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Memory Design

ITCS 3182 review plus a lot moreLecture 13
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Processor - Memory Interface

The memory that the processor accesses must be random access

memory - memory in which individual memory locations can be

accessed in any order at the same high speed.

The memory should operate at a very high speed, preferably at a

speed that matches the processor, so as not to slow the system

down.

Access time - time to select memory location and obtain stored

information or write new information.
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Main Semiconductor Memory

Main semiconductor memory uses dynamic memory cells* to obtain

high capacity and low cost.

Orginally asynchronous dynamic random access memory (DRAM) -

operates with access times of 50-70 ns.

“Asynchronous” - memory operation is not synchronized to the

processor clock - processor makes a request for a memory location

and has to wait whatever time it takes to access the location.

* see ITCS 3182 notes
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Processor-Memory Bottleneck

Whereas processor clock speeds have increased significantly over

the years, now exceeding 1 GHz (1ns), access time of basic

dynamic memory cell has not increased significantly*.

Various architectural techniques used to overcome this limitation.

* original DRAM in 1970’s access times in order 100-150 ns but now 50-70 ns.
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Increasing the Memory bandwidth

Memory bandwidth - number of bits transferred in a second.

Bandwidth can be increased by simply increasing number of bits

stored in locations and providing more wires to/from memory, e.g.: 

data bus, say 256 bits

Memory (modules)

Processor

Wide Memory Selected location
holds 8 consecutive
bytes
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Essentially accessing groups of sequential locations simultaneously

Disadvantages

• Cost of wires (big bus)

• Processor may not always requires sequential locations

• Limits in what increments memory can be expanded.
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Page Mode

Used in EDO (Extended Data Output) DRAM.

Utilizes the internal row/column timing of DRAM. 

First select a row of memory cells.

Then select series of columns one after the other to access cells on

row in quick succession.

Takes normal access time (60 ns) to access first location but

subsequent ones faster.

Example

5-2-2-2 timing - 5 cycles for first location, 2 cycles for each 3

subsequent locations.
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Representative EDO DRAM Timing

Send row address Access locations
(read or write) Time

Column addresses

Access row

5 cycles 2 cycles 2 cycles 2 cycles
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Disadvantage

Subsequent locations requested by processor may not on same

row.
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Synchronous DRAM (SDRAM)

Introduced in the last few years replacing the original asynchronous

DRAM but still using same basic dynamic memory cell design. 

Access time of memory cell essentially the same.

Speed improvement obtained by synchronizing memory operation

with processor and a burst mode in which a group of locations

accessed one after the other at high speed after an initial read/write

latency. 

Example

5-1-1-1 timing - 5 cycles to obtain the first location, next 2 each after

one cycle (4 accesses in 8 cycles).
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Synchronous DRAM (SDRAM) Performance

Performance now measured in clock frequency as well as in

nanoseconds. 

Example

100 Mhz (or 10 ns) SDRAM

This does not mean that the access time is 10 ns - in burst mode, a

group of consequent locations can accessed at 10 ns intervals.
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Representative Burst Mode Timing

Send first address Access consecutive locations
(read or write) Time

Memory automatically cycles through subsequent
addresses using an on-chip counter
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Disadvantage

Subsequent locations requested by processor may not be

sequential.
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Interleaved Memory

A general memory technique. Memory modules can be accessed at

same time but accesses to each memory module “interleaved.”

Data bus

Memory modules

Processor

Address bus

Data
Address
buffer

buffer

Addr Data
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If have separate address buffer for each memory module, possible

for different locations within each memory module accessed, i.e.

Data bus

Processor

Address bus

Data
Address
buffer

buffer

Addr Data
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Representative Interleaved Memory Timing

Load address buffers Access locations if read
(and data buffer if write) (Access complete if write) Time
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Low Order Interleaving

Lower bits of address select memory module and upper select
location within module - consecutive locations in different memory
locations:

Address within module
Module
address

Most Least
significant

bit
significant

bit

Address format

Example: 4 memory modules

0 1 2 3
4 5 6 7
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Advantages

Works well if accessing series of locations each in consecutive

memory modules.

Disadvantages

Cannot handle arbitrary request patterns (even with separate

address buffers) - notably sequence of locations within same

memory module. 
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While burst mode, memory interleaving, and even increasing the

number of wires in the memory bus, are ways of trying to match the

speed of processor with the memory and are used, generally in

addition, various levels of memory are provided with only that very

close to the processor operating at processor speeds - the levels

are called a memory hierarchy.
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Memory Hierarchy

A computer system has a number of levels of memory for economic

reasons and to provide some non-volatile storage.

The higher the speed of memory the more expensive it is. High

speed semiconductor random access memory is also volatile, and

information needs to be backed up on non-volatile memory.

The memory attached directly to the processor should operates at a

speed that matches speed of memory requests from processor. 
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Memory Hierarchy

Access time (representative)

Processor registers 1 ns (1GHz)

Cache memory (usually two levels)

L1 cache 5 ns

L2 cache 15 ns

Main memory 60 ns (basic access time)

Disk memory 10 ms

CD drives

Tape backup 10 mins

Lecture 14
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Cache Memory

Processor operates much faster than the main memory can.

