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Multiprocessor Systems

Slide 484  

Multiprocessor - computer system containing more than one

processor.

Principal motive is to increase the speed of execution of the system. 

Sometimes other motives, such as fault tolerance.

Apparent that increased speed should result when more than one

processor operates simultaneously.
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Main memory

Processor

Instructions (to processor)
Data (to or from processor)

Conventional Computer

Each main memory location located its address. Addresses start at

0 and extend to 2n − 1 when there are n bits in address.
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Types of multiprocessor systems
(where each processor executes its own program)

Shared memory multiprocessor system - a natural extension of a

single processor system in which all the processors can access a

common memory.

Distributed memory multicomputer system -multiple interconnected

computers where each computer has its own memory.
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Shared Memory Multiprocessor System

Each processor can access any memory location. One address

space.

Interconnection network

Memory modules

Processors
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Interconnection networks

Various possible networks:

• Single bus

• Multiple buses (not much used)

• Rings

• Mesh

• Hypercube (popular in the 1980’s, not any more)

• Multistage interconnection networks (MINs)

Here, we will only consider the single bus approach used in small

multiprocessor systems, for example quad Pentium systems.
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Shared bus multiprocessor system

A natural extension to a single bus microprocessor systems.

Simplistic view:

Processors Shared memory

Bus
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Quad Pentium shared memory multiprocessor 
system

Processor

L2 Cache

Bus interface

L1 cache

Processor

L2 Cache

Bus interface

L1 cache

Processor

L2 Cache

Bus interface

L1 cache

Processor

L2 Cache

Bus interface

L1 cache

Memory Controller

Memory

I/O interface

I/O bus

Processor/
memory
bus
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Interconnection network

General model of a shared memory 
multiprocessor system with caches

Memory modules

Caches

Processors

Possible first
level cache
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Cache Coherence

Significant additional factors to consider in using cache memory in a

multiprocessor environment, in particular maintaining accurate

copies of data in the multiple caches in the system. 

Maintaining copies in all the caches the same is known as cache

coherence Any read should obtain the most recent value written.

(Actually more complicated that this.) 



 Barry Wilkinson  2002.  All rights reserved. Page 250
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at 
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 493  

Write policy

Write-through is not sufficient, or even necessary, for maintaining

cache coherence, as more than one processor writing-through the

cache does not keep all the values the same and up to date.
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Interconnection

Caches

Processors

x

x x

network

P0 P1 Pn

Memory modules

(a) Processors accessing x

Inconsistency with write through policy
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(b) Processor 1 updating x

Interconnection

Caches

Processors

x

x x'

network

P0 P1 Pn

Memory modules
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(c) After write-through

Interconnection

Caches

Processors

x'

x x'

network

P0 P1 Pn

Memory modules
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Interconnection

Caches

Processors

x

x x'

network

P0 P1 Pn

Memory modules

(d) Invalidating or updating copy
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Two possible solutions

1. Update copy in the cache of processor 0, or

2. Invalidate copy in the cache of processor 0

both of which require access to the cache of processor 0.
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Update

Update writes all cached copies with the new value of x.

Not usually implemented because of the overhead of the update.

In any event, it may be not completely necessary because not all

processors may access the location again.
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Invalidation

Done by resetting the valid bit associated with x in the cache. Now

processor 0 must access the main memory if it references x again,

to bring a new copy of x back into its cache. If copies existed in

caches apart from the cache of processor 1, these copies would

also need to be invalidated.

With invalidation, write back may be practiced rather than write-

through to reduce the memory traffic. Then there is only one valid

copy in one cache, and one processor has ownership of this copy.
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Line

Cache

Processor 1

Cache

Processor 2

Main memory

Line in cache

7
6
5
4
3
2
1
0

Address
tag

False sharing
When more than one processor accesses different parts of a line

but not the actual data items.
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False sharing can result in significant reduction in performance

because, in maintaining cache coherence, the smallest unit

considered is the line.

