Part |l
Introduction to MIPS
Instruction Set Architecture

Chapter 3 - ISA - Part2

Overview

This section looks at details of MIPS programming. It talks about
subroutines, branches and registers — lots of different paving stones on
our road to knowledge about MIPS.

*C/Assembly Decisions — Section 2.6:
—1T, 1f-else

sInequalities

*C/Assembly Loops:
—whileQ{} ,do {} while, forQ {}

*C Switch Statement
*Stack — Section 2.7

Procedures — Section 2.7

Chapter 3 - ISA - Part2

So Far...

 Allinstructions have allowed us to manipulate data.
e So we've built a calculator that lets us add and subtract.

 To build a computer, we need ability to make decisions

Chapter 3 - ISA - Part2

C Decisions: 1T Statements

e 2 kinds of 1 statements in C
— 1T (condition) clause

— 1T (condition) clausel else clause2

« Rearrange 2nd 1T into following:

iIT (condition) goto L1;
clause?; # Do the work of the else
go to L2Z;

L1: clausel;

L2: # Continue on

— Not as elegant as if - else, but same meaning

Chapter 3 - ISA - Part2

MIPS Decision Instructions

L o Conditional Branch
Decision instruction in MIPS:

— beq registerl, register2, Label

— beq is ‘Branch if (registers are) equal’. Same meaning as (using C):
it (registerl==register2) goto Label

Complementary MIPS decision instruction

— bne registerl, register2, Label

— bne is ‘Branch if (registers are) not equal’ Same meaning as (using C):
if (registerl!=register?2) goto Label

— Called a Jump Instruction: jump (or branch) directly to the given label without needing
to satisfy any condition

S | o Unconditional Branch
ame meaning as (using C):
goto label

Technically, the same as:
J label - beq $0, $0, label
since it always satisfies the condition.

Chapter 3 - ISA - Part2 5

Compiling C 1T into MIPS

« Compile by hand (true)
it (i == j) i::j

f =g+ h;

else T = g - h; f=g+h

f=g-h

 Use this mapping:

- F: $s0,
- g: $s1,
— h: $s2,
— 1: $s3,
— J: $s4

Exit

Chapter 3 - ISA - Part2

(false)
| 1=

Compiling C 1T into MIPS

° Final compiled MIPS code:
beq $s3, $s4, True

sub $s0, $s1, $s2
j FIn

True:
add $s0,$s1,$s2

Fin:

(true) (false)
| == | | |:J

f=g+h f=g-h
branch 1==} ¢ _
f=g-h(false) EXxit
go to Fin

f=g+h (true)

° Note: Compilers automatically create labels to handle decisions (branches)
appropriately. Generally not found in HLL code.

Chapter 3 - ISA - Part2 7

Inequalities in MIPS
Until now, we’'ve only tested equalities (==and !=in C). General
programs need to test < and > as well.
Create a MIPS Inequality Instruction:;

— <Set on Less Than>

— Syntax: st regl,reg2,reg3

— Meaning:
if (reg2 < reg3)
regl = 1;
else
regl = O;

— In computereeze, “set” means “set to 1”, “reset” or “clear” means “set to 0”.

Compile by hand:
iIT (g < h) goto Less;

Use this mapping:

g: $s0, h: $s1
Chapter 3 - ISA - Part2 8

Inequalities in MIPS

 Final compiled MIPS code:
slt $t0,$s0,%s1 # $t0 = 1 1f g<h
bne $t0,3$0,Less # goto Less

1f $t0!1=0
(1f (g<h)) Less:

« Branchif$t0!=0o0r (g <h)

— Regqister $0 always contains the value 0, so bne and beq often use it
for comparison after an st instruction.

