
Chapter 3 - ISA - Part2 1

Part II
Introduction to MIPS

Instruction Set Architecture

Chapter 3 - ISA - Part2 2

Overview

This section looks at details of MIPS programming. It talks about
subroutines, branches and registers – lots of different paving stones on
our road to knowledge about MIPS.

•C/Assembly Decisions – Section 2.6:
–if, if-else

•Inequalities

•C/Assembly Loops:
–while(){} , do {} while, for() {}

•C Switch Statement

•Stack – Section 2.7

•Procedures – Section 2.7

Chapter 3 - ISA - Part2 3

So Far...
• All instructions have allowed us to manipulate data.

• So we’ve built a calculator that lets us add and subtract.

• To build a computer, we need ability to make decisions

Chapter 3 - ISA - Part2 4

C Decisions: if Statements
• 2 kinds of if statements in C

– if (condition) clause

– if (condition) clause1 else clause2

• Rearrange 2nd if into following:

if (condition) goto L1;
clause2; # Do the work of the else
go to L2;

L1: clause1;

L2: # Continue on

– Not as elegant as if - else, but same meaning

Chapter 3 - ISA - Part2 5

MIPS Decision Instructions
• Decision instruction in MIPS:

– beq register1, register2, Label

– beq is ‘Branch if (registers are) equal’. Same meaning as (using C):
if (register1==register2) goto Label

• Complementary MIPS decision instruction
– bne register1, register2, Label

– bne is ‘Branch if (registers are) not equal’ Same meaning as (using C):
if (register1!=register2) goto Label

– Called a Jump Instruction: jump (or branch) directly to the given label without needing
to satisfy any condition

• Same meaning as (using C):

goto label

• Technically, the same as:

j label beq $0, $0, label

since it always satisfies the condition.

Conditional Branch

Unconditional Branch

Chapter 3 - ISA - Part2 6

Compiling C if into MIPS

Exit

i == j?

f=g+h f=g-h

(false)
i != j

(true)
i == j

• Compile by hand

if (i == j)

f = g + h;

else f = g - h;

• Use this mapping:
– f: $s0,
– g: $s1,
– h: $s2,
– i: $s3,
– j: $s4

Chapter 3 - ISA - Part2 7

Compiling C if into MIPS

° Final compiled MIPS code:
beq $s3, $s4, True # branch i==j

sub $s0, $s1, $s2 # f=g-h(false)

j Fin # go to Fin

True:
add $s0,$s1,$s2 # f=g+h (true)

Fin:
° Note: Compilers automatically create labels to handle decisions (branches)
appropriately. Generally not found in HLL code.

Exit

i == j?

f=g+h f=g-h

(false)
i != j

(true)
i == j

Chapter 3 - ISA - Part2 8

Inequalities in MIPS
• Until now, we’ve only tested equalities (== and != in C). General

programs need to test < and > as well.

• Create a MIPS Inequality Instruction:

– <Set on Less Than>

– Syntax: slt reg1,reg2,reg3

– Meaning:

if (reg2 < reg3)
reg1 = 1;

else

reg1 = 0;

– In computereeze, “set” means “set to 1”, “reset” or “clear” means “set to 0”.

• Compile by hand:
if (g < h) goto Less;

• Use this mapping:
g: $s0, h: $s1

Chapter 3 - ISA - Part2 9

Inequalities in MIPS

• Final compiled MIPS code:

slt $t0,$s0,$s1 # $t0 = 1 if g<h

bne $t0,$0,Less # goto Less

if $t0!=0
(if (g<h)) Less:

• Branch if $t0 != 0 or (g < h)

– Register $0 always contains the value 0, so bne and beq often use it
for comparison after an slt instruction.

