
 Barry Wilkinson 2002. All rights reserved. Page 122
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 243

Higher performance processor design

Superscalar processors

A conventional “scalar” processor executes scalar instructions, i.e.,

instructions operating upon single operands such as integers.

A superscalar processor is a processor which executes more than

one (scalar) instruction concurrently.

Achieved by fetching more than one instruction simultaneously, and

then executing more than one instruction simultaneously.

Lecture 9

Slide 244

Superscalar processor timing with two pipelines

Instruction 2

Instruction 1 Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7 Instruction 9

Instruction 8 Instruction 10

Instruction 2

Instruction 1 Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 2

Instruction 1 Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Instruction 8

Time

Instruction
fetch

Operand
fetch

Execute

Instruction 2

Instruction 1 Instruction 3

Instruction 4

Operand
store

Memory
access

Instruction 2

Instruction 1

 Barry Wilkinson 2002. All rights reserved. Page 123
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 245

Data memory
Register file

IF

EX

Instruction
memory

OF EX Mem OS

OF Mem OS

Dual pipeline processor

Example of this concept - Original Pentium processor

Slide 246

Instruction
memory

IF

Execute
units

OSOF

ALU

Branch

Load

Data memory

Superscalar design with specialized execution units

Store

Instructions
issued to
execution

units

Example - Pentium Pro/II processors and most recent processors.

 Barry Wilkinson 2002. All rights reserved. Page 124
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 247

Representative
superscalar (integer)

processor
(same as previous figure,

just redrawn a different way)

Address Data

Register file

Instruction fetch

Main memory

Instruction memory
(cache memory)

ALU Shifter BranchLoad Store

Functional units

Data memory

Operand fetch
Store operands

Instruction

Instruction

“fetch”

“issue”

Slide 248

Instruction Fetch

Usually more than one instruction is fetched from the program

memory (cache), a complete line in the cache, maybe 4

instructions.

 Barry Wilkinson 2002. All rights reserved. Page 125
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 249

In-order issue of instructions – Instructions sent for execution in

program order

Out-of-order issue of instructions – Instructions sent for execution

not in program order (instructions allowed to overtake stalled

instructions).

Either way, usually instructions may finish execution out-of-order

(out-of-order completion).

Slide 250

In-order completion rarely enforced. For example in the sequence:

MUL R1,R2,R3

ADD R4,R5,R6

even if we issue the MUL instruction before the ADD instruction, the

MUL instruction is likely to require more cycles and will complete

after the ADD instruction.

All dependencies are a definite problem in superscalar processors

with their multiple pipelines and out-of-order issue/out-of-order

completion.

 Barry Wilkinson 2002. All rights reserved. Page 126
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 251

Resource Conflicts

Factor which usually does not occur in scalar designs but appears

in superscalar designs is a resource conflict for a functional unit.

Example

ADD R1,R2,R3

SUB R4,R5,R6

No instruction dependencies. However suppose only one ALU is

provided, responsible for both addition and subtraction. Clearly both

ADD and SUB instructions cannot be executed together in such a

design. Number of functional units provided will be a compromise

between cost and possible resource conflicts.

Slide 252

Out-of-order completion and sequential
consistency

Clearly the final result of the execution of a program must be as

though the instructions are executed in program order, i.e. so-called

sequential consistency must be preserved.

(This concept also applies to multiprocessor systems, see much

later).

 Barry Wilkinson 2002. All rights reserved. Page 127
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 253

Reorder Buffer

General method of achieving sequential consistency in a

superscalar processor is through the use of a reorder buffer, which

allows instructions to complete out-of-order but their results are

caused to be committed to the destination registers in program

order, i.e. the results are “reordered” into program order.

