
Chapter 3.4 - ISA 4 1

ISA Part IV
Instruction Representation2

MIPS Assembly - Miscellaneous

Chapter 3.4 - ISA 4 2

MIPS Instructions (Quick Summary)

Name Example Comments
$s0-$s7, $t0-$t9, $zero,Fast locations for data. In MIPS, data must be in registers to perform

32 registers $a0-$a3, $v0-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is
$fp, $sp, $ra, $at reserved for the assembler to handle large constants.
Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

230 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language
Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants
load word lw $s1, 100($s2) $s1 = Memory[$s2 + 100] Word from memory to register
store word sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb $s1, 100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register
store byte sb $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory
load upper immediate lui $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits

branch on equal beq $s1, $s2, 25 if ($s1 == $s2) go to
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne $s1, $s2, 25 if ($s1 != $s2) go to
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt $s1, $s2, $s3 if ($s2 < $s3) $s1 = 1;
else $s1 = 0

Compare less than; for beq, bne

set less than
immediate

slti $s1, $s2, 100 if ($s2 < 100) $s1 = 1;
else $s1 = 0

Compare less than constant

jump j 2500 go to 10000 Jump to target address
Uncondi- jump register jr $ra go to $ra For switch, procedure return
tional jump jump and link jal 2500 $ra = PC + 4; go to 10000 For procedure call

Chapter 3.4 - ISA 4 3

Review
• MIPS defines instructions to be same size as data (one word)

so that they can use the same memory (can use lw and sw).

° Machine Language Instruction: 32 bits representing a single
instruction

opcode rs rt immediate

opcode rs rt rd functshamtR
I

Computer actually stores programs as a series of
these.

Chapter 3.4 - ISA 4 4

Outline

• Review branch instruction encoding

• Jump instructions

° Disassembly

° Pointers to structures

Chapter 3.4 - ISA 4 5

Branches: PC-Relative Addressing
• Branch Calculation:

– If we don’t take the branch:

PC = PC + 4

– If we do take the branch:

PC = (PC + 4) + (immediate * 4)

– Observations

1. Immediate field specifies the number of words to jump,
which is simply the number of instructions to jump.

2. Immediate field can be positive or negative.

3. Due to hardware, add immediate to (PC+4), not to PC;
will be clearer why later in course

Chapter 3.4 - ISA 4 6

J-Format Instructions (1/2)
For branches, we assumed that we won’t want to branch too far, so
we can specify change in PC.

For jumps (j and jal), we may jump to anywhere in memory.

Ideally, we could specify a 32-bit memory address to jump to.

Unfortunately, we can’t fit both a 6-bit opcode and a 32-bit address
into a single 32-bit word, so we compromise.

Define ‘fields’ of the following number of bits each:

6 bits 26 bits

opcode target address

As usual, each field has a name:

Key Concepts
1. Keep opcode field same as R-format and I-format for consistency.
2. Combine all other fields to make room for target address.

Chapter 3.4 - ISA 4 7

J-Format Instructions (2/2)
• We can specify 28 bits of the 32-bit address, by using WORD address.

• Where do we get the other 4 bits?

– By definition, take the 4 highest order bits from the PC.

– Technically, this means that we cannot jump to anywhere in memory, but
it’s adequate 99.9999% of the time, since programs aren’t that long.

– If we absolutely need to specify a 32-bit address, we can always put it in a
register and use the jr instruction.

• Summary:

– New PC = PC[31..28] || target address (26bits)|| 00

– Note: II means concatenation
4 bits || 26 bits || 2 bits = 32-bit address

• Understand where each part came from!

Chapter 3.4 - ISA 4 8

Outline

° Review branch instruction encoding

° Jump instructions

• Disassembly

° Pointers to structures

Chapter 3.4 - ISA 4 9

Decoding Machine Language
• How do we convert 1s and 0s to C code?

Machine language => MAL => C

• For each 32 bits:

– Look at opcode: 0 means R-Format, 2 or 3 mean J-Format,
otherwise I-Format.

– Use instruction type to determine which fields exist.

– Write out MIPS assembly code, converting each field to name,
register number/name, or decimal/hex number.

– Logically convert this MIPS code into valid C code. Always
possible? Unique?