Chapter 3 - ISA - Part2 10

Inequalities in MIPS
4 combinations of slt & beq / bneq:

slt $t0,$s0,$s1 # $t0 = 1 if g<h
bne $t0,$0,Less # if(g<h) goto Less

slt $t0,$s1,$s0 # $t0 = 1 if g>h
bne $t0,$0,Grtr # if(g>h) goto Grtr

slt $t0,$s0,$s1 # $t0 = 1 if g<h
beq $t0,$0,Gteq # if(g>=h) goto Gteq

slt $t0,$s1,$s0 # $t0 = 1 if g>h
beq $t0,$0,Lteq # if(g<=h) goto Lteq

Chapter 3 - ISA - Part2 11

Immediates in Inequalities
• There is also an immediate version of slt to test against

constants: slti

– Helpful in for loops

if (g >= 1) goto Loop

Loop: . . .

slti $t0,$s0,1 # $t0 = 1 if
$s0<1 (g<1)

beq $t0,$0,Loop # goto Loop

if $t0==0
(if (g>=1))

C

M
I
P
S

Chapter 3 - ISA - Part2 12

Loops in C/Assembly
• There are three types of loops in C:

– while

– Do while

– for

• Each can be rewritten as either of the other two, so the method
used in the previous example can be applied to while and for
loops as well.

° Key Concept: Though there are multiple ways of writing a loop
in MIPS, conditional branch is key to decision making

Chapter 3 - ISA - Part2 13

Example: The C Switch Statement
• Choose among four alternatives depending on whether k has the value 0, 1,

2 or 3. Compile this C code:

switch (k) {

case 0: f=i+j; break; /* k=0*/
case 1: f=g+h; break; /* k=1*/
case 2: f=g-h; break; /* k=2*/
case 3: f=i-j; break; /* k=3*/

}

• This is complicated, so simplify.

• Rewrite as a chain of if-else statements - we already know how to do this:
if(k==0) f= I + j;

else if(k==1) f= g + h;
else if(k==2) f= g - h;
else if(k==3) f= - j;

• Use this mapping:

f: $s0, g: $s1, h: $s2, i: $s3, j: $s4, k: $s5

Chapter 3 - ISA - Part2 14

Example: The C Switch Statement
• Final compiled MIPS code:

bne $s5, $0, L1 # branch k!=0
add $s0, $s3, $s4 # k==0 so f=i+j
j Exit # end of case so Exit

L1:
addi $t0, $s5, -1 # $t0 = k-1
bne $t0, $0, L2 # branch k != 1
add $s0, $s1, $s2 # k==1 so f=g+h
j Exit # end of case so Exit

L2:
addi $t0, $s5, -2 # $t0=k-2
bne $t0, $0, L3 # branch k != 2
sub $s0, $s1, $s2 # k==2 so f=g-h
j Exit # end of case so Exit

L3:
addi $t0, $s5, -3 # $t0 = k-3
bne $t0, $0, Exit # branch k != 3
sub $s0, $s3, $s4 # k==3 so f=i-j

Exit:

Chapter 3 - ISA - Part2 15

Instruction Support for Functions
... sum(a,b);... /* a, b: $s0,$s1 */
}

int sum(int x, int y) {
return x+y;

}

address
1000 add $a0,$s0,$zero # x = a
1004 add $a1,$s1,$zero # y = b
1008 addi $ra,$zero,1016 #$ra=1016
1012 j sum #jump to sum
1016 ...

2000 sum: add $v0,$a0,$a1
2004 jr $ra # new instruction

C

M
I
P
S

Chapter 3 - ISA - Part2 16

Support for Functions – jal & jr
• Single instruction to jump and save return address: jump and link (jal)

• Before:
1008 addi $ra,$zero,1016 #$ra=1016
1012 j sum #go to sum

• After:

1012 jal sum # $ra=1016,go to sum

• Why have a jal? Make the common case fast: functions are very common.

• Syntax for jr (jump register):

jr register

• Instead of providing a label to jump to, the jr instruction provides a register
which contains an address to jump to.

• Very useful for function calls:
– jal stores return address in register ($ra)
– jr jumps back to that address

Chapter 3 - ISA - Part2 17

Nested Procedures – Why have a stack
int sumSquare(int x, int y) {

return mult(x,x)+ y;
}

• Routine called sumSquare; now sumSquare is calling mult.

• So there’s a value in $ra that sumSquare wants to jump back to, but this
will be overwritten by the call to mult.

• Need to save sumSquare return address before call to mult.

• In general, may need to save some other info in addition to $ra.

• When a C program is run, there are 3 important memory areas
allocated:

– Static: Variables declared once per program, cease to exist only after
execution completes

– Heap: Variables declared dynamically

– Stack: Space to be used by procedure during execution; this is where
we can save register values

Chapter 3 - ISA - Part2 18

C memory Allocation

0

∞
Address

Code

Static Variables declared
once per program

Heap Explicitly created space,
e.g., malloc(); C pointers

Stack Space for saved
procedure information$sp

stack
pointer

Executable Program

Chapter 3 - ISA - Part2 19

Using the Stack

• So we have a register $sp which always points to the last
used space in the stack.