Slide 254

Reorder Buffer - basic idea

Instruction

Reorder buffer

Allocate

(i+3)th instruction
(i+2)th instruction
(i+1)th instruction

ith instruction

fetch

Instruction

Retire instruction if completed

Reorder buffer usually implemented as circular buffer with pointer to
last entry and pointer to first entry. Contents of reorder buffer
depends upon implementation (typically hold results of instructions).

completes
entries

and all previous instructions retired

From
functional

unit

 Barry Wilkinson 2002. All rights reserved. Page 128
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 255

Representative superscalar
(integer) processor

Address Data

Register file

Instruction fetch

Main memory

Instruction memory
(cache memory)

ALU Shifter BranchLoad Store

Functional units

Data memory

Operand fetch
Store operands

Reorder buffer
placed here

Slide 256

Instruction Window

To achieve out-of-order issue, an instruction buffer called an

instruction window is used. Placed between fetch and execute

stages to hold instructions waiting to be executed. Instructions

issued from the window whenever it is possible to execute the

instructions, which occurs when the operands the instruction needs

are available and the functional unit required for the operation is

free.

 Barry Wilkinson 2002. All rights reserved. Page 129
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 257

Instruction Window Implementation

The instruction window can be implemented in two ways:

1. Centralized or

2. Distributed.

Slide 258

Centralized instruction
window

Address Data

Register file

Instruction fetch

Main memory

Instruction memory
(cache memory)

ALU Shifter BranchLoad Store

Functional units

Data memory

Central instruction
window

OperandsIssue
instructions

Store operandsOperand
fetch

 Barry Wilkinson 2002. All rights reserved. Page 130
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 259

Opcode
Destination

register Operand 1 Operand 2

Operation Operand value IDID

Instruction window contents

Operation Operand value IDID
Operation ID Operand value IDID
Operation Operand value Operand valueID
Operation ID Operand value IDID

1
2
3
4
5

Instr.
Operand 1 Operand 2

register register

ID ID

ID
ID

Slide 260

Example

Suppose the following instruction sequence is fetched:

1. ADD R1,R2,R3

2. SUB R4,R1,R3

3. MUL R1,R4,R1

and instructions are fetched one at a time.

(In superscalar processors, multiple instructions would usually be

fetched simultaneously.)

 Barry Wilkinson 2002. All rights reserved. Page 131
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 261

After first instruction loaded:

ADD R1 R2 R3

R1

R2

R4

R3

R0

Register file

R31

Valid
bit

Instruction buffer (window)

1

0

1

Set invalid

Read values

100

200

Values in registers just to give a concrete example.

Slide 262

After second instruction loaded:

ADD R1 R2 R3

SUB R4 R1 R3

R1

R2

R4

R3

R0

Register file

R31

Valid
bit

Instruction buffer (window)

100

200

200100

Set invalid
0

1

1

0

Cannot read
this register (invalid)

Instruction issued

 Barry Wilkinson 2002. All rights reserved. Page 132
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 263

After third instruction loaded and completion of instruction 1:

SUB R4 R1 R3

MUL R1 R4 R1

R1

R2

R4

R3

R0

Register file

R31

Valid
bit

Instruction buffer (window)

Result from instruction 1

3001

300 100

Instruction issued

300

0

Stalled on R4

Slide 264

After completion of instruction 2:

MUL R1 R4 R1

R1

R2

R4

R3

R0

Register file

R31

Valid
bit

Instruction buffer (window)

Result from instruction 2

200

Instruction issued

300

1

200

 Barry Wilkinson 2002. All rights reserved. Page 133
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 265

CDC 6600 Scoreboard

CDC 6600 computer system (1964) introduced concept of a
scoreboard which holds information centrally to control when
operands could be fetched and instruction execution can start and
when results could be stored. Key points:

• If a structural hazard exists, for example a suitable functional
unit is not available, the instruction is stalled.

• The instruction is also stalled if a write-after-write hazard
exists, (which is a form of structural hazard, the destination
register being reused).

• Otherwise, the instruction is issued to a suitable function unit.

Operands provided when available under control of scoreboard.
Similarly, the scoreboard controls when results can be written
(when write-after-read hazards are not present)

Slide 266

Original CDC6600 scoreboard only of historical significance and
devilishly difficult! Here, we very briefly review the method.