False sharing can be reduced by distributing the data into different

lines if sharing is expected.

A task for the compiler, and requires both knowledge of the use of

the data and the architectural arrangements of the caches.

Alter the layout of the data stored in the main memory, separating

data only altered by one processor into different blocks.
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May be difficult to satisfy in all situations.

Example

forall (i = 0; i < 5; i++)

a[i] = 0;

is likely to create false sharing as the elements of a, a[0], a[1],
a[2], a[3], and a[4], likely to be stored in consecutive locations in
memory.

Would need to place each element in a different block, which would
create significant wastage of storage for a large array.

forall is a high level language construct that says do the body

with each value of i simultaneously.
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Methods of Achieving Cache Coherence

For a single bus structure, snoop bus mechanism often used.

Snoop bus mechanism

In the snoop bus mechanism, a “bus watcher” unit with each

processor/cache observes the transactions on the bus and in

particular monitors all memory write operations. If a write is

performed to a location which is cached locally, this copy is

invalidated - needs a protocol -see later. Could invalid based upon

only index (not compare tags).



 Barry Wilkinson  2002.  All rights reserved. Page 256
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at 
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 505  

Processor

Cache
controller

Cache

Bus interface

“Snoop” bus

System bus

Other processors
each with cache
and controller

Main memory
attached to
system bus

Snoop bus mechanism

Note: two-port memory
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Four-state MESI (Modified/Exclusive/Shared/
Invalid) invalidate cache coherence protocol

Can be found in the internal data cache of Intel Pentium, the second

level Pentium cache controller, the Intel 82490 (Intel, 1994c), the

Intel i860 processor (Intel, 1992b), and Motorola MC88200 cache

controller (Motorola, 1988b), among others - with variations.
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Each line in the cache can be in one of four states:

1.Modified (exclusive) – The line is only in this cache and has
been modified (written) with respect to memory. Copies do not
exist in other caches or in memory.

2.Exclusive (unmodified) – The line is only in this cache and has
not being modified. It is consistent with memory. Other copies
do not exist in other caches.

3.Shared (unmodified) – This line potentially exists in other
caches. It is consistent with memory. To stay in this state,
access to line can only be for reading.

4. Invalid – This line has been invalidated and does not contain
valid data.
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Two bits can be associated with each line to indicate state of line.

Modified (exclusive) and exclusive (unmodified) states are used to

indicate that the processor has the only copy of the cache line.

In modified (exclusive) state, processor has altered the contents of

the line from that kept in the main memory and hence a valid copy

does not even exist in the main memory. It will be necessary to

write back the line before any other cache can use the line.

Lines enter the invalid state by being invalidated by other proces-

sors, i.e. this is an invalidate protocol. 
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MESI protocol – major transitions
(Note: there are variations)

Invalid
Shared

(unmodified)

Exclusive
(unmodified)

Modified
(exclusive)

Reset

Read

ReadWriteRead
Write

Local processor initiated
Remote processor initiated

WriteWrite

Read

Write access

Read
access

Write
access

Write
access

(shared)

Read
(not shared)

Read
access
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Example Sequence of MESI Protocol State 
Changes

Main memory

Processor 1 Processor 2

Cache

I EUState change I

(a) Processor 1
reads x

x

Access
memory

Snoop

x
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Processor 1 Processor 2

State change I SU

(b) Processor 2
reads x

Snoop

Access
memory

x

xx

EU SU
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Processor 1 Processor 2

SU MEState change

(c) Processor 1
writes to x

x ' x

x

Snoop

SU I

Access
memory

“Read with intent to modify” (RWITM) sequence initiated. 

