
Computer Architecture

The Language of the Machine

Instruction Sets

° Basic ISA
° Classes Addressing FormatClasses, Addressing, Format
° Administrative Matters
° Operations Branching Calling conventionsOperations, Branching, Calling conventions
° Break

Organization
° All computers consist of five components

• Processor: (1) datapath and (2) control
• (3) Memory

(4) I t d i d (5) O t t d i• (4) Input devices and (5) Output devices
° Not all “memory” are created equally

C h f t (i) l d l t• Cache: fast (expensive) memory are placed closer to
the processor

• Main memory: less expensive memory--we can have y p y
more

° Input and output (I/O) devices have the messiest
organizationorganization

• Wide range of speed: graphics vs. keyboard
• Wide range of requirements: speed standard costWide range of requirements: speed, standard, cost ...
• Least amount of research (so far)

Instruction Set Architecture: What Must be Specified?

Instruction
Fetch

° Instruction Format or Encoding
Instruction

Decode

Instruction Format or Encoding
– how is it decoded?

° Location of operands and result
h th th ?Operand

Fetch

– where other than memory?
– how many explicit operands?
– how are memory operands located?

Execute

Result

– which can or cannot be in memory?
° Data type and Size
° Operations

Store

Next

Operations
– what are supported

° Successor instruction
j diti b h

Instruction
– jumps, conditions, branches
- fetch-decode-execute is implicit!

RISC features

° Reduced Instruction Set
° General Purpose Register File (large number: 32 orGeneral Purpose Register File (large number: 32 or

more)
° Load/Store Architecture
° Few Addressing modes
° Fixed Instruction Format

MIPS Addressing Formats (Summary)

° How memory can be addressed in MIPSHow memory can be addressed in MIPS
1 . Im m e d ia te a d d re s s in g

2 . R e g is te r a d d r e s s in g

o p rs r t Im m e d ia te

R e g is te rs

M e m o r y

R e g is te r

2 . R e g is te r a d d r e s s in g

3 . B a s e a d d r e s s in g

o p rs r t

o p rs r t A d d r e s s

rd . . . fu n c t

B y te H a lfw o r d W o rd

y

R e g is te r

o p rs r t A d d r e s s

+

M e m o r y

W o rd

4 . P C -re la tiv e a d d re s s in g

o p rs r t A d d r e s s

P C +

M e m o r y
5 . P s e u d o d ir e c t a d d r e s s in g

o p A d d re s s

W o rdP C

MIPS Addressing Modes/Instruction Formats

All i t ti 32 bit id

op rs rt rdRegister (direct)

• All instructions 32 bits wide

op rs rt rd

register

immedop rs rtImmediate

immedop rs rtBase+index
Memory

immedop rs rtImmediate

register +

y

immedop rs rtPC-relative
Mp

PC +

Memory

R i t I di t?• Register Indirect?

MIPS I Operation Overview

° Arithmetic logical
° Add, AddU, Sub, SubU, And, Or, Xor, Nor, SLT, SLTU
° AddI, AddIU, SLTI, SLTIU, AndI, OrI, XorI, LUI , , , , , , ,
° SLL, SRL, SRA, SLLV, SRLV, SRAV
° Memory Access
° LB LBU LH LHU LW LWL LWR° LB, LBU, LH, LHU, LW, LWL,LWR
° SB, SH, SW, SWL, SWR

Multiply / Divide

° Start multiply, divide
• MULT rs, rt
• MULTU rs, rt
• DIV rs, rt
• DIVU rs, rt

Registers

° Move result from multiply, divide
• MFHI rd
• MFLO rdMFLO rd

° Move to HI or LO
• MTHI rd
• MTLO rd

HI LO

• MTLO rd
° Why not Third field for destination?

(Hint: how many clock cycles for multiply or divide vs. add?)

Data Types

Bit: 0 1Bit: 0, 1

Bit String: sequence of bits of a particular length
4 bits is a nibble
8 bits is a bytey
16 bits is a half-word
32 bits is a word
64 bits is a double-word

Character:
ASCII 7 bit code

Decimal:
di it 0 9 d d 0000b th 1001bdigits 0-9 encoded as 0000b thru 1001b
two decimal digits packed per 8 bit byte

Integers:
2's Complement2 s Complement

Floating Point:
Single Precision
Double Precision M RE How many +/- #'s?exponent
Double Precision
Extended Precision M x RE Where is decimal pt?