To ameliorate the situation, a high speed memory called a cache

memory placed between the processor and main memory.
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Main memory

Processor

High speed

X

Xcache memory

Data transfer

Data transfer

Cache Memory
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If same instructions never re-executed, caches would cause an

additional overhead as information would first have to be trans-

ferred from the main memory to the cache and then to the

processor and vice versa, i.e. the access time would be:

ta = tm + tc

where tc = cache access time and tm = main memory access time.

Fortunately, virtually all programs repeat sections of code and

repeatedly access the same or nearby data. This characteristic is

embodied in the Principle of Locality.
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Principle of Locality

Found empirically to be obeyed by most programs. Applies to both

instruction references and data references, though more likely in

instruction references.Two aspects:

1.Temporal locality (locality in time) – individual locations, once

referenced, are likely to be referenced again in the near future.

2.Spatial locality (locality in space) – references, including the

next location, are likely to be near the last reference. (Refer-

ences to the next location are sometimes known as sequential

locality.)
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Temporal locality found in instruction loops, data stacks and variable

accesses.

Temporal locality is essential for an effective cache.

Spatial locality describes the characteristic that programs access a

number of distinct regions. Sequential locality describes sequential

locations being referenced and is a main attribute of program

construction. Also seen in data accesses, as data items are often

stored in sequential locations.

Spatial locality helpful in the design of a cache but not essential.
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Taking advantage of temporal locality

Suppose a memory reference is repeated n times in all during a

program loop and, after the first reference, the location is always

found in the cache, then the average access time would be:

where n = number of references.

Average access time
ntc tm+( )

n
------------------------- tc

tm
n
------+= =
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Example

If tc = 5 ns, tm = 50 ns and n = 10, the average access time would be

10 ns, as opposed to 50 ns without the cache. 
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Taking advantage of spatial locality

To take advantage of spatial locality, transfer not just one byte or

word from the main memory to the cache (and vice versa) but a

series of sequential locations called a line or a block. (Both terms

are used in the literature – we shall use the term line.)

For best performance, the line should be transferred simultaneously

across a wide data bus to the cache, with one byte or word being

transferred from each memory module. This also enables the

access time of the main memory to be matched to the cache.
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Bus

Memory modules

Processor

Cache

0 1 2 3 4 5 6 7
8

Address

9 10 11 12 13 14 15

Cache memory with multiple memory modules (wide word length 
memory)

Byte

Line

location

Memory address

ByteLine
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Let number of memory modules and line size be m (words).

It takes tm seconds to access main memory and load a cache line or

an average of tm/m for each word. (For a perfect match tm/m = tc)

Should words be referenced n times in all, average access time is:

assuming must load cache before accessing words.

Average access time
tm m⁄ ntc+

n
-----------------------------=
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Example

If a cache has an access time of 5 ns and the main memory has an

access time of 50 ns, eight main memory modules would allow eight

words to be transferred to the cache in 200 ns, or an average of

200/8 ns per word. With ten references in all, we have:

The average access time is approximately tc for large n.

Average access time
25 10 5×+( )

10
---------------------------------- 7.5 ns= =
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Hit Ratio

– the probability that the required word is already in the cache. A hit

occurs when a location in the cache is found immediately,

otherwise a miss occurs and a reference to the main memory is

necessary.

The cache hit ratio, h, (or hit rate) is defined as:

The miss ratio (or miss rate) is given by 1 − h.

h
Number of times required word found in cache

Total number of references
---------------------------------------------------------------------------------------------------------------------------=
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Average access time

Average access time, ta, given by:

ta = tc + (1 - h)tm

assuming again that first access must be to the cache before an

access made to main memory. Only read requests consider so far.
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Example

If hit ratio is 0.85 (a typical value), main memory access time is 50

ns and cache access time is 5 ns, then average access time is

5+0.15×50 = 12.5 ns.

THROUGHOUT tc is the time to access the cache, get (or write)

the data if a hit or recognize a miss. In practice, these times

could be different.
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Alternative equation

ta = thit + (1 - h)tmiss_pen

where thit = the time to access the data should be it in the cache
(the hit time) and tmiss_pen is the extra time require if the data is not
in the cache (the miss penalty), i.e.

Average memory access time = hit time + miss rate × miss penalty

This form is used by Hennessy and Patterson (1996).
Our equations can be put in this form by simply substitution thit for tc
and tmiss-pen for tm

In a practical system, each access time given as an integer number
of machine cycles. Can be applied to all equations. Typically hit
time will be 1–2 cycles. Cache miss penalty in order of 5–20 cycles.
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Cache Memory Organizations

Need a way to select the location within the cache. The memory

address of its location in main memory is used.

Three ways of selecting cache location:

1. Fully associative

2. Direct mapped

3. Set associative

Main memory

Processor

High speed

X

Xcache memory

AddressData

On a
cache
miss
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Fully Associative Mapping
Both memory address and data stored together in the cache.
Incoming memory address is simultaneously compared with all
stored addresses using the internal logic of the cache memory.

