) ≈ ss,s2(Θ + π), (6)

where sl and ss denote the sensor values at gait phase Θ
in lateral and sagittal plane, respectively, and s1, s2 are both
symmetric cases. Figure 4 depicts the difference of sensor data
with and without the lateral symmetry elimination. Especially
in the marked regions the difference in the variance is obvious.

To detect which case is present, the sensor data is converted
to the symmetric case. The probability of case s1 for each
sensor x ∈ S is obtained from the mean square error (MSE)
to the corresponding model mean µ:

Px,s1 = 1− mse(ss1 , µ)
mse(ss1 , µ) + mse(ss2 , µ)

. (7)

The probability for the other case is computed accordingly.
From the probabilities of all sensors, the overall probability is
computed as weighted sum:

Pl/s,s2 =
rϕl/s

Pϕl/s,s2 + rϕ̇l/s
Pϕ̇l/s,s2

rϕl/s
+ rϕ̇l/s

(8)

Ps2 =
rlPl,s2 + rsPs,s2

rl + rs
, (9)

where l and s denote lateral and sagittal, respectively, and
the weight r = |0.5 − P | represents the certainty. Eq. 8 first
computes the lateral and sagittal sensor probability of s2. Eq. 9
then computes the total probability Ps2 . Since the symmetric
cases do not change frequently, the probability is recursively
filtered with a time constant γ ∈ [0, 1]:

P k
s2

= γPs2 + (1− γ)P k−1
s2

, (10)

where P k
s2

is the probability of s2 at gait period k. Best results
were achieved with γ = 0.25. Because of the averaging,
wrongly detected symmetry cases, which may arise during the
swap of the cases s1 ↔ s2, do not affect model learning. Dur-
ing instability detection, misclassifications could potentially
trigger unnecessary stabilizing reflexes. As we show in the
experimental results, however, the false alarm rate is very low.

B. Instability Detection

After the estimation of the model parameters is complete,
we can use the learned attitude models to perform instability
detection at every time step. Because the gait speed does not
change fast, we can take for each whole gait cycle the model
of the gait speed observed at the beginning of the gait cycle.
Lateral symmetry elimination is done as described above
(Eqs. 5-10). Since the symmetric case cannot be detected
online, i.e. at every time step, but only after every finished
gait cycle, the symmetry case of the previous gait cycle is
used for the current cycle.

The deviation δt
x of each sensor x ∈ S from its model

is computed at time step t as the difference to the mean,
normalized by the standard deviation:

δt
x =

xt − µΘ(t)(v0)
σΘ(t)(v0)

, (11)

where Θ(t) is the gait phase at time step t and v0 is the gait
speed at the beginning of each gait period. The absolute value
of the attitude deviation δt

ϕl/s
and attitude derivative deviation

δt
ϕ̇l/s

results in the deviation δt
l/s in lateral or sagittal plane.

The greater |δt
l/s|, the higher the instability in lateral and

sagittal plane, respectively, which is expressed by the sigmoid
function

τ t
l/s = 1− ςa,b(|δt

l/s|) = 1− 1

1 + exp

(
|δt

l/s
|−a

b

) , (12)

where a is the threshold value and b is the slope.
The overall instantaneous instability τ t is the maximum of

lateral and sagittal instability τ t
l , τ

t
s . Due to sensor noise and

approximation errors it is quite noisy. We apply a recursive
filter with two time constants, such that increasing instability
is faster than decreasing it:

τ̃ t = max
(

ζτ t + (1− ζ)τ̃ t−1

γτ̃ t−1

)
, (13)

with γ ≥ (1− ζ) ∈ (0, 1). τ̃ is now a instability indicator that
can be used to trigger stabilizing reflexes. τ̃ = 0 represents
no instability and τ̃ = 1 corresponds to maximal instability.
The detection parameters were selected based on simulation
results: a = 3, b = 1.4, ζ = 0.15, γ = 0.91.