More details can be found in:

Patterson D. A., and J. L Hennessy, Computer Architecture A
Quantitative Approach 2nd edition, Morgan Kaufmann, 1996, pp.
240-261.

or:

Thornton, J. E., Design of a Computer, the Control Data 6600,
Scott, Foresman, Glenview Ill, 1970.

 Barry Wilkinson 2002. All rights reserved. Page 134
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 267

Unit

Add

Busy Operation Fi Fj Fk Qj Qk Rj Rk

Functional unit

Function Result
register

ID

Source
register

IDs

Unit producing
result in source
register given

in Fj

e.g. ADD

Unit producing
result in source
register given

in Fk

Yes/
No

Yes/
No

Yes/
No

Source
registers

ready

CDC 6600 Scoreboard information on functional
unit

Slide 268

X1 Xi Xn

Functional
unit ID
that will
produce

result for Xi

CDC 6600 Scoreboard information regarding
source of register results

Register

 Barry Wilkinson 2002. All rights reserved. Page 135
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 269

Fetch instruction

Select functional unit
Set its busy flag if not already busy

else stall instruction

Transfer i/j/k fields from instruction
to unit Fi/Fj/Fk fields

Functional unit
scoreboard

Set Qj/Qk fields by reading from
register scoreboard

Register
scoreboard

Read

Reserve register for
functional unit output

(Set functional unit ID)

Write

If source register read flags set
read operands

Write

Write

Read

Perform function unit operation

Make request to release result
Request release signal

Write result in register

Go store result

when get permission

Fetch operands (IF)

Execute (EX)

Store result (OS)

CDC 6600 Scoreboard
algorithm

Reservations

Write results and
set ready flags

Slide 270

Distributed Instruction Window Approach

Instruction buffers called reservation stations placed at front of each

functional unit.

Lecture 10

 Barry Wilkinson 2002. All rights reserved. Page 136
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 271

Reservation Stations

Address Data

Register file

Instruction fetch

Main memory

Instruction memory
(cache memory)

ALU Shifter BranchLoad Store

Functional units

Data memory

Reservation
stations

Forward operands to
reservation stations

Store operandsOperand fetch
Tag result register

Slide 272

Example

Suppose the same instruction sequence is fetched:

1. ADD R1,R2,R3

2. SUB R4,R1,R3

3. MUL R1,R4,R1

 Barry Wilkinson 2002. All rights reserved. Page 137
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 273

After first instruction fetched and dispatched into a reservation
station:

R1
R2

R4
R3

R0

R31

Register fileValid
bit

Operand fetch
Tag result register

100
2001

1

0

ADD/SUB MULT

ADD R1 R2 R3100200

Can be issued

Dispatched

Slide 274

After first instruction completed and second instruction fetched and
dispatched into a reservation station:

R1
R2

R4
R3

R0

R31

Register fileValid
bit

Operand fetch
Tag result register

100
2001

1

ADD/SUB MULT

SUB R4 R1 R3100

Result of instruction 1

R1/300

0

 Barry Wilkinson 2002. All rights reserved. Page 138
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 275

Second instruction issued and third instruction dispatched:

R1
R2

R4
R3

R0

R31

Register fileValid
bit

Operand fetch
Tag result register

100
2001

1

1

ADD/SUB MULT

SUB R4 R1 R3100

300

Issued

300

0

MUL R1 R4 R1300

Slide 276

Second instruction completed:

R1
R2

R4
R3

R0

R31

Register fileValid
bit

Operand fetch
Tag result register

100
2001

1

1

ADD/SUB MULT

300

MUL R1 R4 R1300

Result of instruction 2

R4/200

 Barry Wilkinson 2002. All rights reserved. Page 139
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 277

Third instruction issued:

R1
R2

R4
R3

R0

R31

Register fileValid
bit

Operand fetch
Tag result register

100
2001

1

0

ADD/SUB MULT

300

MUL R1 R4 R1300

1 200

Issued

200

Slide 278

Given sufficient paths, possible for more than one instruction to be

dispatched simultaneously - one instruction could be issued within

each functional unit simultaneously.