MainCache

Memory address from
processor

memory

DataAddress
Compare with
all stored
addresses
simultaneously

Address found

Main memory accessed
if address not in cache

Access location

Address not
found in cache

Requires one address comparator
with each stored address
(Content-addressable memory)
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Caches organize their stored information into groups of consecutive
bytes called lines (or blocks). Each line could be say 16 bytes. With
32-bit processors, a word consists of 4 bytes:

Cache

Access word in line

Memory address from
processor

Line
Compare with
all stored
addresses
simultaneously

Address found

Address Word 0Word 1Word 2Word 3

Word Byte

Select byte in word
if necessary

Word within line Byte within word

2 2
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Selecting word/byte

In all our figures, address refers to a byte. If processor makes a

request for a 32-bit word, appropriate signals generated by

processor to select 32-bit word in line. (Similar for other word sizes.)

Pentium Examples

MOV AL,[100] ;select byte at location 100

MOV AX,[100] ;select 16-bit word at 100 and 101

MOV EAX,[100];select 32-bit word at 100,101,102,103

RISCs may not have all these options in selecting size of transfer (or
direct/absolute addressing).
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Fully associative cache needs an algorithm to select where to store

information in cache, generally over some existing line (which would

have to be copied back to the main memory if altered).

Must be implemented in hardware. (No software)

The replacement algorithm should choose a line which is not likely

to be needed again in the near future, from all the lines that could be

selected.
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Common Algorithms

1. Random selection

2. The least recently used algorithm (or an approximation to it).
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Least Recently Used (LRU) Algorithm

Line which has not been referenced for longest time removed from

cache. 

The word “recently” comes about because the line is not the least

used, as this is likely to be back in memory. It is the least used of

those lines in the cache, and all of these are likely to have been

recently used otherwise they would not be in the cache.

Can only be implemented in hardware fully when the number of

lines that need to be considered is small (see later).
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Direct Mapping

Line held in cache at an address given by “index” bits of main
memory address. Line selected from “index” bits . Higher significant
bits of address (tag) stored in cache:

Tag

Compare

Cache

Different

Same

Access word/byte in line

Memory address from
processor

Index

Read

Tag Word 0

Word

Main
memory

accessed
if tags do
not match

Word n-1

Index

Byte

One external

High speed RAM

address comparator

Line
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Sample Direct-Mapped Cache Design

8192-byte direct mapped cache with 32-byte line organized as eight
4-byte words. 32-bit memory address.

Tag

Compare

Cache

Same Access word/byte in line

Memory address from processor

Index

Read

Tag Word 0

Word

Word 1Word 2Word 3

Index

Byte

Line

Word 4 Word 5 Word 6 Word 7

23

5

819

32
27

256
(28)

Tag has 19 bits

8192/32 = 256
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Advantages of Direct Mapped Caches

1. No replacement algorithm necessary.

2. Simple hardware and low cost.

3. High speed of operation.
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Major Disadvantage of Direct Mapped Caches

Performance drops significantly if accesses are made to different

locations with the same index.

However, as the size of cache increases, the difference in the hit

ratios of the direct and associative caches reduces and becomes

insignificant.
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Elements of an Array Stored in Memory

Every n th location in memory map 

into same location in cache where 

there n locations in the cache.

A 2-dimensional array, a[ ][ ],with n 

elements in the first position would 

map all these elements into one 

location (if row-major order as C).

n locations

n locations

Cache
a[0][1]
a[0][0]

a[2][0]

a[0][n-1]
a[1][0]
a[1][1]

a[1][n-1]

a[2][1]
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Set-Associative Mapping

Allows a limited number of lines, with the same index and different

tags, in the cache. A compromise between a fully associative cache

and a direct mapped cache.

Cache divided into “sets” of lines. A four-way set associative cache

would have four lines in each set.

The number of lines in a set is known as the associativity or set

size. Each line in each set has a stored tag which, together with the

index (set number), completes the identification of the line.
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Tag

Compare

Cache

Main
memory

accessed
if tags do
not match

Same

Memory address from processor
Index

Tag Data Tag Data Tag Data Tag Data

Access word/byte

Line

4-way Set-Associative Cache

Word Byte

First, index of address from processor used to access set. Then, all
tags of selected set compared with incoming tag. If match found,
corresponding location accessed, otherwise access main memory.

Set
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Tag

Compare

Cache

Main
memory

accessed
if tags do
not match

Same

Memory address
Index

Tag Tag Tag Tag

Access word/byte

Line

Sample 4-way Set-Associative Cache Design
4096-byte 4-way set-associative cache with 8-byte line organized as
two 4-byte words. 32-bit memory address.

Word Byte

4096/(4 x 8)
= 128

1
2

3

7

32

22

from processor
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Set-Associative Cache Replacement Algorithm

Need only consider the lines in one set, as the choice of set is

predetermined by the index in the address.