Chapter 3.4 - ISA 4 10

Decoding Example (1/6)
• Here are six machine language instructions in hex:

00001025
0005402A
11000003
00441020
20A5FFFF
08100001

• Let the first instruction be at address 4,194,30410 (0x00400000).

• Next step: convert to binary

Chapter 3.4 - ISA 4 11

Decoding Example (2/6)

• The six machine language instructions in binary:

00000000000000000001000000100101

00000000000001010100000000101010

00010001000000000000000000000011

00000000010001000001000000100000

00100000101001011111111111111111

00001000000100000000000000000001

• Next step: separation of fields

Chapter 3.4 - ISA 4 12

Decoding Example (3/6)

• Fields separated based on opcode:

0 0 0 2 370
0 0 5 8 420
4 8 0 +3
0 2 4 2 320
8 5 5 -1
2 00000100000000000000000001

Next step: translate to MIPS instructions

Chapter 3.4 - ISA 4 13

Decoding Example (4/6)

• MIPS Assembly (Part 1):
0x00400000 or $2,$0,$0

0x00400004 slt $8,$0,$5

0x00400008 beq $8,$0,3

0x0040000c add $2,$2,$4

0x00400010 addi $5,$5,-1

0x00400014 j 0x100001

Better solution: translate to more meaningful
instructions (fix the branch/jump and add labels)

Chapter 3.4 - ISA 4 14

Decoding Example (5/6)

• MIPS Assembly (Part 2):
or $v0,$0,$0

Loop: slt $t0,$0,$a1

beq $t0,$0,Fin

add $v0,$v0,$a0

addi $a1,$a1,-1

j Loop

Fin:

Next step: translate to C code (be creative!)

Chapter 3.4 - ISA 4 15

Decoding Example (6/6)

• C code:

Mapping: $v0: product

$a0: mcand

$a1: mplier

product = 0;

while (mplier > 0) {

product += mcand;

mplier -= 1;
}

Chapter 3.4 - ISA 4 16

Outline

• Loading/Storing Bytes

• Signed vs. Unsigned MIPS Instructions

• Pseudo-instructions

• Multiply/Divide

• Pointers and assembly language

Chapter 3.4 - ISA 4 17

Loading, Storing bytes
• In addition to word data transfers

(lw, sw), MIPS has byte data transfers:

• load byte: lb

• store byte: sb

• same format as lw, sw

• What do with other 24 bits in the 32 bit register?
– lb: sign extends to fill upper 24 bits

• Suppose byte at 100 has value 0x0F, byte at 200 has value 0xFF

lb $s0, 100($zero) # $s0 = ??

lb $s1, 200($zero) # $s1 = ??

• Multiple choice: $s0? $s1?

a) 15; b) 255; c) -1; d) -255; e) -15

Chapter 3.4 - ISA 4 18

Loading bytes

• Normally with characters don't want to sign extend

• MIPS instruction that doesn't sign extend when loading
bytes:

load byte unsigned: lbu

Chapter 3.4 - ISA 4 19

Outline

• Loading/Storing Bytes

• Signed vs. Unsigned MIPS Instructions

• Pseudo-instructions

• Multiply/Divide

• Pointers and assembly language

Chapter 3.4 - ISA 4 20

Overflow in Arithmetic (1/2)

• Reminder: Overflow occurs when there is a mistake in
arithmetic due to the limited precision in computers.

• Example (4-bit unsigned numbers):
+15 1111

+3 0011

+18 10010

– But we don’t have room for 5-bit solution, so the solution
would be 0010, which is +2, and wrong.

Chapter 3.4 - ISA 4 21

Overflow in Arithmetic (2/2)

• MIPS solution is 2 kinds of arithmetic instructions to recognize 2
choices:

– add (add), add immediate (addi) and subtract (sub) cause
overflow to be detected

– add unsigned (addu), add immediate unsigned (addiu) and
subtract unsigned (subu) do not cause overflow detection

• Compiler selects appropriate arithmetic
– MIPS C compilers produce addu, addiu, subu

Chapter 3.4 - ISA 4 22

Unsigned Inequalities
• Just as unsigned arithmetic instructions:

addu, subu, addiu

(really "don't overflow" instructions)

• There are unsigned inequality instructions:

sltu, sltiu

but really do mean unsigned compare!