V. STABILIZING REFLEXES

In order to prevent falls, specific stabilizing reflexes are
activated when instability is detected. Stumbling experiments
with walking humans [14] showed that several reflexes were
activated successively after a perturbation. While the first



Fig. 5. Activation of slow down reflex (solid line) with phases 1-4 and
adjustment after exceeding maximum instability eτmax (dashed line).

reflexes are fairly general, the responses of the next two
reflexes depend on the gait phase. In a similar way, the
instability indicator can be used to initiate general stabilizing
reflexes at low instability, and more complex reflexes at higher
instability. The importance of regulating reflexes during human
locomotion is also emphasized in [15].

Currently, we use two simple reflexes to respond to detected
instability. By small instabilities ε0 ≤ τ̃ < ε1 a slowing down
reflex is activated, if it is within the thresholds ε0, ε1. The
gait target speed is scaled down by at most a factor of two,
depending on the instability. The activation of the slowing
down reflex is structured into four phases (see Fig. 5):

1) Increasing activation with constant slope binc until

κ(τ̃max) =

{
eτmax−ε0

ε1−ε0
ε0 ≤ τ̃max < ε1

1 τ̃max ≥ ε1

, where τ̃max

is the maximum instability during activation
2) Maximum activation for a constant time Tact,2

3) Maximum activation as long as instability is above ε0

4) Decreasing slowly with a constant slope bdec.
If at some point during activation the instability exceeds the
maximum instability seen so far, the activation maximum is
adjusted accordingly and the activation phase is set back to one
(see dashed line in Figure 5). In the experiments, the following
parameters have been used: ε0 = 0.3, ε1 = 0.8, Tact,2 = 0.6s,
binc = 8.33 1

s , bdec = 0.833 1
s .

For more serious instabilities a stop walking reflex is
activated. The robot stops walking and moves into a stable
stand with a lowered CoM. Stop walking is activated when
instability exceeds a threshold ε2. By setting ε2 ≥ ε1, the stop
walk is not triggered in the operating range of the slow down
reflex. To detect whether the robot stands still, the derivative
of the attitude sensor readings are processed in a similar way
as for instability detection. We use a sigmoidal function and
a recursive filter

It
still = γςa,b(|(ϕ̇l, ϕ̇s)|) + (1− γ)It−1

still. (14)

It
still-values close to one indicate that the robot does not move

any more. The five phases of activating the stop walking reflex
are illustrated in Fig. 6:

1) Fast activation within a constant time period Tact,1 with
smooth transition to phase 2

2) Full activation for a constant time period Tact,2

3) Full activation until standstill indicator Istill > 0.9
4) Slow deactivation within a constant time period Tact,4

and activation of an upright standing position, where the

Fig. 6. Activation of stop walk reflex (solid line) with phases 1-5 and upright
standing (dashed line).

Fig. 7. Robot disturbed by an impulse force on its chest while walking
backward at speed (0,−0.3, 0). The upper picture shows the robot falling
when no stabilizing reflex is activated. In the lower picture the stop walk
reflex has been activated. The robot stops walking, crouches down and thereby
prevents the fall.

robot straightens again
5) Constant time period Tact,5 with zero activation and

blocked reactivation to allow for reinitialization of sta-
bility detection. The upright standing is deactivated and
the robot slowly increases the walking speed.

Here the parameters were chosen as Tact,1 = Tact,2 = 0.6s,
Tact,4 = 1.44s, Tact,5 = 2.64s. The instability threshold for
the activation has been set to the upper threshold of the slow
down reflex, i.e. ε2 = ε1 = 0.8. Fig. 7 shows the robot after
an impulse disturbance while walking. The robot falls when
no stabilizing reflexes are used, but stabilizes when they are
activated.