 Barry Wilkinson 2002. All rights reserved. Page 140
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 279

Limitation of valid bit approach for handling
dependencies

Only one pending update to each register allowed - i.e. not allowed

to dispatch/issue multiple instructions that write to the same

register.

Slide 280

Example

1. ADD R4, R2, R1

2. MUL R3, R4, R5

3. SUB R4, R6, R7

Instruction 2 dependent upon instruction 1 and cannot be issued
until instruction 1 writes its result to R4.

Instruction 3 has valid input operands and could be issued before
instruction 2 (or even before instruction 1). However, it must not
write its result to R4 before instruction 1 writes its results to R4 and
instruction 2 has read R4.

Hence does not eliminate output dependencies (write-after-write
hazards) - processor simply stalls on these.

 Barry Wilkinson 2002. All rights reserved. Page 141
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 281

To enable more than one instruction dispatched/issued which

updates the same register simultaneously would require incredibly

complex control! Even the CDC 6600 scoreboard was not able to do

that.

Fortunately there is a viable alternative, called register renaming,

which is used on all recent processors.

Slide 282

Register renaming

Antidependencies and output dependencies caused by reusing

storage locations, i.e., they are resource conflicts.

Consequently can eliminate these dependencies by providing

additional storage locations (duplicating resources).

 Barry Wilkinson 2002. All rights reserved. Page 142
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 283

Example

ADD R1,R2,R4 ;R1 = R2 + R4
ADD R2,R3,1 ;R2 = R3 + 1
ADD R1,R2,R5 ;R1 = R2 + R5

has an antidependency and an output dependency. (It also has a
resource conflict if there is only one adder and a true dependency.)

By introducing different registers, R8 and R9:

ADD R1,R2,R4;R1 = R2 + R4
ADD R8,R3,1 ;R8 = R3 + 1
ADD R9,R8,R5;R9 = R8 + R5

eliminating the antidependency and output dependency.

Slide 284

Clearly we cannot keep creating new registers throughout program.

A solution is to rename registers temporarily when there are first

specified as a destination register. R1 might be temporarily be

called R1a, R1b, R1c … as R1 is being reused in the program, and

similarly for other registers, i.e.

ADD R1a,R2,R4
ADD R2a,R3,1
ADD R1b,R2a,R5

This is known as register renaming.

Assumed the very first instruction in program
otherwise R2 and R4 would have new names.

 Barry Wilkinson 2002. All rights reserved. Page 143
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 285

Register Renaming

Register renaming can remove both antidependencies and output

dependencies, and is implemented in hardware.

New register instances are created and destroyed when there are

no outstanding references to the stored values.

Most effective with small number of main registers as in the Pentium

but also widely used on RISCs. An alternative is to provide a very

large number of main registers initially as in the Itanium (128

registers) but then factors introduced such needing to specify

registers in the instruction and having to save them on interrupts.

Slide 286

How to implement register renaming

Several methods, including:

• Single register file - usually accessed via a mapping

table pointing to dynamically allocated rename registers

• Using a separate register file for renamed registers

• Using a reorder buffer

 Barry Wilkinson 2002. All rights reserved. Page 144
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 287

Single register file with a mapping table

0
1
2

31

Register

Valid

1

0
1
1

Rename
6

15
35

ID

0
1

15

6

35

n-1
Register file

Mapping table

R1 renamed as R35, R2 renamed as R15, R31 renamed as R6.

Slide 288

After destination register renamed, every reference to it as a source

register found from mapping table.

Notice mapping table only gives most recent name. Previous names

must be retained as needed, e.g. with pending instructions in

instruction buffer. Registers must be released for reuse when not

needed. (complex)

Method first suggested by Keller, R. M., “Look-ahead processors,”
Computing Surveys, Vol 7, Dec., 1975, pp. 177-196.