How are +/- exponents
represented?

base
mantissa

MIPS arithmetic instructions

Instruction Example Meaning Comments
add add $1,$2,$3 $1 = $2 + $3 3 operands; exception possible
subtract sub $1,$2,$3 $1 = $2 – $3 3 operands; exception possible
add immediate addi $1,$2,100 $1 = $2 + 100 + constant; exception possible
add unsigned addu $1,$2,$3 $1 = $2 + $3 3 operands; no exceptions
subtract unsigned subu $1,$2,$3 $1 = $2 – $3 3 operands; no exceptions
add imm. unsign. addiu $1,$2,100 $1 = $2 + 100 + constant; no exceptions
multiply mult $2,$3 Hi, Lo = $2 x $3 64-bit signed product
multiply unsigned multu$2,$3 Hi, Lo = $2 x $3 64-bit unsigned product
divide div $2,$3 Lo = $2 ÷ $3, Lo = quotient, Hi = remainder

Hi = $2 mod $3
divide unsigned divu $2,$3 Lo = $2 ÷ $3, Unsigned quotient & remainder

Hi = $2 mod $3
Move from Hi mfhi $1 $1 = Hi Used to get copy of Hi
Move from Lo mflo $1 $1 = Lo Used to get copy of Lo

Which add for address arithmetic? Which add for integers?

MIPS logical instructions

I t ti E l M i C tInstruction Example Meaning Comment
and and $1,$2,$3 $1 = $2 & $3 3 reg. operands; Logical AND
or or $1,$2,$3 $1 = $2 | $3 3 reg. operands; Logical OR
xor xor $1,$2,$3 $1 = $2 $3 3 reg. operands; Logical XOR
nor nor $1,$2,$3 $1 = ~($2 |$3) 3 reg. operands; Logical NOR
and immediate andi $1 $2 10 $1 = $2 & 10 Logical AND reg constantand immediate andi $1,$2,10 $1 $2 & 10 Logical AND reg, constant
or immediate ori $1,$2,10 $1 = $2 | 10 Logical OR reg, constant
xor immediate xori $1, $2,10 $1 = ~$2 &~10 Logical XOR reg, constant

$ $ $ $shift left logical sll $1,$2,10 $1 = $2 << 10 Shift left by constant
shift right logical srl $1,$2,10 $1 = $2 >> 10 Shift right by constant
shift right arithm. sra $1,$2,10 $1 = $2 >> 10 Shift right (sign extend)
shift left logical sllv $1,$2,$3 $1 = $2 << $3 Shift left by variable
shift right logical srlv $1,$2, $3 $1 = $2 >> $3 Shift right by variable
shift right arithm srav $1 $2 $3 $1 = $2 >> $3 Shift right arith by variableshift right arithm. srav $1,$2, $3 $1 = $2 >> $3 Shift right arith. by variable

MIPS data transfer instructions

Instr ction CommentInstruction Comment
SW 500(R4), R3 Store word
SH 502(R2), R3 Store half
SB 41(R3), R2 Store byte

LW R1, 30(R2) Load wordLW R1, 30(R2) Load word
LH R1, 40(R3) Load halfword
LHU R1, 40(R3) Load halfword unsigned
LB R1 40(R3) L d b tLB R1, 40(R3) Load byte
LBU R1, 40(R3) Load byte unsigned

LUI R1, 40 Load Upper Immediate (16 bits shifted left by 16)

Why need LUI?
LUI R5

Why need LUI?
0000 … 0000R5

Methods of Testing Condition
° Condition Codes

Processor status bits are set as a side-effect of arithmetic
instructions (possibly on Moves) or explicitly by compare or test
instructions.

dd 1 2 3ex: add r1, r2, r3
bz label

° Condition Register
Ex: cmp r1, r2, r3

bgt r1 labelbgt r1, label

° Compare and Branch
Ex: bgt r1, r2, label

MIPS Compare and Branch

° Compare and Branch
• BEQ rs, rt, offset if R[rs] == R[rt] then PC-relative branch
• BNE rs, rt, offset <>

° Compare to zero and Branch
• BLEZ rs, offset if R[rs] <= 0 then PC-relative branch []
• BGTZ rs, offset >
• BLT <
• BGEZ >=BGEZ
• BLTZAL rs, offset if R[rs] < 0 then branch and link (into R 31)
• BGEZAL >=

° Remaining set of compare and branch take two instructionsRemaining set of compare and branch take two instructions
° Almost all comparisons are against zero!