Typically, the set size is 2, 4, 8, or 16. A set size of one line reduces

the organization to that of direct mapping and an organization with

one set becomes fully associative mapping.

Set-associative cache has been popular for internal caches of

microprocessors. Examples: Motorola MC68040 (4-way set

associative), Intel 486 (4-way set associative), Intel Pentium (two-

way set associative).
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Valid Bits

In all caches, at least one a valid bit is provided in the cache with

each line. Valid bit set to a 1 when the contents of the line is valid.

Checked before accessing line.

Needed to handle the start-up situation when a cache will hold

random patterns of bits, and also before all the cache entries are

being used.
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If size of line larger than data path between 
cache and memory

Then, multiple transfers necessary to transfer complete line.

Possible for cache line not to hold all the words associated with that

line during the period that words are being transferred into the

cache one after the other; some words might be from a previous

line. 

Then a valid bit is needed with each part of the line.
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Fetch policy

Three strategies for fetching bytes or lines from the main memory

to the cache:

1. Demand fetch.

2.Prefetch.

3.Selective fetch.

Lecture 15
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Demand fetch - fetching a line when it is needed on a miss.

Prefetch - fetching lines before they are requested.

Simple prefetch strategy - prefetch (i + 1)th line when ith line is
initially referenced (assuming that the (i + 1)th line is not already in
the cache) on the expectation that it is likely to be needed if the ith
line is needed.

Selective fetch - policy of not always fetching lines, dependent upon
some defined criterion. Then, the main memory rather than the
cache to hold the information. Individual locations could be tagged
as non-cacheable.

May be advantage to lock certain lines so that these are not be
replaced. Hardware could be provided within the cache to
implement such locking.
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Write Policies

Reading a word in cache does not affect it and no discrepancy

between the cache word and copy held in main memory.

Writing can occur to cache words and then copy held in main

memory different. Important to maintain copies same if other

devices such as disks access the main memory directly.

Two principal alternative mechanisms to update the main memory:

• Write through

• Write back
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Write-Through

In the write-through mechanism, every write operation to the cache

is repeated to the main memory, normally at the same time.

Main memory

Processor

Cache

X

X

AddressData

On every
write reference (but see later)
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Write-through equations

With transfers from main memory to cache on all misses (read and
write):

ta = tc + (1 − h)tm + w(tm − tc)

where tm = time to transfer line to cache, assuming whole line can
be transferred in one transaction and w = fraction of write refer-
ences.

(tm − tc) is additional time to write word to main memory whether hit
or miss, given that both cache and main memory write operations
occur simultaneously but main memory write must complete before
subsequent cache operation can proceed. 
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Example

Suppose tc = 5 ns, tm = 50 ns, h = 99 per cent, w = 20 per cent, and

the memory data path fully matches the cache line size. The

average access time would be 19 ns.
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Multiple transfers to transfer line

If line is longer than the external data path, separate data transfers

are needed for each word of a line. Then 

ta = tc + (1 − h)tb + w(tm − tc)

where tb = btm and there are b transfers to transfer the complete

line.

This modification applies to all the equations.
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Fetch-on-write (miss)

Describes a policy of bringing a word/line from the main memory

into the cache for a write operation.

The term allocate on write is sometimes used for fetch on write

because a line is allocated for an incoming line on cache miss. 



 Barry Wilkinson  2002.  All rights reserved. Page 202
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at 
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 397  

No-Fetch-on-write (miss)

Describes a policy of not bringing a word/line from the main

memory into the cache for a write operation.

Also called Non-allocate on write.
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No-Fetch-on-write equation for write-through 
cache

The average access time with a no fetch on write policy is given by:

ta = tc + (1 − w)(1 − h)tm + w(tm − tc) 

The hit ratio will generally be slightly lower than for the fetch on

write policy because altered lines will not be brought into the cache

and might be required during some read operations, depending

upon the program.

No fetch on write often practiced with a write-through policy. Why?
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Allows the cache to be accessed while multiple previous memory

write operations proceed. “Non-blocking” store. E.g. Alpha 21064

Data Address

Write

Processor Cache
Main

memory

Read

Cache with write buffer

Write-through scheme can be enhanced by incorporating buffers:
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Write-Back (or copy back)
Write operation to main memory only done at line replacement time.
At this time, line displaced by incoming line written back to main
memory.

Main memory

Processor

Cache

X

X

AddressData

X written back to main memory
Y

Reference to Y, a miss

when location used by incoming line (Y)

Only necessary if X altered in cache
Requires an altered (“dirty”) bit with line

X and Y have same index
if direct mapped/set associative
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Write-Back Equations

“Simple” write-back:

ta = tc + (1 − h)tm + (1 − h)tm = tc + 2(1 − h)tm

One (1 − h)tm for writing a line back to memory, other (1 − h)tm for

fetching a line from memory.

Write-back normally handles write misses as fetch on write. Why?

Slide 402  

Write-Back with write back of modified lines

Write-back mechanism usually only writes back lines that have

been altered. The average access time now becomes:

ta = tc + (1 − h)tm + wb(1 − h)tm = tc + (1 − h)(1 + wb)tm

where wb is the probability that a line has been altered. 