Chapter 3 - ISA - Part2 9

Inequalities in MIPS

= 4 combinations of slt & beq / bneq:

st $t0,%$s0,$s1 # $tO0 = 1 if g<h
bne $t0,%$0,Less # 1T(g<h) goto Less

st $t0,$s1,$s0 # $t0 = 1 if g>h
bne $t0,%$0,CGrtr # 1T(g>h) goto Grtr

st $t0,%$s0,$s1 # $tO0 = 1 if g<h
beq $t0,$0,Gteq # 1f(g>=h) goto Gteq

st $t0,%$s1,$s0 # $t0O = 1 if g>h
beq $t0,$0,Lteq # 1F(g<=h) goto Lteq

Chapter 3 - ISA - Part2 10

Immediates in Inequalities

constants: slti

— Helpful in for loops
iIT (g >= 1) goto Loop

Loop:

There is also an immediate version of sltto test against

M

|
P
S

slti $t0,%$s0,1

beq $t0,%$0,Loop

$t0 = 1 if
$s0<1 (g<1)
goto Loop

Chapter 3 - ISA - Part2

11

Loops in C/Assembly

There are three types of loops in C:
— while

— Do while

— for

Each can be rewritten as either of the other two, so the method
used in the previous example can be applied to while and for

loops as well.

Key Concept: Though there are multiple ways of writing a loop
in MIPS, conditional branch is key to decision making

Chapter 3 - ISA - Part2 12

Example: The C Switch Statement

« Choose among four alternatives depending on whether k has the value 0, 1,
2 or 3. Compile this C code:

switch (k) {
case 0: f=i1+jJ; break; /* k=0*/
case 1: f=g+h; break; /* k=1*/
case 2: T=g-h; break; /* k=2*/
case 3: f=i1-]J; break; /* k=3*/
+

« This is complicated, so simplify.

 Rewrite as a chain of if-else statements - we already know how to do this:
iIT(k==0) =1 + j;
else 1f(k==1) f= g + h;
else 1f(k==2) f= g - h;
else 1f(k==3) = - j;

 Use this mapping:

f: $s0, g: $s1, h: $s2, i: $s3, j: $s4, k: $55Chapter 3 - ISA - Part? 13

Example: The C Switch Statement
 Final compiled MIPS code:

bne $s5, $0, L1 # branch k!=0
add $s0, $s3, $s4 # k==0 so f=i+]
J ExXit # end of case so Exit
L1:
addi $t0, $s5, -1 # $t0 = k-1
bne $t0, $0, L2 # branch k 1= 1
add $s0, $s1, $s2 # k==1 so f=g+h
J Exit # end of case so Exit
L2:
addi $t0, $s5, -2 # $t0=k-2
bne $t0, $0, L3 # branch k 1= 2
sub $s0, $s1, $s2 # k==2 so f=g-h
J ExXit # end of case so Exit
L3:
addi $t0, $s5, -3 # $t0 = k-3
bne $t0, $0, Exit # branch k 1= 3
sub $s0, $s3, $s4 # k==3 so f=i-]

Exit:
Chapter 3 - ISA - Part2 14

C

Instruction Support for Functions
. sum(a,b);... /* a, b: $s0,%$s1 */

}
int sum{int x, int y) {
return Xx+y;
}
address
Rﬂ 1000 add %$a0,%$s0,%$zero # x = a
| 1004 add $al,$sl,$zero #y =D
1008 addi $ra,$zero,1016 #$ra=1016
P 1012 j sum #jump to sum
1016 ...
S

2000 sum: add $v0,%a0,%al
2004 jr %ra # new i1nstruction

Chapter 3 - ISA - Part2

15

Support for Functions —jal & |jr

Single instruction to jump and save return address: jump and link (Jal)

Before:

1008 addi $ra,$zero,1016 #$ra=1016
1012 j sum #go to sum

After:

1012 jal sum # $ra=1016,go to sum
Why have a jal? Make the common case fast: functions are very common.
Syntax for jr (jump register):

jr register

Instead of providing a label to jump to, the jJrinstruction provides a register
which contains an address to jump to.

Very useful for function calls:
— jal stores return address in register ($ra)

— Jr jumps back to that address Chapter 3 - ISA - Part2 16

Nested Procedures — Why have a stack

Int sumSquare(int x, Int y) {

return mult(x,x)+ vy;

}

Routine called sumSquare; now sumSquare is calling mult.

So there’s a value in $ra that sumSquare wants to jump back to, but this
will be overwritten by the call to mult.

Need to save sumSquare return address before call to mult.
In general, may need to save some other info in addition to $ra.

When a C program is run, there are 3 important memory areas
allocated:

— Static: Variables declared once per program, cease to exist only after
execution completes

— Heap: Variables declared dynamically

— Stack: Space to be used by procedure during execution; this is where
we can save register values Chapter 3 - ISA - Part2 17

C memory Allocation

Address
o0 Stack
$sp —»
stack v
pointer '
Heap
Static
Code
0

Space for saved
procedure information

Explicitly created space,
e.g., malloc(); C pointers

Variables declared
once per program

Executable Program

Chapter 3 - ISA - Part2 18

Using the Stack

So we have aregister $sp which always points to the last
used space in the stack.