MIPS jump, branch, compare instructions

Instruction Example Meaning
branch on equal beq $1,$2,100 if ($1 == $2) go to PC+4+100

Equal test; PC relative branch
b h t b $1 $2 100 if ($1! $2) t PC 4 100branch on not eq. bne $1,$2,100 if ($1!= $2) go to PC+4+100

Not equal test; PC relative
set on less than slt $1,$2,$3 if ($2 < $3) $1=1; else $1=0

Compare less than; 2’s comp.Compare less than; 2 s comp.
set less than imm. slti $1,$2,100 if ($2 < 100) $1=1; else $1=0

Compare < constant; 2’s comp.
set less than uns. sltu $1,$2,$3 if ($2 < $3) $1=1; else $1=0set less than uns. sltu $1,$2,$3 if ($2 $3) $1 1; else $1 0

Compare less than; natural numbers
set l. t. imm. uns. sltiu $1,$2,100 if ($2 < 100) $1=1; else $1=0

Compare < constant; natural numbers
jump j 10000 go to 10000

Jump to target address
jump register jr $31 go to $31

For switch procedure returnFor switch, procedure return
jump and link jal 10000 $31 = PC + 4; go to 10000

For procedure call

Signed vs. Unsigned Comparison
Value?

R1= 0…00 0000 0000 0000 0001

R2= 0 00 0000 0000 0000 0010
two

2’s comp Unsigned?

R2= 0…00 0000 0000 0000 0010

R3= 1…11 1111 1111 1111 1111

° After executing these instructions:

two

two
After executing these instructions:
slt r4,r2,r1 ; if (r2 < r1) r4=1; else r4=0
slt r5 r3 r1 ; if (r3 < r1) r5=1; else r5=0slt r5,r3,r1 ; if (r3 < r1) r5=1; else r5=0
sltu r6,r2,r1 ; if (r2 < r1) r6=1; else r6=0
sltu r7 r3 r1 ; if (r3 < r1) r7=1; else r7=0sltu r7,r3,r1 ; if (r3 < r1) r7=1; else r7=0

° What are values of registers r4 - r7? Why?
r4 = ; r5 = ; r6 = ; r7 = ;r4 = ; r5 = ; r6 = ; r7 = ;

Calls: Why Are Stacks So Great?
Stacking of Subroutine Calls & Returns and Environments:

A:
CALL B

A

CALL C

C:

B: A B

A B CC:
RET

RET
A B

RET
A

Some machines provide a memory stack as part of the architectureSome machines provide a memory stack as part of the architecture
(e.g., VAX)

Sometimes stacks are implemented via software convention
(e g MIPS)(e.g., MIPS)

Memory Stacks

Useful for stacked environments/subroutine call & return even if
operand stack not part of architecture

Stacks that Grow Up vs. Stacks that Grow Down:

inf. Big 0 Little

Memory

Next
Empty?

a
b
c

i f Bi

Memory
Addresses

SP Last
Full?

grows
up

grows
down

0 Little inf. Big
How is empty stack represented?

Little --> Big/Last Full Little --> Big/Next EmptyLittle Big/Last Full

POP: Read from Mem(SP)
Decrement SP

Little Big/Next Empty

POP: Decrement SP
Read from Mem(SP)

PUSH: Increment SP
Write to Mem(SP)

PUSH: Write to Mem(SP)
Increment SP

Call-Return Linkage: Stack Frames

High Mem
ARGS

Reference args and
local variables at
fixed (positive) offset

Callee Save
Registers

fixed (positive) offset
from FP

(old FP, RA)

Local Variables

()

FP

SP

Grows and shrinks during
expression evaluation

L M

° Many variations on stacks possible (up/down, last pushed / next)
° Block structured languages contain link to lexically enclosing frame

Low Mem

° Block structured languages contain link to lexically enclosing frame
° Compilers normally keep scalar variables in registers, not memory!