Examples of processors using mapping table method with a single
register file: Power1 (RS 6000), Power2, Nx586, PM1 (Sparc64),
R10000

 Barry Wilkinson 2002. All rights reserved. Page 145
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 289

Using separate register file for renamed registers

Here have the main register file (say R0 to R31), plus a separate
register file for renamed registers, say T0 to Tn. After renaming,
rename register file accessed instead of main register file.

R31

R1
R0

T0
T1

Tn

Register file Rename registers

When no longer needed, contents copied to main register file and rename
register deallocated.

New names

Slide 290

Renaming

Can be done using a mapping table as described previously or by
associative look-up:

Register
Value Valid LatestID

Associative search
to find rename register

Compare

Source register ID

Rename registers

3 56 1 1

3 34 1 0

from instruction

Associative look-up

 Barry Wilkinson 2002. All rights reserved. Page 146
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 291

With the associative look-up method, there may be more than one

instance of a register (R3 previously has two entries) The latest bit

is set to show the most recent entry.

Examples using separate rename register file

PowerPC 603, 604, 620 using associative look-up

Pentium Pro but with a mapping table

Slide 292

Using Reorder Buffer

Here the task of maintaining sequential consistency and rename

registers containing results not yet retired are combined - an

attractive solution.

 Barry Wilkinson 2002. All rights reserved. Page 147
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 293

Reorder buffer with
reservation stations

First-in, first-out queue - entries dynamically
allocated to instruction register results.

Address Data

Register file

Instruction decode

Main memory

Instruction memory
(cache memory)

ALU Shifter BranchLoad Store

Functional units

Data memory

Reorder
buffer

Forwarding

Operand fetch
Tag result register

Slide 294

Register
Result value Tag

From decoder

Compare

number

register
numbers

From

Update

To register file

registers

Reorder buffer organization

1 35

128
127

125

2
4

8

25 132
30 131

1 129

5 0

3 124

Currently results
not valid and hence

update held up

Number generated

e.g. R25 now referred
to as register R132

by processor

functional
units

130

126

Valid
bits

Program
order

1

1

0
0

0
0
0

0
0

 Barry Wilkinson 2002. All rights reserved. Page 148
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 295

New instruction

Instruction
writes to
register?

Allocate entry at input
of reorder buffer

Write contents back
to register file

Results
at buffer outlet

valid?

Do nothing

Do nothing Deallocate entry

Write register contents
to buffer entry

Yes

No

Yes

No

from decoder

Reorder buffer update algorithm

Results from
functional units

It may be convenient
to allocate an entry
for every instruction in
the general manner of
a reorder buffer, to
maintain sequential
consistency.

Slide 296

Reorder buffer - reading operands

Acess main register file
YesNo

Access reorder buffer

Instance of
source register?

Most recent
instance valid?

Stall

Register valid?

Yes

Read operand

Stall

No

Yes

No

Read operand

 Barry Wilkinson 2002. All rights reserved. Page 149
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 297

Quiz

Explain the following phrases:

• Instruction fetch

• Instruction issue

• Instruction dispatch

• Instruction completes

• Instruction retires

Slide 298

Data Memory

The data memory is usually cache memory which we will discuss

later in the course. Cache memory accesses will take more time

(cycles) than register-register instructions. The location may not

even be in the cache (cache miss), incurring significant extra delay.

Lecture 11

 Barry Wilkinson 2002. All rights reserved. Page 150
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 299

Memory Data Hazards

Data dependencies can exist between load and store instructions

operating on the same memory location, e.g.:

ST [R2],R4

LD R1,[R2]

ST [R2],R4

Need to check load addresses with store addresses. (“Dynamic

disambiguation of addresses”!) More difficult to handle that register

dependencies as addresses are larger. Sometimes only lower

significant bits of the addresses are examined.

Slide 300

Load/Store Ordering

Generally, stores only performed after all previous instructions have

completed (successfully). Maintains data memory (cache) in an in-

order state and correct, and to allows error recovery.

Loads may be allowed out-of-order and to overtake subsequent

stores if no dependencies with stores. With one data memory, use

store buffer to hold pending stores allowing loads to overtake them.