0x80000000 < 0x7fffffff signed (slt, slti)

0x80000000 > 0x7fffffff unsigned (sltu,sltiu)

Chapter 3.4 - ISA 4 23

Outline

• Loading/Storing Bytes

• Signed vs. Unsigned MIPS Instructions

• Pseudo-instructions

• Multiply/Divide

• Pointers and assembly language

Chapter 3.4 - ISA 4 24

True Assembly Language
• Pseudo-instruction: A MIPS instruction that doesn�t turn

directly into a machine language instruction.

• What happens with pseudoinstructions?

– They’re broken up by the assembler into several ‘real’ MIPS
instructions.

– But what is a ‘real’ MIPS instruction?

Chapter 3.4 - ISA 4 25

Example Pseudoinstructions
• Register Move

move reg2,reg1

Expands to:
add reg2,$zero,reg1

• Load Immediate
li reg,value

If value fits in 16 bits:
ori reg,$zero,value
else:

lui reg,upper 16 bits of value
ori reg,$zero,lower 16 bits

Chapter 3.4 - ISA 4 26

True Assembly Language
• MAL (MIPS Assembly Language): the set of instructions that a

programmer may use to code in MIPS; this includes
pseudoinstructions

• TAL (True Assembly Language): the set of instructions that
can actually get translated into a single machine language
instruction (32-bit binary string)

• A program must be converted from MAL into TAL before it can
be translated into 1s and 0s.

Chapter 3.4 - ISA 4 27

Where are MIPS processors?
�Digital Entertainment:

- Set-top Boxes, Personal
Video Recorders, Game
Consoles, Digital
Television

�Mobile Computing:
- Palm & Pocket PCs,

Handheld PCs, Cars

�Office Automation:
- Printers, Copiers, Network Computers, Scanners

�Consumer Electronics:
- Digital Cameras, GPS Surveying, Smart Phones, Smart Cards, Robotic

Toys
�Communications/Networking:

- Routers, Network Cards, Internet Servers

Chapter 3.4 - ISA 4 28

Outline

• Loading/Storing Bytes

• Signed vs. Unsigned MIPS Instructions

• Pseudo-instructions

• Multiply/Divide

• Pointers and assembly language

Chapter 3.4 - ISA 4 29

Multiplication (1/3)
• Paper and pencil example (unsigned):

Multiplicand 1000 8

Multiplier x1001 9

1000

0000

0000

+1000

01001000

m bits x n bits = m + n bit product

Chapter 3.4 - ISA 4 30

Multiplication (2/3)

• In MIPS, we multiply registers, so:

– 32-bit value x 32-bit value = 64-bit value

• Syntax of Multiplication:

– mult register1, register2

– Multiplies 32-bit values in specified registers and puts 64-bit
product in special result registers:

• puts upper half of product in hi

• puts lower half of product in lo

– hi and lo are 2 registers separate from the 32 general purpose
registers

Chapter 3.4 - ISA 4 31

Multiplication (3/3)

• Example:

– in C: a = b * c;

– in MIPS:

let b be $s2; let c be $s3; and let a be $s0 and $s1 (since it may
be up to 64 bits)

mult $s2,$s3 # b * c

mfhi $s0 # upper half of product into $s0

mflo $s1 # lower half of product into $s1

• Note: Often, we only care about the lower half of the product.

Chapter 3.4 - ISA 4 32

Division (1/3)
• Paper and pencil example (unsigned):

1001

Quotient Divisor 1000|1001010 Dividend

-1000

1010

-1000

10

Remainder (or Modulo result)

• Dividend = Quotient x Divisor + Remainder

Chapter 3.4 - ISA 4 33

Division (2/3)

• Syntax of Division:
– div register1, register2

– Divides 32-bit values in register 1 by 32-bit value in
register 2:

puts remainder of division in hi
puts quotient of division in lo

• Notice that this can be used to implement both the C
division operator (/) and the C modulo operator (%)

Chapter 3.4 - ISA 4 34

Division (3/3)

• Example:

– in C: a = c / d;

b = c % d;

– in MIPS:

let a be $s0; let b be $s1; let c be $s2; and let d be $s3
div $s2,$s3 # lo=c/d, hi=c%d

mflo $s0 # get quotient

mfhi $s1 # get remainder

Chapter 3.4 - ISA 4 35

More Overflow Instructions

• In addition, MIPS has versions of these two arithmetic
instructions for unsigned operands:

multu

divu

Chapter 3.4 - ISA 4 36

Outline

• Loading/Storing Bytes

• Signed vs. Unsigned MIPS Instructions

• Pseudo-instructions

• Multiply/Divide

• Pointers and assembly language

Chapter 3.4 - ISA 4 37

Address vs. Value
• Fundamental concept of Comp. Sci.