MIPS: Software conventions for Registers

0 zero constant 0

1 at reserved for assembler

16 s0 callee saves

. . . (caller can clobber)

2 v0 expression evaluation &

3 v1 function results

23 s7

24 t8 temporary (cont’d)

4 a0 arguments

5 a1

6 a2

25 t9

26 k0 reserved for OS kernel

27 k16 a2

7 a3

8 t0 temporary: caller saves

27 k1

28 gp Pointer to global area

29 sp Stack pointer

. . . (callee can clobber)

15 t7

30 fp frame pointer

31 ra Return Address (HW)

Plus a 3-deep stack of mode bits.

MIPS / GCC Calling Conventions

FPFP
SPfact:

addiu $sp, $sp, -32 ra low
address

sw $ra, 20($sp)
sw $fp, 16($sp)
addiu$fp $sp 32

FP
SP
ra

address

addiu$fp, $sp, 32
. . .

sw $a0, 0($fp)

ra
old FP

ra

...
lw $31, 20($sp)
l $f 16($)

FP
SP

lw $fp, 16($sp)
addiu$sp, $sp, 32
jr $31

ra
old FP

jr $31
First four arguments passed in registers.

Details of the MIPS instruction set
° Register zero always has the value zero (even if you try to write it)
° Branch/jump and link put the return addr. PC+4 into the link register

(R31)
° All instructions change all 32 bits of the destination register g g

(including lui, lb, lh) and all read all 32 bits of sources (add, sub, and,
or, …)

° Immediate arithmetic and logical instructions are extended as follows:
• logical immediates ops are zero extended to 32 bits
• arithmetic immediates ops are sign extended to 32 bits (including addu)

° The data loaded by the instructions lb and lh are extended as follows:The data loaded by the instructions lb and lh are extended as follows:
• lbu, lhu are zero extended
• lb, lh are sign extended

° O fl i th ith ti d l i l i t ti° Overflow can occur in these arithmetic and logical instructions:
• add, sub, addi
• it cannot occur in addu, subu, addiu, and, or, xor, nor, shifts, mult, multu,

div divudiv, divu

MIPS Instructions (Quick Summary)

Name Example Comments
$s0-$s7, $t0-$t9, $zero,Fast locations for data. In MIPS, data must be in registers to perform

32 registers $a0-$a3, $v0-$v1, $gp, arithmetic MIPS register $zero always equals 0 Register $at is32 registers $a0 $a3, $v0 $v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is
$fp, $sp, $ra, $at reserved for the assembler to handle large constants.
Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

230 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language
Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1 $s2 $s3 $s1 = $s2 - $s3 Three operands; data in registersArithmetic subtract sub $s1, $s2, $s3 $s1 $s2 $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants
load word lw $s1, 100($s2) $s1 = Memory[$s2 + 100] Word from memory to register
store word sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb $s1, 100($s2) $s1 = Memory[$s2 + 100] Byte from memory to registerData transfer load byte $, ($) $ Memory[$ + 100] Byte from memory to register
store byte sb $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory
load upper immediate lui $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits

branch on equal beq $s1, $s2, 25 if ($s1 == $s2) go to
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne $s1, $s2, 25 if ($s1 != $s2) go to
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt $s1, $s2, $s3 if ($s2 < $s3) $s1 = 1;
else $s1 = 0

Compare less than; for beq, bne

set less than slti $s1, $s2, 100 if ($s2 < 100) $s1 = 1; Compare less than constant
immediate

() ;
else $s1 = 0

p

jump j 2500 go to 10000 Jump to target address
Uncondi- jump register jr $ra go to $ra For switch, procedure return
tional jump jump and link jal 2500 $ra = PC + 4; go to 10000 For procedure call

Summary of RISC

° Reduced Instruction Set
° General Purpose Register File (large number: 32 or more)
° Load/Store Architecture
° Few Addressing modes
° Fixed Instruction FormatFixed Instruction Format

MIPS Architecture

° 32 Registers
° Load/Store Architecture
° 5 Instruction Groups: Arithmetic, Logical, Data Transfer, Cond. Branch,

Uncond. Jump
° Addressing modes: Register, Displacement, Immediate and PC-relative
° Fixed Instruction Format

Registers

° General Purpose Register Set
° Any register can be used with any instruction
° MIPS programmers have agreed upon a set of guidelines that specify how each

of the registers should be used. Programmers (and compilers) know that as long
as they follow these guidelines, their code will work properly with other MIPS
code.