To use stack, we decrement this pointer by the amount of
space we need and then fill it with info.

So, how do we compile this?

Int sumSquare(int x, Int y) {

return mult(x,x)+ vy;

}

Chapter 3 - ISA - Part2

19

Using the Stack (2/2)

°Compile by hand

sumSquare:
addi $sp, $sp, -8 #space on stack
SW $ra, 4($sp) #save ret addr
SW $al, 0($sp) # save y
add $al, $a0, S$zero # mult(x,x)
jal mult # call mult
Iw $al, O($sp) # restore y
add $v0, $vO, $al # multO+ vy
Iw $ra, 4($sp) # get ret addr
addi $sp, Psp, 8 # restore stack
jr $ra

Chapter 3 - ISA - Part2 20

Steps for Making a Procedure Call

1) Save necessary values onto stack.
2) Assign argument(s), if any.
3) jal call

4) Restore values from stack.

Called with a jal instruction, returns with a jr $ra
Accepts up to 4 arguments in $a0, $al, $a2 and $a3
Return value is always in $v0 (and if necessary in $v1)

Must follow register conventions (even in functions that only you
will call)! So what are they?

Chapter 3 - ISA - Part2 21

Example: Compile This

main() {
int i,j,k,m; /7* i-m:$s0-$s3 */
1 = mult(,k);
m = mult(i,n1);
+
int mult (int mcand, 1nt mlier){
int product;
product = O;
while (mlier > 0) {
product += mcand;
mlier -= 1;
by

return product;

Chapter 3 - ISA - Part2

Example: Compile This

main:
addi $sp, $sp, -4

sw $ra,0($sp)
add $a0, $s1, $0
add $al, $s2, $0

jal mult

add $a0O, $vO0, $0
add %$al, $s0, $0
jal mult

Iw $ra,0($sp)
addi $sp,$sp,8
jr %ra

arg0 =

argl =

J
k

call mult

result 1s 1n $vO on return

arg0 = 1
argl = 1
call mult

Pass result back in $vO

Chapter 3 - ISA - Part2

23

Example: Compile This

mult:
add $t0,%0,%0 # prod = 0
Loop:
slt $t1,%$0,%al # mlr > 07
beqg $t1,$0,FIn # no => Fin
add $t0,$t0,%a0 # prod += mc
addi $al,%al,-1 # mlr -= 1
J Loop # goto Loop
Fin:
add $v0,%$t0,$0 # $vO0 = prod
jr %ra # return

Chapter 3 - ISA - Part2

24

Example: Compile This

Notes:

no jal calls are made from mult and we don’t use any saved
registers, so we don’'t need to save anything onto stack

temp registers are used for intermediate calculations (could have
used s registers, but would have to save the caller's on the stack.)

$al is modified directly (instead of copying into a temp register)
since we are free to change it

result is put into $v0 before returning

Chapter 3 - ISA - Part2

25

Things to Remember

A Decision allows us to decide which pieces of code to execute
at run-time rather than at compile-time.

C Decisions are made using conditional statements within an 1F,
while, do while or for.

MIPS Decision making instructions are the conditional branches:
beqg and bne.

To help the conditional branches make decisions concerning

iInequalities, we introduce a single instruction: <Set on Less
Than> called slt, slti, sltu, sltui

Chapter 3 - ISA - Part2 26

	Overview
	So Far...
	C Decisions: if Statements
	MIPS Decision Instructions
	Compiling C if into MIPS
	Compiling C if into MIPS
	Inequalities in MIPS
	Inequalities in MIPS
	Inequalities in MIPS
	Immediates in Inequalities
	Loops in C/Assembly
	Example: The C Switch Statement
	Example: The C Switch Statement
	Instruction Support for Functions
	Support for Functions – jal & jr
	Nested Procedures – Why have a stack
	C memory Allocation
	Using the Stack
	Using the Stack (2/2)
	Steps for Making a Procedure Call
	Example: Compile This
	Example: Compile This
	Example: Compile This
	Example: Compile This
	Things to Remember