Read

Write
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Processor 1 Processor 2

State change I

(d) Processor 1
writes to x

x"
Write

x

x

ME
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MESI protocol state changes from exclusive 
ownership to shared

Processor 1 Processor 2

MEState change I

(a) Processor 2
reads x

x"

Access
memory

Snoop

x

Blocks
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Processor 1 Processor 2

State change I

(b) Processor 1
writes back x"

ME SU

Access
memory

x"

x"
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Processor 1 Processor 2

State change

(c) Processor 2
reads x" from memory

x"

x"

x"

I SUSU
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Performance of Single Bus Network

A key factor in any interconnection network is the bandwidth - the

average number of requests accepted in a bus cycle.

Bandwidth and other performance figures can be found by one of

four basic techniques:

1.Using analytical probability techniques.

2.Using analytical Markov queuing techniques.

3.By simulation.

4.By measuring an actual system performance.
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Probabilistic Techniques

Principal assumptions:

1.The system is synchronous and processor requests are only
generated at the beginning of a bus cycle.

2.All processor requests are random and independent of each
other.

3.Requests which are not accepted are rejected, and requests
generated in the next cycle are independent of rejected
requests generated in previous cycles.
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Assumption 2

Ignores characteristic that programs normally exhibit referential

locality. However, requests from different processors normally inde-

pendent.
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Assumption 3

Rejected requests are ignored and not queued for the next cycle.

This assumption is not generally true. Normally when a processor

request is rejected in one cycle, the same request will be resubmit-

ted in the next cycle. However, the assumption substantially simpli-

fies the analysis and makes very little difference to the results.
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Bandwidth

Probability that processor makes (random) request for memory = r.

Probability that the processor does not make a request = 1 − r.

Probability that no processors make a request for memory = (1 − r)p

where there are p processors.

Probability that one or more processors make a request= 1−(1−r)p.

Since only one request can be accepted at a time in a single bus

system, the average number of requests accepted in each arbitra-

tion cycle (the bandwidth, BW) is given by:

BW = 1 − (1 − r)p
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Bandwidth of a single bus system 
( using more accurate rate adjusted equations, see textbook)

0.2
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1.0
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Processors
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r = 0.2
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Key Observation,

Bus saturates - at about 8 processors with r = 0.5.

Not be that bad with cache memory as then r is much less.

Still, a single bus is only suitable for a small system.
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Processors/memories

Multiple buses

To improve the performance over a single bus system.

Costly

Rarely used - one example: 4 buses used in SUN Starfire UE10000

system for extending the cache snoop protocol.
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Memories

Processors

Crossbar switch

Slide 526  
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Programming Multiprocessors

In all cases, objective is to have each processor executing a

program as much as possible simultaneously.

Need to decompose the problem into separate parts that can be

done by different processors together.

Generally data may need to pass between the parts and the parts

may need to be synchronized at times.
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Several Alternatives for Programming Shared 
Memory Multiprocessors:

Using:
• Threads (Pthreads, Java, ..) in which the programmer 

decomposes the program into individual parallel sequences, 
each being thread, and each being able to access variables 
declared outside the threads.

• A sequential programming language with preprocessor compiler 
directives to declare shared variables and specify parallelism. 
Example OpenMP - industry standard

• A sequential programming language with user-level libraries to 
declare and access shared variables.

• A parallel programming language with syntax for parallelism, in 
which the compiler creates the appropriate executable code for 
each processor (not now common)

• A sequential programming language and ask a parallelizing 
compiler to convert it into parallel executable code. - also not 
now common
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Sequential Consistency

Mentioned before with regard to superscalar proessor design.

Formally defined by Lamport (1979):

A multiprocessor is sequentially consistent if the result of any

execution is the same as if the operations of all the processors were

executed in some sequential order, and the operations of each

individual processors occur in this sequence in the order specified

by its program.

i.e. the overall effect of a parallel program is not changed by any

arbitrary interleaving of instruction execution in time.
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Sequential Consistency

Any order

Processor (programs)

x = 1;
.
.

y = x + 3;
.
.

z = x + y;
.
.

x, y, z

.
a = x;

.

.

.

.

.

.

.

.

.
b = x.

.

.

.

.

.

.

Memory
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Writing a parallel program for a system which is known to be sequen-
tially consistent enables us to reason about the result of the program.