• Even in Spreadsheets: select cell A1 for use in cell B1

A B
1 100 100
2

Do you want to put the address of cell A1 in formula (=A1) or A1’s
value (100)?

Difference? When change A1,
cell using address changes,
but not cell with old value

Chapter 3.4 - ISA 4 38

Assembly Code to Implement Pointers

• deferencing Þ data transfer in asm.

– ... = ... *p ...; Þ load
(get value from location pointed to by p)
load word (lw) if int pointer,
load byte unsigned (lbu) if char pointer

– *p = ...; Þ store
(put value into location pointed to by p)

Chapter 3.4 - ISA 4 39

Assembly Code to Implement Pointers
c is int, has value 100, in memory at address 0x10000000, p in
$a0, x in $s0

p = &c; /* p gets 0x10000000 */

x = *p; /* x gets 100 */

p = 200; / c gets 200 */

p = &c; /* p gets 0x10000000 */
lui $a0,0x1000 # p = 0x10000000

x = *p; /* x gets 100 */
lw $s0, 0($a0) # dereferencing p

p = 200; / c gets 200 */
addi $t0,$0,200
sw $t0, 0($a0) # dereferencing p

Chapter 3.4 - ISA 4 40

Registers and Pointers
• Registers do not have addresses

Þ registers cannot be pointed to

Þ cannot allocate a variable to a register
if it may have a pointer to it

Chapter 3.4 - ISA 4 41

C vs. Asm with Pointer Arithmetic
int strlen(char *s) {
char *p = s; /* p points to chars */

while (*p != ‘\0’)
p++; /* points to next char */

return p - s; /* end - start */

}

mov $t0,$a0
bu $t1,0($t0) /* derefence p */
eq $t1,$zero, Exit

Loop: addi $t0,$t0,1 /* p++ */
lbu $t1,0($t0) /* derefence p */
bne $t1,$zero, Loop

Exit: sub $v0,$t1,$a0
jr $ra

Chapter 3.4 - ISA 4 42

And in Conclusion..

• MIPS Signed v. Unsigned "overloaded" term
Do/Don't sign extend (lb, lbu)
Don't overflow (addu, addiu, subu, multu, divu)
Do signed/unsigned compare (slt,slti/sltu,sltiu)

• Assembler uses $at to turn MAL into TAL

• MIPS mult/div instructions use hi, lo registers.

• Pointer dereferencing directly supported as load/store.

	ISA Part IVInstruction Representation2 MIPS Assembly - Miscellaneous
	MIPS Instructions (Quick Summary)
	Review
	Outline
	Branches: PC-Relative Addressing
	J-Format Instructions (1/2)
	J-Format Instructions (2/2)
	Outline
	Decoding Machine Language
	Decoding Example (1/6)
	Decoding Example (2/6)
	Decoding Example (3/6)
	Decoding Example (4/6)
	Decoding Example (5/6)
	Decoding Example (6/6)
	Outline
	Loading, Storing bytes
	Loading bytes
	Outline
	Overflow in Arithmetic (1/2)
	Overflow in Arithmetic (2/2)
	Unsigned Inequalities
	Outline
	True Assembly Language
	Example Pseudoinstructions
	True Assembly Language
	Where are MIPS processors?
	Outline
	Multiplication (1/3)
	Multiplication (2/3)
	Multiplication (3/3)
	Division (1/3)
	Division (2/3)
	Division (3/3)
	More Overflow Instructions
	Outline
	Address vs. Value
	Assembly Code to Implement Pointers
	Assembly Code to Implement Pointers
	Registers and Pointers
	C vs. Asm with Pointer Arithmetic
	And in Conclusion..