The probability that a line has been altered could be as high as the

probability of write references, w, but is likely to be much less, as

more than one write reference to the same line is likely and some

references to the same byte/word within the line likely. 
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Instruction and Data Caches

Several advantages if separate cache into two parts, one holding
the data (a data cache) and one holding program instructions (an
instruction or code cache):

• Separate paths could be provided from the processor to 
each cache, allowing simultaneous transfers to both the 
instruction cache and the data cache.

• Write policy would only have to be applied to the data 
cache (assuming instructions are not modified.

• Designer may choose to have different sizes for the 
instruction cache and data cache, and have different 
internal organizations and line sizes for each cache.
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Instruction
fetch
unit

Memory
access

unit

Instruction pipeline

Instruction
cache

Data
cache

Main memory

Data paths

Processor

Instructions Data

Commonly
inside the 
processor

Particularly convenient in a pipeline processor, as different stages of
the pipeline access each cache:
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Replacement policy

Policy to select a line to remove for an incoming line. (Not applica-
ble for direct mapping which does not allow any choice). Must be
implemented fast in hardware.

Ideally, line replaced will not be needed again in the future. Such
future events cannot be known and decision has to made based
upon facts that are known at the time.

Classified as usage-based or non-usage-based.

Usage-based replacement algorithm for the fully associative cache
needs to take the usage (references) to all stored lines into
account. For a set-associative cache, needs to take only the lines
in one set into account at replacement time.
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Random replacement algorithm

Perhaps the easiest replacement algorithm to implement is a

pseudo-random replacement algorithm.

A true random replacement algorithm would select a line to replace

in a totally random order, with no regard to memory references or

previous selections; practical random replacement algorithms can

approximate this algorithm.
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Least recently used algorithm

The line which has not been referenced for the longest time is

removed from the cache.

The word “recently” comes about because the line is not the least

used as this is likely to be back in memory. It is the least used of

those lines in the cache, and all of these are likely to have been

recently used otherwise they would not be in the cache.

LRU algorithm popular for cache systems and can be implemented

fully when number of lines involved is small. Several ways the

algorithm can be implemented in hardware for a cache.
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Reference Matrix Method

The reference matrix method can be derived from the following

definition (for 4 lines):

B5 = 1 when line 3 is more recently used than line 2 else B5 = 0.

B4 = 1 when line 3 is more recently used than line 1 else B4 = 0.

B3 = 1 when line 3 is more recently used than line 0 else B3 = 0.

B2 = 1 when line 2 is more recently used than line 1 else B2 = 0.

B1 = 1 when line 2 is more recently used than line 0 else B1 = 0.

B0 = 1 when line 1 is more recently used than line 0 else B0 = 0.
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The bits B5, B4, B3, B2, B1 and B0 can be arranged as an upper

triangular matrix of a B × B bits.

When ith line referenced, all the bits in the ith row of the matrix are
set to 1 and then all the bits in the ith column are set to 0. (Prove)

Least recently used line is one which has all 0’s in its row and all
1’s in its column, which can be detected easily by logic. (Prove)

Line 3

Line 2

Line 1

Line 0

0 1 2 3
Line

B3

B2B1

B4 B5

B0
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implementation using reference matrix
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Two-stage replacement algorithm

Lines

LRU replacement
algorithm

Flag indicating
least recently used
line of pair

Select pair then line
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Flags indicating
least recently used
line of pairs

Line

Replacement algorithm using a tree selection

L3 L2 L1 L0

B0

B2 B1

Flag indicating
least recently used
pair of lines of the 4 lines
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?
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Miss Ratio against Line Size
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Processor

First-level
cache(s)

Second-level
cache

Main memory

Second Level Caches
Most present-day systems use two levels of cache.

First-level cache access time matches processor. Second-level
cache access time between main memory access time and first
level cache access time:

Usually separate data and instruction caches

Unified cache holding code and data
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Second level cache equation

Can extend previous equations to cover second-level cache.
Expanding tc in:

ta = tc + (1 - h)tm

we get:

ta = [tc1 + (1 - h1)tc2] + (1 - h2)tm

where tc1 = first-level cache access time, tc2 = second-level cache
access time, tm main memory access time, h1 = first-level cache hit
ratio, and h2 = combined first/second-level cache hit ratio, consider-
ing two caches as one homogeneous cache system. Most micro-
processor families provide for second-level caches.
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Memory Management

Methods of managing the memory hierarchy in a computer system.

Two separate issues for memory management:

1.Handling the main and disk memory hierarchy.

2.Providing memory protection.

Lecture 16
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Paging/Virtual Memory

Objective - to make the main and secondary memories seem as

though all the memory was all main random access memory. Based

upon dividing memory space into pages that are transferred

between the memories automatically. 

The user is given the impression of a very large main memory

space (virtual memory ) which hides the actual memory space (the

real memory space).
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Separate addresses are used for the virtual memory space and the

real memory space.