Additionally, we use the capture point (CP), proposed by
Pratt et al. [4], to measure the dynamic instability of the
robot as the distance of the CP to the border of the support
polygon. The CP defines the point on the ground, where
the robot comes to rest if it moves its CoP to this point.
The location of the point is estimated by the linear inverted
pendulum model (LIPM) and the robots CoM velocity. For
the real robot the velocity can also be estimated by the gyros
and the accelerometers after removing the gravity component
through the estimated attitude sensor. The support polygon
can be estimated by using the attitude sensor and applying
forward kinematics with the requested joint angles. With this,
it is possible to compute the positions of the feet and the CoM
and their distances to the ground.



If the CP lies within the support polygon, the stop walk
reflex is able to stabilize the robot. Then, the depth of the
crouching during the stop walk reflex can be set proportional
to the dynamic stability. Otherwise, if the CP lies outside the
suport polygon, other reactions, like a lunge step, are needed.
If the CP is too far, no fall avoidance is possible, and we
need to initiate damage protecting reactions. These advanced
responses are future work.

VI. EXPERIMENTAL RESULTS

To evaluate our fall detection and fall avoidance approach,
we disturbed the robot during walking in the ODE-based
simulator with a variety of impulse forces. The impulses are
produced by a constant force, which acts for a single time step
of 12ms onto the robot.

We first compared the attitude-based instability with an
instability indicator that is based on the ZMP criterion. Fall
statistics have been made to show that the instability detection
is effective for activating stabilizing responses.

As already mentioned in the first section, the ZMP can be
used as a dynamic stability criterion so that a comparison is
meaningful. To do this, an instability indicator is computed
in the same way as for the attitude readings (Eqs. 12-13).
We use the distance of the ZMP to the closest edge of the
support polygon as input and tested parameters for the sigmoid
and the recursive filter. We compare the forewarn time with
the false alarm rate. The forewarn time is the time between
the first rise of the instability above a threshold of 0.5 and
the time when the attitude angle of the robot deviates more
than 25◦ from the upright posture. The false alarm rate is
the percentage of instability detections (instability>0.5) during
undisturbed, stable gait. Both are averaged over varying gait
speeds (forward, backward, left, turn left at different speeds),
forces (6, 9, 12), force directions (trunk front, rear, left, right;
left upper arm front, rear), and five disturbance time points
(relative to gait phase). As the forewarn time and the false
alarm rate are dependant on each other, the instability is
computed for varying sigmoid and recursive filter parameters.
Since the robot hardly gets onto the whole planar sole of a
foot during walking in the simulator, the support polygon is
defined as the part of the sole of a foot with a distance smaller
than 1cm to the ground.

Fig. 8 shows the false alarm rate depending on the forewarn
time for the attitude sensors and the ZMP. It can be observed
that the attitude-based instability indicator outperforms the
ZMP-based instability indicator. This proves the effectiveness
of using attitude information for an instability indicator.

To evaluate the fall avoidance, topple down statistics were
made in the simulator. The robot was disturbed again by an
impulse force at varying gait target speeds, forces (3 to 8.66
in 0.33 steps), force directions, and support phases (double,
single left, single right). Altogether, four kinds of experiments
were done: without reaction, with slow down and stop walk
reflexes, additionally dynamic crouching during stop walk and
forced stop walk 96ms before the disturbance. We made 20
repetitions.

Fig. 8. Detection comparison of the attitude-based instability indicator and
the ZMP criterion: forewarn time and false alarm rate depending on detection
parameters. The dashed line clearly separates both instability indicators.

Fig. 9. Fall probability when disturbing the robot during walking by an
impulse force without any reaction, with slow down and stop walk reactions,
with dynamic crouch and with forced stop walk actiovation of 96ms before
the disturbance. The dotted line shows the relative performance. The 10%
working point is marked by the dashed lines.