Example

Process P1 Process 2
. .

data = new; .
flag = TRUE; .

. .

. while (flag != TRUE) { };

. data_copy = data;

. .

Expect data_copy to be set to new because we expect the statement
data = new to be executed before flag = TRUE and the statement
while (flag != TRUE) { } to be executed before data_copy = data.
Ensures that process 2 reads new data from another process 1.
Process 2 will simple wait for the new data to be produced.
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Program Order

Sequential consistency refers to “operations of each individual

processor .. occur in the order specified in its program” or program

order.

In previous figure, this order is that of the stored machine

instructions to be executed.
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Compiler optimizations

The order is not necessarily the same as the order of the

corresponding high level statements in the source program as a

compiler may reorder statements for improved performance. In this

case, the term program order will depend upon context, either the

order in the souce program or the order in the compiled machine

instructions.
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High performance processors

Modern processors usually reorder machine instructions internally

during execution for increased performance.

This does not alter a multiprocessor being sequential consistency, if

the processor only produces the final results in program order (that

is, retires values to registers in program order which most

processors do). 

All multiprocessors will have the option of operating under the

sequential consistency model. However, it can severely limit

compiler optimizations and processor performance.
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Example of processor re-ordering

Process P1 Process 2
. .

new = a * b; .
data = new; .
flag = TRUE; .

. .

. while (flag != TRUE) { };

. data_copy = data;

. .

Multiply machine instruction corresponding to new = a * b is issued
for execution. The next instruction corresponding to data = new
cannot be issued until the multiply has produced its result. However
the next statement, flag = TRUE, is completely independent and a
clever processor could start this operation before the multiply has
completed leading to the sequence:
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Process P1 Process 2
. .

new = a * b; .
flag = TRUE; .
data = new; .

. .

. while (flag != TRUE) { };

. data_copy = data;

. .

Now the while statement might occur before new is assigned to data,
and the code would fail.

All multiprocessors will have the option of operating under the
sequential consistency model, i.e. not reorder the instructions and
forcing the multiply instruction above to complete before starting the
subsequent instruction which depend upon its result.
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Relaxing read/write orders

Processors may be provided with facilities to be able to relax the

consistency in terms of the order of reads and writes of one

processor with respect to those of another processor.
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Processor consistency 

Term is used to describe the particular situation in which individual

processors write in program order but the interleaved writes of

different processors can appear in different orders. This relaxation

would allow some opportunities for improved performance (through

buffering and reordering instructions).

To support general relaxed read and write orders, special machine

instructions, variously called memory fences or memory barriers,

are provided to synchronize the memory operations when

necessary in the program. 
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Examples

Alpha processors 

Memory barrier (MB) instruction - waits for all previously issued

memory accesses instructions to complete before issuing any new

memory operations.

Write memory barrier (WMB) instruction - as MB but only on

memory write operations, i.e. waits for all previously issued memory

write accesses instructions to complete before issuing any new

memory write operations - which means memory reads could be

issued after a memory write operation but overtake it and complete

before the write operation. (check)
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SUN Sparc V9 processors

memory barrier (MEMBAR) instruction with four bits for variations

Write-to-read bit prevent any reads that follow it being issued before

all writes that precede it have completed. Other: Write-to-write,

read-to-read, read-to-write.

IBM PowerPC processor

SYNC instruction - similar to Alpha MB instruction (check

differences)
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Relaxed memory models

Weak Consistency

Synchronization operations are used by the programmer whenever

it is necessary to enforce sequency consistency. The compiler/

processor is allowed in other places to reorder instructions without

regard to sequential consistency.

This is quite reasonable model since any accesses to shared data

should be provided with synchronization operations (locks etc.).
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Basic Tenets of Shared Memory Programming

• Protect access to shared data through use of critical 

sections, locks, semaphores, etc.