The actual memory addresses are called real addresses

The program generated addresses are called virtual addresses.

Real and virtual memory spaces divided into blocks of words called

pages.

Pages size might be between 64 bytes and 4 Kbytes, depending

upon design.
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Virtual memory 
system Processor

disk
memory

Main
memory

Page Line
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 Principle of Locality

Just as Principle of Locality causes caches to be successful, it
makes paging successful. References grouped into particular
regions and many, if not all, locations referenced several times.

Program page references

Stack Main program Procedures Data
Addresses
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Translation look-aside buffer (TLB)

Number of pages in a modern computer system too large to hold all

the main memory page table in a very high speed look-up table.

Given program characteristics embodied in the Principle of Locality,

only those page addresses predicted as most likely to be used need

be translated in hardware. The rest of the page references are

initially handled by reading a main memory page look-up table.

The high speed page address translation memory holding the most

likely referenced page entries known as a translation look-aside

buffer (TLB)
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Translation look-aside buffer

Virtual address
from processor

Real address
to main memory

Page Line
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Load
TLB
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Miss

Hit

Miss

Access
disk
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Page Line
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Data and Instruction TLBs

Since most processor have caches and separate data and

instruction caches, it is reasonable to use separate TLBs for each

type of reference.

A reference to data will use one TLB to translate its virtual address

into a real address.

A reference to an instruction will use another TLB to translate its

virtual address into a real address.
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Instruction
fetch
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Memory
access
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Address translation

There are three basic hardware techniques to translate the virtual

page address into a real page address:

1. (Pure) direct mapping.

2.Fully associative mapping.

3.Set-associative mapping.
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(Pure) direct mapping address translation

Virtual address
from processor

High speed memory
holding real page

addresses

Real page
address

Real address
to main memory

0

n

Page n Line

LinePage
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(Pure) direct mapping technique shown not suitable for a TLB.

Direct method suitable for the main memory and second memory

page tables, and could be the basis of these tables.
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Fully associative mapping address translation

Virtual address
from processor

Real address
to main memory

Page n Line

Associative memory

Compare with
all stored virtual

addresses
simultaneously

Virtual
page

Real
page
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Fully associative method is used in some TLBs.

However, large fully associative TLBs may be expensive to create

and will operate slower than set-associative TLBs. Most TLBs are

now set-associative. This does not come without a performance

consideration as we shall see.
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1-way set-associative mapping address translation
Virtual address
from processor

Real address
to main memory
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2-way set-associative mapping address translation

Virtual address
from processor

Real address to main memory

i

Line

High speed
random access memory

IndexTag
i

Real page
Tag address

Compare tags

Comparators

Page

Real page
addressTag

Page Line
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Many systems use two- or four-way set-associative TLBs.

Examples

Intel 486 has a 32-entry four-way set-associative TLB.

Motorola 68040 has two 64-entry four-way set-associative TLBs,

one for the data cache and one for the instruction cache.

Pentium has two data TLBs, one 64 entry 4-way dual port TLB for 4

Kbyte pages and one 8 entry 4-way dual port TLB for 4 Mbyte

pages and one instruction 32-entry 4-way TLB.

Class assignment - find more recent examples.
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Hashing Functions

Set-associative TLB with index directly addressing the TLB has

major disadvantage that only n pages with virtual addresses having

the same lower page bits (index bits) can be translated with a set

size of n.

The set size is often only one or two. The chance of virtual

addresses having the same lower page bits is quite high.

To counteract this effect, alter bits accessing TLB, or “hash” bits to

“randomize” the virtual page address before accessing the TLB. 
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Set-associative mapping address translation (one-way)

Virtual address
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IBM 3033 page hashing function

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Page Line

Hashed index

Exclusive-OR
operations
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Inverted page tables

A method of reducing the size of the page table (can be applied to

the TLB and main page tables).

Rather than store the real address and access table with virtual

address, have n entries where there are n pages in main memory,

one entry for each real address. Table accessed by hashing virtual

address from processor. Need to handle collisions by having

pointers to other entries in table.

Method is used in PowerPC.
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Inverted page table continued

Page table

Hash

Virtual address

LinePage

Tag Real page addr.

generator

LinePage

Link

Compare
Virtual page

addr.

Real address
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Inverted page table operation

1. Hash virtual page address

2. Access inverted page table

3. Read tag

4. Compare tag with virtual page address

If match, read real page address from table

If no match, follow link to another entry in page table and

repeat 2.



 Barry Wilkinson  2002.  All rights reserved. Page 224
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at 
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 441  

Page size

Various page sizes used in paging schemes, from small pages of 64

bytes through to very large pages of 512 Kbytes. A common page

size has been 4 Kbytes. Some systems provide for different page

sizes for flexibility.

Example

Two page sizes can be selected in the Intel Pentium, either 4-Kbyte

or 4-Mbyte pages. system software.

A small page of 64 bytes might be suitable for code while a larger

page of 512 bytes might be suitable for data. A very large page size

of say 4 Mbytes might suit graphics applications.
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Small page size

• Time taken in transferring a page between the main memory

and the disk memory is short

• Large selection of pages from various programs can reside in

main memory.