Usually more important to read memory (load) than to store result in

memory, i.e. loads have priority over stores.

 Barry Wilkinson 2002. All rights reserved. Page 151
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 301

Store Buffer

Address Data

Register file

Instruction decode

Main memory

Instruction memory
(cache memory)

ALU Shifter BranchLoad Store

Functional units

Data memory

Reorder
buffer

Forwarding

Operand fetch
Tag result register

Address Data

Store buffer

Check

Compute
memory
addresses

addresses for
dependencies

Slide 302

Combined Load/Store Unit

May be better to have combined load/store unit with a single

reservation station (or load/store instructions held in a central

window). Then can more easily maintain sequential consistency

and can share address logic.

 Barry Wilkinson 2002. All rights reserved. Page 152
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 303

Combined Load/
Store Unit

Address Data

Register file

Instruction decode

Main memory

Instruction memory
(cache memory)

ALU Shifter BranchLoad/

Functional units

Data memory

Reorder
buffer

Forwarding

Operand fetch
Tag result register

Address Data

Store buffer

Load instructions

Reservation
station holds
load and store

can bypass
store instructions

Store
instructions

if no dependencies

Slide 304

Interrupts

The term interrupt is the name given to a mechanism whereby the

processor can stop executing its current program and respond to an

event. This event could be within the processor or external to the

processor.

Typically requires that the program being executed is stopped to

execute an interrupt service routine. After this routine executed,

original program must be restarted (unless no recover).

 Barry Wilkinson 2002. All rights reserved. Page 153
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 305

Types of Interrupts

Many types and sources:

• Timer interrupts - hardware timers causes program to be
interrupted to update time and time sharing.

• Input/Output interrupt - An input/output device requests action
through interrupt request signal to the processor.

• Hardware faults - may be detected and generate an interrupt
• Power failure - may be sensed and generate an interrupt
• Virtual memory interrupt - memory not indicated in translation

look-aside buffer (see later)
• Instruction error condition -, such as divide by zero. Usually

called an exception
• Unimplemented instruction - an instruction in the instruction set

not implemented by the particular processor and must be
emulated in software

• Software interrupts/traps - a form of procedural call, intended to
cause a context switch in a similar fashion as other interrupts.

Slide 306

General classification

Interrupts can be classified as:

• Internal or

• External

and in each case as:

• Error or

• Time critical

Each type may be handled differently.

Question: Classify each of the previous interrupts.

 Barry Wilkinson 2002. All rights reserved. Page 154
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 307

Interrupt handling

When an interrupt occurs in a pipelined processor, instructions in

the pipeline will be at various stages of completion.

Highly complicated in a superscalar processor!

Interrupts can be handled as precise interrupts or imprecise

interrupts.

Slide 308

Precise Interrupts

In precise interrupts, interrupt takes effect at an exact point within

program. The following three conditions must be satisfied:

• All instructions issued prior to instruction being interrupted are
completely executed.

• All instructions issued after instruction being interrupted
abandoned. Process state must not have been modified by
these instructions.

• The interrupted instruction either abandoned (without modify
the process state) or allowed to be completely executed.

Sufficient information must to stored to enable the processor to

restart at the exact point where it was interrupted.

 Barry Wilkinson 2002. All rights reserved. Page 155
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 309

nth (n - 1)th (n - 2)th (n - 3)th
instruction instructioninstructioninstruction

IF OF EX OS

Interrupt mechanism in a simple pipeline

PC

Abandon instructions Execute instructions

Saved
PC

-1

Need to save program counter to be able to return from the interrupt.

Slide 310

Imprecise interrupt

Precise interrupts can be very difficult and expensive to implement

in a superscalar processor.

For an imprecise interrupt, not all information is stored to enable the

processor to restart exactly where it was interrupted. Maybe ok if

one doesn’t expect to return to the program after the interrupt.

Unfortunately this approach is not satisfactory for many sources of

interrupt.