• To use stack, we decrement this pointer by the amount of
space we need and then fill it with info.

• So, how do we compile this?

int sumSquare(int x, int y) {

return mult(x,x)+ y;
° }

Chapter 3 - ISA - Part2 20

Using the Stack (2/2)
°Compile by hand

sumSquare:
addi $sp, $sp, -8 #space on stack
sw $ra, 4($sp) #save ret addr
sw $a1, 0($sp) # save y

add $a1, $a0, $zero # mult(x,x)
jal mult # call mult

lw $a1, 0($sp) # restore y

add $v0, $v0, $a1 # mult()+ y

lw $ra, 4($sp) # get ret addr

addi $sp, $sp, 8 # restore stack

jr $ra

Chapter 3 - ISA - Part2 21

Steps for Making a Procedure Call
1) Save necessary values onto stack.

2) Assign argument(s), if any.

3) jal call

4) Restore values from stack.

• Called with a jal instruction, returns with a jr $ra

• Accepts up to 4 arguments in $a0, $a1, $a2 and $a3

• Return value is always in $v0 (and if necessary in $v1)

• Must follow register conventions (even in functions that only you
will call)! So what are they?

Chapter 3 - ISA - Part2 22

Example: Compile This

main() {
int i,j,k,m; /* i-m:$s0-$s3 */
i = mult(j,k); ... ;
m = mult(i,i); ...

}
int mult (int mcand, int mlier){

int product;
product = 0;
while (mlier > 0) {

product += mcand;
mlier -= 1;

}
return product;

}

Chapter 3 - ISA - Part2 23

Example: Compile This
main:
addi $sp, $sp, -4

sw $ra,0($sp)

add $a0, $s1, $0 # arg0 = j

add $a1, $s2, $0 # arg1 = k

jal mult # call mult

result is in $v0 on return

add $a0, $v0, $0 # arg0 = i

add $a1, $s0, $0 # arg1 = i

jal mult # call mult

Pass result back in $v0

lw $ra,0($sp)

addi $sp,$sp,8

jr $ra

Chapter 3 - ISA - Part2 24

Example: Compile This
mult:

add $t0,$0,$0 # prod = 0

Loop:
slt $t1,$0,$a1 # mlr > 0?
beq $t1,$0,Fin # no => Fin
add $t0,$t0,$a0 # prod += mc
addi $a1,$a1,-1 # mlr -= 1
j Loop # goto Loop

Fin:
add $v0,$t0,$0 # $v0 = prod
jr $ra # return

Chapter 3 - ISA - Part2 25

Example: Compile This

• Notes:

– no jal calls are made from mult and we don’t use any saved
registers, so we don’t need to save anything onto stack

– temp registers are used for intermediate calculations (could have
used s registers, but would have to save the caller’s on the stack.)

– $a1 is modified directly (instead of copying into a temp register)
since we are free to change it

– result is put into $v0 before returning

Chapter 3 - ISA - Part2 26

Things to Remember
• A Decision allows us to decide which pieces of code to execute

at run-time rather than at compile-time.

• C Decisions are made using conditional statements within an if,
while, do while or for.

• MIPS Decision making instructions are the conditional branches:
beq and bne.

• To help the conditional branches make decisions concerning
inequalities, we introduce a single instruction: <Set on Less
Than> called slt, slti, sltu, sltui

	Overview
	So Far...
	C Decisions: if Statements
	MIPS Decision Instructions
	Compiling C if into MIPS
	Compiling C if into MIPS
	Inequalities in MIPS
	Inequalities in MIPS
	Inequalities in MIPS
	Immediates in Inequalities
	Loops in C/Assembly
	Example: The C Switch Statement
	Example: The C Switch Statement
	Instruction Support for Functions
	Support for Functions – jal & jr
	Nested Procedures – Why have a stack
	C memory Allocation
	Using the Stack
	Using the Stack (2/2)
	Steps for Making a Procedure Call
	Example: Compile This
	Example: Compile This
	Example: Compile This
	Example: Compile This
	Things to Remember