• Also reduces the storing of superfluous code which is never

referenced.

• Necessitates a large page table

• Table fragmentation increases. This is the term used to describe

the effect of memory being occupied by mapping tables and

hence being unavailable for code/data.
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Large page size

• Requires a small page table but the transfer time is generally

longer.

• Unused space at the end of each page is likely to increase – an

effect known as internal fragmentation - on average, the last

page of a program is likely to be 50 per cent full.
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Multilevel page mapping

Page table giving all virtual/real page associations for main
memory requires considerable memory. To reduce this require-
ments, use two- or multilevel mapping

Virtual addressPage Line

Table descriptor
register

Page tables

Real address

Last table holds
actual page addresses

Creates n-ary tree with final page tables at leaves
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Handling page faults

A page fault occurs whenever page referenced is not already in

main memory, i.e. when a valid page entry not found in TLB and

main memory page tables.

When page fault occurs, the required page must be located in the

disk memory using the disk memory page tables, and a page in the

main memory must be identified for removal if there is no free space

in the main memory.
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Three policies to consider when handling page faults:

1.Fetch policy – to determine when pages are loaded into the
main memory.

2.Placement policy – to determine where pages are to be placed
in main memory.

3.Replacement policy – to determine which page in the main
memory to remove or overwrite.
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Normal fetch policy - demand paging - wait until a page fault occurs

and then loading the required page from the disk memory.

Placement policy - Original policy was to maintain one free page in

the main memory for the incoming page. Another page is removed

afterwards to create a free page for the next incoming page.
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Page replacement algorithms

Can be classified as:

1.Usage-based algorithms.

2.Non-usage-based algorithms.

In a usage-based algorithm the choice of page to replace is

dependent upon how many times each page in the main memory

has been referenced. Non-usage-based algorithms use some other

criteria for replacement.
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Implementing usage-based algorithms

Hardware is necessary to record when pages are referenced.

Use (or accessed) bit with each page entry - set if corresponding

page referenced and automatically reset when the bit is read. Use

bits are read under program control.

Use bits usually scanned at perhaps after 1 ms of process time to

obtain an approximation of the usage.
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Page table has other bits to assist the replacement algorithm:

Modified (or written, changed or dirty) bit. - set if write operation

performed on any location within page. Not necessary to write

unaltered page back to disk memory if copy maintained there.

Very occasionally, unused bit set to 1 when the page loaded

into main memory and reset to 0 when subsequently

referenced. May be helpful to ensure that page demanded not

removed before being used.

Protection bits - concerned with controlling access to pages.
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Random replacement algorithm

Page is chosen randomly at page fault time; there is no relationship

between the pages or their use. Does not take the principle of

locality of programs into account. Simple to implement but is not

widely applied to TLBs.

Examples

VAX 11/780 translation buffer (TLB), the TLB in the Intel i860 RISC

processor.
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Least recently used replacement algorithm

Page not been referenced for longest time transferred out at page

fault time. Poses practical problems for a true implementation since

there are many pages to consider.

A common approximation - at intervals, say after every 1 ms, all of

use bits are examined by the operating system and automatically

reset when read.

A record of the number of times the bits are found set to 1 would

give an approximation of the usage in units of the interval selected.

Approximation becomes closer to a true LRU algorithm as the

interval is decreased. 
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Approximate least recently used replacement 
algorithm using “sampling”
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TLB performance

If the page address not found in TLB, a TLB miss occurs, and a sig-
nificant overhead occurs in searching the main memory page
tables, even when the page is already in the main memory.

The TLB like a data cache. Basic cache equations also apply to
TLB, i.e. the address translation time, tt, is given by:

tt = ttlb + (1 - htlb)tmt

where ttlb is the translation time of the TLB (hit or miss) and tmt is the
translation time looking in main memory tables on a TLB miss.

The TLB miss ratio is given by (1 - htlb). Typically the TLB miss ratio
(miss rate) is very low indeed, perhaps less than 0.05 per cent.
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TLB miss ratio against size
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Virtual memory systems with cache memory

Can insert cache after TLB virtual/real address translation, so that

the cache holds real address tags and the comparison of addresses

is done with real addresses.

Alternatively, can insert cache before TLB virtual-real translation so

that the cache holds virtual address tags and the comparison of

addresses is done using virtual addresses.

Former case, which is much less complicated and has fewer

repercussions on the rest of the system design.
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Addressing cache with real addresses

Virtual address from processor

TLB

Cache

Real address
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Possible to perform the TLB virtual-real translation at the same time

as selecting the line or set in the cache, to gain an improvement in

speed. There are constraints on the size of the cache.