 Barry Wilkinson 2002. All rights reserved. Page 156
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 311

Precise interrupt handing in a superscalar

processor

Possibilities:

1. Force in-order completion - then service interrupt at the end of

current instruction - incurs significant performance overhead,

and generally not acceptable

2. Out-of-order completion - store copies of contents of registers

before they are overwritten.

Slide 312

Precise Interrupts with out-of-order completion

Three ways:

• History file - contains previous register contents. Then
can backtrack to these values on an interrupt.

• Future file - contains updated values that will be placed
into registers when all previous instructions have
completed.

• Reorder buffer - a form of future file that maintains
sequential consistency. (Reorder buffer originally
proposed for this purpose.)

•
Provide a roll-back to a certain place in code.

 Barry Wilkinson 2002. All rights reserved. Page 157
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 313

Superscalar Processor Case Studies

The following has been extracted from:

Advanced Computer Architecture A Design Space Approach by D.

Sima, T. Fountain, and P. Kacsuk, Addison-Wesley, 1997, pages

280-293.

for educational use only.

Slide 314

Processors

• R10000

• PowerPC 620

• Pentium Pro

 Barry Wilkinson 2002. All rights reserved. Page 158
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 315

MIPS R10000

• 4-way superscalar processor with maximum dispatch rate of

five

• Instruction predecoding

• Reservation stations - three groups

• Renaming by merged architectural and rename register file

• Sequential consistency preserved with a reorder buffer

Slide 316

 Barry Wilkinson 2002. All rights reserved. Page 160
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 317

PowerPC 620

• Four-way superscalar processor

• Individual reservation stations

• Renaming by separate architectural and rename registers

• Sequential consistency preserved with a reorder buffer

Slide 318

 Barry Wilkinson 2002. All rights reserved. Page 162
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 319

Pentium Pro

• Superscalar CISC processor with RISC core

• Issues three RISC operations per cycle and dispatches up to

five RISC operations per cycle

• Unified central reservation station with 20 entries for all types of

instructions

• Strict sequential consistency preserved with a reorder buffer

• Renaming done in reorder buffer

Slide 320

 Barry Wilkinson 2002. All rights reserved. Page 164
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

\ Slide 321

Processor design concepts of recent interest

Conditional Move Instructions

For constructs such as:

if (x == 0) a = b;

provide a single conditional move instruction:

CMOVZ R1, R2, R3 ;if R1 = 0, R2 = R3

Eliminates condition code register. Instruction found in some RISCs

Lecture 12

Slide 322

Conditional Load Instructions

Could also have condition load instruction:

LDC R1, R2 [R3] ;if R1=0, copy contents of memory

;location into R2

although this version not as common.

 Barry Wilkinson 2002. All rights reserved. Page 165
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 323

Branch Predication

Used in Intel IA-64/Itanium processor (Intel’s new processor).

Branch predication proposed/developed earlier by others

(University of Illinois).

Replace branch instruction with an instruction which sets a

“predicate” register to TRUE and another “predicate” register to

FALSE. Then have “predicated” instructions - regular machine

instructions but with add field which specifies which predicate

register must be TRUE for the instruction to complete. Can start

execution of the predicated instruction before that but it must not

retire its results unless predicate is TRUE.

Slide 324

P1: ADD R1,R2,R3 P2: SUB R1,R2,R3

Test condition
set predicate registers
P1 and P2 accordingly

Example

if (R1==R2) R1 = R2 + R3; else R1 = R2 - R3;

Start executing both instructions even before predicates set. Only
allow one to write to R1, the one in which the predicate is TRUE

 Barry Wilkinson 2002. All rights reserved. Page 166
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 325

Predicated code

CMPE R1,R2,P1,P2 ;if R1=R2, set P1=TRUE, P2=FALSE

;else set P1 = FALSE, P2 = TRUE

P1: ADD R1,R2,R3

P2: SUB R1,R2,R3

Could have the predicate generators (CMPZ above) predicated

itself. (Actual notation for predicate generator may be different.)