Registers

Symbolic Name Number Usage

zero 0 Zero

at 1 Reserved for the Assembler

v0 – v1 2 - 3 Result Registersg

a0 – a3 4 - 7 Argument Registers 1…4

t0 – t9 8 – 15, 24 - 25 Temporary Registers 0…9

s0 s7 16 23 Sa ed Registers 0 7s0 – s7 16 - 23 Saved Registers 0…7

k0 – k1 26 - 27 Kernel Registers 0…1

gp 28 Global Data Pointer

sp 29 Stack Pointer

fp 30 Frame Pointer

ra 31 Return Address

Instruction Format

° Fixed Format
° 3 Format Types

• Register: R-type
• Immediate: I-type
• PC-relative: J-typeyp

6 bits 6 bits5 bits 5 bits 5 bits 5 bits6 bits 6 bits5 bits 5 bits 5 bits 5 bits

All MIPS Instructions Format

R-Type

op functrs rt rd shamt

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

° Used by
• Arithmetic Instructions
• Logic Instructions
• Except when Immediate Addressing mode used

I-Type

op rs rt address/immediate

6 bits 5 bits 5 bits 16 bits

° Used by
• Instructions using Immediate addressing mode
• Instructions using Displacement addressing mode
• Branch instructions

J-Type

op target address

6 bits 26 bits

° Used by
J I t ti• Jump Instructions

Instructions

° 5 Groups
• Arithmetic
• Logic
• Data Transfer
• Conditional Branch
• Unconditional Jump

Arithmetic

° add, addu: signed and unsigned addition on registers
° addi addiu: signed and unsigned addition One operand is immediate value° addi, addiu: signed and unsigned addition. One operand is immediate value
° sub, subu: signed and unsigned subtraction on registers
° subi, subiu: signed and unsigned subtraction. One operand is immediate value
° mult, multu: signed and unsigned multiplication on registers
° div, divu: signed and unsigned division on registers
° mfc0: move from coprocessor
° mfhi, mflo: move from Hi and Lo registers

Logical

° and, andi: logical ‘AND’ on registers and registers and an immediate value
° nor, nori: logical ‘NOT OR’ on registers and registers and an immediate value
° or, ori: logical ‘OR’ on registers and registers and an immediate value
° xor, xori: logical ‘Exclusive OR’ on registers and registers and an immediate

value
° ll l hift l ft/ i ht l i l/ ith ti i t Si f hift b° sll, sra, srl: shift left/right logical/arithmetic on registers. Size of shift can be

immediate value.
° slt: comparison instruction: rd  1/0 depending on comparison outcome

Data Transfer

° lw, sw: load/store word
° lb, sb: load/store byte
° lbu: load byte unsigned
° lh, sh: load/store halfword
° lui: load upper half word immediatelui: load upper half word immediate

Branch

° b: branch unconditional
° beq: branch if src1 == src2
° bne: branch if src1 =/= src2
° bgez: branch is src1 >= 0
° bgtz: branch if src1 > 0bgtz: branch if src1 > 0
° blez: branch if src1 <= 0
° bltz: branch if src1 < 0

Jump

° j: jump
° jr: jump to src1 (address in reg src1)
° jal: jump and link; ra  PC+4; jump to label
° jalr: jump and link; ra  PC+4; jump to src1 (address in reg src1)

Addressing Modes

° Register: all operands are registers
° Immediate: one operand is an immediate value contained in the immediate field

of I type formatof I-type format
° Displacement: The address of the operand is src1 + displacement. Also

contained in the immediate field of I-type format
° PC-relative: The +/- displacement is sign extended and added to the PCPC relative: The / displacement is sign extended and added to the PC
° Direct Address: used by jump instructions. The full address is provided.