Constraints

Index field has to be contained within the line field of the virtual

address - that is, the number of bytes in the cache must to be equal

or less than the number of bytes in the page - examples next.
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Fully associative TLB with a direct mapped cache
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One-way set-associative TLB with a direct mapped cache
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Page
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Pipelined Designs

Can pipeline previous designs:

Virtual address

Real addresses

TLB

Compare

pipeline latch

pipeline latch

Cache

Data (if read)



 Barry Wilkinson  2002.  All rights reserved. Page 235
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at 
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 463  

In a pipelined design, could access TLB before the cache and lift

previous constraints by having one stage for the TLB and a

subsequent stage for the cache:

CacheTLB

Real addressVirtual address

TLB miss Cache miss

Notice TLB and cache misses could occur
simultaneously relating to different instructions
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Real addressed cache access time

At least six combinations of accesses:

1.Address in TLB, data in cache ttlb + tc 

2.Address in TLB, data in main memory ttlb + tc + tm

3.Address in cache, data in cache ttlb + tc + tc

4.Address in cache, data in main memory ttlb + tc + tc + tm

5.Address in main memory, data in cache ttlb + tc + tm + tc

6.Address in main memory, data in main memory ttlb + tc + tm + tc + tm

Non-pipelined design
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Addressing cache with virtual addresses

If the cache is addressed with virtual addresses, these addresses

are immediately available for selecting a word within the cache.

Only on a cache miss would it be necessary to translate a virtual

address into a real address, and there is more time then.

Potential increase in speed over a real addressed cache.
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Complications

Possible for different virtual addresses in different processes to
map into same real address.

Such virtual addresses known as synonyms – the same thing as
another but in different contexts.

Synonyms occur:

• If the addressed location is shared between processes
• If programs request the operating system to use different virtual

addresses for the same real address.
• Can also occur in multiprocessor systems when processors

share memory using different virtual addresses.

Also possible for same virtual address generated in different
processes to map into different real addresses.
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Synonyms

VA1

VA2

RA

RA

Virtual address Real address

Same

TLB
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Handling Synonyms

• Process or other tags could be attached to the addresses to

differentiate between virtual addresses of processes,

• Synonyms could be disallowed by placing restrictions on virtual

addresses.

• Could be handled by use of a reverse translation buffer (RTB).

On a cache miss, the virtual address is translated into a real

address using the virtual-real translation look-aside buffer (TLB)

to access the main memory. When the real address has been

formed, a reverse translation occurs to identify all virtual

addresses given under same real address.
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Segmentation

Purpose of segmentation is to organize the programs in memory so

that the operating system can relocate programs in the main and

disk memory easily, and to provide protection from unauthorized

access/execution.

Although the way this is done looks similar to virtual memory/

paging, not the same purpose as paging which has a hardware

motive, to manage the memory hierarchy in an automatic way. 
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A segment is a block of contiguous locations. Segments may be of

different sizes since programs are of different sizes.

Each address generated by the processor -logical address - is

composed of a segment number and an offset within the segment.

Segment number is translated into the start of the segment in

memory and offset added to form the physical address .
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Segmentation address translation

Logical address (from processor)

Segment table
pointer

Segment Offset

Segment
table

+

+

Physical address

Address of start
of segment
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Important aspect

The segment number and offset are separate entities and any

alteration to the offset by the program cannot affect the segment

number.

Once the maximum offset is reached, adding one to the offset

should create an error condition.
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Segment table

Incorporates additional information, including:

1.Segment length.

2.Memory protection bits.

3.Bit(s) for the replacement algorithm.
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Segment start address Segment length Protection bits Use bit
Segment table
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Segment length

Length of each segment stored to prevent programs referencing a

location beyond the end of a particular segment. If the offset in the

logical address is greater than the stored length (limit) field, an error

signal is generated (dreaded “segmentation error”).
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Memory Protection

Memory protection involves preventing specified types of access to

the addressed location and discarding or stopping the address

translation occurring. The protection applies to all of the locations in

the segment and not to particular locations. Typically, by setting bits

in the segment tables, any segment can be assigned as allowing:

1.Read access

2.Write access

3.Execute access

for user, group, and system (e.g. UNIX).
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Replacement algorithm

Can be similar to the replacement algorithm in a paged system

except that it needs to take the varying size of the segments into

account when allocating space for new segments.

Use bit usually sufficient to implement a replacement algorithm or

approximations to a replacement algorithm.
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Segment Unused Unused SegmentSegment

Placement algorithm

The variable size of segments causes some additional problems in

main memory allocation. During operation, with segments returned

to the disk memory, the main memory will become a

“checkerboard”: 

External fragmentation. - leaving small spaces which cannot be

used subsequently. 
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Placement algorithms

• first fit

• best fit

• worst fit. 
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Paged segmentation

Segmentation and paging are usually combined, to gain the
advantages of both systems, i.e. the logical structure of
segmentation and the hardware mapping between main and disk
memory of paging. 

Process 1 Process 2

Main memory

Process 3 Process 4

Segment

Generally segment finished before end
of last page, which is then wasted.
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Paged segmentation address translation
Logical address

Segment table
pointer

Segment Line

Segment
table

+

+

Physical address

+

Page

Page
table

Start address of

Address of page

Concatenatepage table for segment

Page table holds addresses of pages of specific segment
given in segment table.
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Two-level paging with segmentation
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