P1/P2 are single bits which turn instruction on/off
- part of instruction not labels

Slide 326

Advantages of predicated code

• Allows instructions to be executed simultaneously and

“speculatively”

• Reduces branch misprediction penalties and hence can

produced significantly faster code - Intel/HP quote 50%

fewer branches and 37% faster code

• Most useful when branch prediction is hard to do accurately,

e.g. in sorting, data compression, non-deterministic

applications.

Instructions can be fetched/grouped together.

 Barry Wilkinson 2002. All rights reserved. Page 167
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 327

Disadvantages

• Requires a completely new instruction set - cannot be fully

grafted onto existing machines - hence Intel’s completely

new design.

• Speculatively executing instructions is wasteful of resources

within the processor, if there is a high probability that the

instructions will have to be abandoned.

Slide 328

Speculative Load

Loading data from memory before needed to reduce effects of

memory latency. Done by moving load instruction to earlier in

program than where it would normally be needed - “hoisted” to an

earlier point.

Compilers can do this to some extent anyway.

Problem occurs when hoisting is across a branch instruction and a

memory exception occurs, e.g. an invalid address, segmentation

fault. This would generate an exception even if load was not needed

finally, i.e. the branch was down the path not needing the load.

 Barry Wilkinson 2002. All rights reserved. Page 168
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 329

 IA-64 solution

Have two instructions:

• A speculative load instruction, ld.s, which performs the load
operation without loading the destination register. If an
exception occurs, a flag is set.

• A check instruction, chk.s, which checks whether an
exception occurred. If it has, an exception handler is called,
otherwise the destination is loaded.

The speculative load is placed as early as possible in the code. The

check is placed where the result is needed. Check can be

predicated.

Slide 330

ld.s
.
.
.

br L1
.
.
.

L1: .
.
.

chk.s
use data from memory location

Memory

destination

Access memory

Complete transfer
into register

NaT bit
Exception

NaT (Not-A-Thing) set to indicate
waiting for exception to be honored

register

 Barry Wilkinson 2002. All rights reserved. Page 169
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 331

Advantages of Speculative Load Instructions

• Hides the memory latency, a significant factor in

obtaining improved performance. Intel quotes a 79%

improvement when combined with predication (August

et al, 1998)

• Particularly effective with many memory (cache)

accesses such as in large databases, operating

systems.

• Scheduling flexibility to obtain parallelism

Slide 332

Intel/Hewlett-Packard IA-64 Architecture

Based upon VLIW (very long instruction word) concept proposed in
the 1980’s.

Independent instructions packaged into groups and sent to
processor. Processor executed the group of instructions
simultaneously (if sufficient internal resources available).

Instruction level parallelism where the compiler made the decision
on which instructions were to be executed together.

Simple processor - does not detect parallelism itself during
execution.

Intel/HP call their version as “EPIC - Explicit Parallel Instruction
Computing.”

 Barry Wilkinson 2002. All rights reserved. Page 170
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 333

IA-64 instruction format

13 bits 6 bits

GPR = specifies one of 128 general-purpose registers

opcode predicate GPR GPR GPR

7 bits 7 bits 7 bits

Instruction 2 Instruction 1 Instruction 0 Template

8 bits40 bits40 bits40 bits

128 bits

Slide 334

Sources of further information

W.-M. Hwu, “Introduction to Predicated Execution,” IEEE Computer,
January 1998, pp. 49-50.

M. S. Schlansker and R.R. Rau, “EPIC: Explicitly Parallel Instruction
Computing,” IEEE Computer, February 2000, pp. 37-45.
C. Dulong, “The IA-64 Architecture at Work,” IEEE Computer, July
1998, pp. 24-32.

C. Zheng and C. Thompson, “PA-RISC to IA-64: Transparent
Execution, No Recompilation,” IEEE Computer, March 2000, pp. 47-
52. (see also other articles in this issue.)

“Inside Intel’s Mersed A Strategic Planning Discussion An Executive
White Paper,” Aberdeen Group, Inc. Boston MA, July 1999. (See
www.aberdeen.com)