• Synchronize processes using barriers
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Processor

Interconnection
network

Local

Computers

Messages

memory

Distributed Memory Multicomputer

Complete computers connected through an interconnection
network:
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Cluster Computing

Using a group of interconnected computers to solve a problem -

usually the motive is faster computation, but other motives include

fault tolerance, larger amount of memory available, ...

Cluster computing became interesting when the cost of commody

computers became low and their performance increased in the

early 1990’s.

Originally terms such as networks of workstations (NOWs), cluster

of workstations (COWs) were used.
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Background

Using a groups of computers or processors collectively to solve a

problem has been around for 40 years.

Parallel computers - computers designed with more than one

processor- and parallel programming - programming such

computers is a regular topic in computer science curriculum.

What is different now is that all institutions can establish their own

parallel computing platform at little cost and the progarmming tools

are readily available. Do not need access to supercomputers.
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Programming

Involves dividing problem into parts that are intended to be

executed simultaneously to solve the problem

Common approach is to use message-passing library routines that

are linked to conventional sequential program(s) for message

passing.

Problem divided into a number of concurrent processes.

Processes will communicate by sending messages; this will be the

only way to distribute data and results between processes.
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Message Passing Parallel Programming 
Software Tools for Clusters

Parallel Virtual Machine (PVM) - developed in late 1980’s. Became
very popular. 

Message-Passing Interface (MPI) - standard defined in 1990s. 

Both provide a set of user-level libraries for message passing. Use

with regular programming languages (C, C++, ...).
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Message passing between workstations using PVM.

PVM

Application

daemon

program

Workstation

PVM
daemon

Application
program

Application
program

PVM
daemon

Workstation

Workstation

Messages
sent through
network

(executable)

(executable)

(executable)

MPI can be similar
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Distributed Shared Memory 

Making the main memory of a cluster of computers look as though it
is a single memory with a single address space.

Then can use shared memory programming techniques.
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Processor

Interconnection
network

Computers

Messages

DSM System 

Still need messages or mechanisms to get data to processor, but
these are hidden from the programmer:

Shared memory

Memory
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Advantages of DSM

System scalable

Hides the message passing - do not explicitly specific sending
messages between processes

Can us simple extensions to sequential programming

Can handle complex and large data bases without replication or
sending the data to processes
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Disadvantages of DSM

May incur a performance penalty

Must provide for protection against simultaneous access to shared
data (locks, etc.)
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Methods of Achieving DSM

Hardware - special network interfaces and cache coherence circuits

Software - adding a software layer between the operating system
and the application
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Software DSM Implementation

• Page based - Using the system’s virtual memory

• Shared variable approach

• Object based- Shared data within collection of objects. 

Access to shared data through object oriented discipline 

(ideally)
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Performance Issues

Achieving Consistent Memory

• Data altered by one processor visible to other processors

• Similar problem to multiprocessor cache coherence

• Multiple writer protocols

• False Sharing - Different data within same page accessed 

by different processors (if page based)
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Consistency Models

• Strict Consistenc - Processors sees most recent update, 

i.e. read returns the most recent wrote to location

• Sequential Consistency - Result of any execution same as 

an interleaving of individual programs

• Relaxed Consistency- Delay making write visible to reduce 

messages

• Release Consistency - programmer must use 

synchronization operators, acquire and release

• Lazy Release Consistency - update only done at time of 

acquire
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Some Software DSM Systems

Treadmarks

JIAJIA

Adsmith object based (C++ library routines) - we have this installed
on our cluster
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Adsmith

• User-level libraries that create distributed shared memory 

system on a cluster.

• Object based DSM - memory seen as a collection of 

objects that can be shared among processes on different 

processors.

• Written in C++

• Built on top of pvm 

• Freely available - installed on UNCC cluster

User writes application programs in C or C++ and calls Adsmith
routines for creation of shared data and control of its access.
If required, can also call pvm routines in same program.
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Another course deal with programming multiprocessor systems

(parallel programming):

ITCS 5145 Parallel Programming 
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THE 

END