Compared to stopping the robot in an upright posture,
shortening the robot’s legs and bending its trunk forward
resulted in a more stable posture. Because the disturbance
rejection capabilities of a feed-forward stopping reflex are
limited, we chose the working point of 10% fall probability
for comparison with continued omnidirectional walking. Fig. 9
depicts the fall probabilities and the relative performance
vs. the impulse magnitude of the disturbance. The relative
performance measures the reduction of the fall probability for
keep walking and the slow down reflex together with the stop
walk reflex.

We achieved a fall probability of 1.7% in the working point.
This corresponds to 83% prevented falls. For very strong
disturbances, the relative performance decreases until static
stopping has no effect anymore. As can be seen in the figure,
there is basically no difference between the three experiments
using reflexes. This shows that the dynamic instability detec-
tion based on the capture point is practical. Furthermore, it
shows, that the a significant disturbance is detected within the
first 100ms.

The evaluation of instability detection and fall avoidance
on a real robot is not easy, because is is hard to reproduce
the perturbations. We decided to let the robot walk against
a wall at different speeds and various angles, because it is
easy to reproduce the experiments for statistical evaluation.
The experimental configuration is shown at the left picture
of Fig. 10. The two right pictures show the results of 20



Fig. 10. Evaluation with real humanoid robot Jupp: Walking forward against
a wall at various angles. Left: experiment configuration, mid: results at low
speed, right: results at high speed. The total fall reduction is 40% to 1.6% at
the lower speed and 73% to 10% at the higher speed.

repetitions for a lower and higher walking speed, respectively,
while the speed was set higher when fall avoidance enabled,
in order to show the effectiveness of the slow down reflex. As
can be seen, at lower speed, the fall probability without any
reaction grows with increasing walking angle. This is due to
the fact, that most of the falls emerge from the pushing of the
swinging arms against the wall. In contrast, when instability
detection and the both stabilizing reflexes are used, the fall
probability is zero for two cases and 5% for the third case. At
the higher speed the fall probability is not higher than 20%,
while without reaction the probability is greater than or equal
to 65%. In total, at the lower speed falling could be reduced
from 40% to 1.6% and at the higher speed from 73% to 10%.
Thus, the results with the real robot verify the effectiveness
of our attitude based instability detection, to be fast enough
to be able to prevent falls by suitable reactions.

During the experiments, we also observed that the robot
was able to walk at higher speeds than during parameter
estimation. The speed amplitudes for parameter estimation
were set as high as possible, so that walking would be smooth.
With the stabilizing reflexes, the robot could walk at higher
speeds, while still producing smooth movements. This is a
consequence of the slow down reflex, which decreases the
walking speed depending on the instability.

VII. CONCLUSION

We presented an approach for instability detection during
omnidirectional walking of humanoid robots, using attitude
sensors and their derivative. The detection is based on the
deviations of the actual sensor readings from a model. The
model takes the gait target vector into account. It is not
restricted to any fixed walking speed or direction. We estimate
the model parameters from a test sequence of undisturbed
omnidirectional walking. Depending on the magnitude of the
detected instability one of two simple stabilizing reflexes is
triggered. For mild instabilities we slow down walking. Larger
instabilities trigger a stop walking reflex, which moves the
robot into a stable posture with low CoM.

The comparison with a ZMP-based instability criterion
showed much lower false alarm rates at equal forewarn times
when using our approach.

A systematic evaluation showed that the stabilizing reflexes
reduce fall probability to zero for smaller disturbances. At
the working point of 10% falls for continued walking, the
stabilizing reflexes prevent more than four of five falls. In
addition, the adaptive speed control caused by the slow down
reflex resulted in smoother walking at speeds above the
maximal speed used for parameter estimation.

The experiments with the real robot showed similar results
as in the simulations. For a slower walking speed nearly all
falls could be rejected. At the higher speed in the worst case
still 70% of the falls could be rejected.

In the future, we plan to add more complex stabilizing
reflexes, e.g. lunge steps, to be able to reject very large
disturbances. In order to minimize damage, we also plan to
move the robot into a protective pose when a fall turns out to
be unavoidable.
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