COE 308
Multiprocessors

Flynn’s Tahonomy (1972)

SISD (Single Instruction Single Data)

— uniprocessors
MISD (Multiple Instruction Single Data)

— multiple processors on a single data stream;
SIMD (Single Instruction Multiple Data)

— same instruction is executed by multiple processors
using different data

— Adv.: simple programming model, low overhead, flexibility,
all custom integrated circuits

— Examples: llliac-IV, CM-2
MIMD (Multiple Instruction Multiple Data)

— each processor fetches its own instructions and
operates on its own data

— Examples: Sun Enterprise 5000, Cray T3D, SGI Origin
— Adv.: flexible, use off-the-shelf micros
— MIMD current winner (< 128 processor MIMD machines)

Parallel Computers

e Definition: “A parallel computer is a collection of
processing elements that cooperate and
communicate to solve large problems fast.”

Almasi and Gottlieb, Highly Parallel Computing ,1989

 Questions about parallel computers:

— How large a collection?

— How powerful are processing elements?

— How do they cooperate and communicate?

— How are data transmitted?

— What type of interconnection?

— What are HW and SW primitives for programmer?

— Does it translate into performance?

Why Multiprocessors?

Collect multiple microprocessors together
to improve performance beyond a single processor

— Collecting several more effective than designing a custom processor
Complexity of current microprocessors

— Do we have enough ideas to sustain 1.5X/yr?

— Can we deliver such complexity on schedule?
Slow (but steady) improvement in parallel software (scientific apps, databases, OS)

Emergence of embedded and server markets driving microprocessors in addition
to desktops

— Embedded functional parallelism, producer/consumer model
— Server figure of merit is tasks per hour vs. latency

MIMD

e Why is it the choice for general-purpose multiprocessors
— Flexible

e can function as single-user machines focusing on high-performance for
one application,

* multiprogrammed machine running many tasks simultaneously, or
e some combination of these two
— Cost-effective: use off-the-shelf processors
e Major MIMD Styles

— Centralized shared memory
("Uniform Memory Access" time or "Shared Memory Processor")

— Decentralized memory (memory module with CPU)

Centralized Shared-Memory Architecture
 Small processor counts makes it possible

— that processors share one a single centralized
memory

— to interconnect the processors and memory by a

C C C

M - Memory

| | |10 - Input/Output

Distributed Memory Machines

 Nodes include processor(s), some memory,
typically some 10, and interface to an

interconnection network

C C

@

C

C - Cache
M - Memory
10 - Input/Output

M 10 M 10

10

Interconnection Network

Pro: Cost effective approach to scale memory bandwidth
Pro: Reduce latency for accesses to local memory

Con: Communication complexity

Memory Architectures

e DSM (Distributed Shared Memory)

— physically separate memories can be addressed
as one logically shared address space
e the same physical address on two different processors refers
to the same location in memory

e Multicomputer

— the address space consists of multiple private address
spaces that are logically disjoint and cannot be
addressed by a remote processor

e the same physical address on two different processors refers
to two different locations in two different memories

Communication Models

e Shared Memory
— Processors communicate with shared address space
— Easy on small-scale machines
— Advantages:
* Model of choice for uniprocessors, small-scale MPs
e Ease of programming
* Lower latency
e Easier to use hardware controlled caching
e Message passing

— Processors have private memories,
communicate via messages

— Advantages:
e Less hardware, easier to design
* Focuses attention on costly non-local operations
e (Can support either SW model on either HW base

Amdahl’s Law and Parallel Computers

Amdahl’s Law (FracX: original % to be speed up)
Speedup =1/ [(FracX/SpeedupX + (1-FracX)]

A portion is sequential => limits parallel speedup
— Speedup <= 1/ (1-FracX)

Ex. What fraction sequential to get 80X speedup from 100 processors? Assume
either 1 processor or 100 fully used

80=1/[(FracX/100 + (1-FracX)]

0.8*FracX + 80*(1-FracX) =80 - 79.2*FracX =1
FracX = (80-1)/79.2 = 0.9975

Only 0.25% sequential!

Performance Metrics:
Latency and Bandwidth

 Bandwidth
— Need high bandwidth in communication
— Match limits in network, memory, and processor

— Challenge is link speed of network interface vs.
bisection bandwidth of network

* Latency
— Affects performance, since processor may have to wait

— Affects ease of programming, since requires more thought to overlap
communication and computation

— Overhead to communicate is a problem in many machines
e Latency Hiding

— How can a mechanism help hide latency?

— Increases programming system burden

— Examples: overlap message send with computation,
prefetch data, switch to other tasks

Shared Address Model Summary

Each processor can name
every physical location in the machine

Each process can name
all data it shares with other processes

Data transfer via load and store
Data size: byte, word, ... or cache blocks

Uses virtual memory to map
virtual to local or remote physical

Memory hierarchy model applies:
now communication moves data to local processor cache (as load moves data from
memory to cache)

— Latency, BW, scalability when communicate?

Shared Address/Memory
Multiprocessor Model

Communicate via Load and Store
— Oldest and most popular model

Based on timesharing: processes on multiple
processors vs. sharing single processor

Process: a virtual address space
and ~ 1 thread of control

— Multiple processes can overlap (share),
but ALL threads share a process address space

Writes to shared address space by one thread are
visible to reads of other threads

— Usual model: share code, private stack,
some shared heap, some private heap

SMP Interconnect

e Processors to Memory AND to I/O

 Bus based: all memory locations equal access
time so SMP = “Symmetric MP”

— Sharing limited BW as add processors, |/0O

Message Passing Model

Whole computers (CPU, memory, 1/O devices) communicate as explicit I/0
operations

— Essentially NUMA but integrated at I/O devices vs. memory system
Send specifies local buffer + receiving process on remote computer
Receive specifies sending process on remote computer + local buffer to place data

— Usually send includes process tag
and receive has rule on tag: match 1, match any

— Synch: when send completes, when buffer free, when request accepted,
receive wait for send

Send+receive => memory-memory copy, where each each supplies local address,
AND does pairwise sychronization!

Advantages of Shared-Memory
Communication Model

Compatibility with SMP hardware

Ease of programming when communication patterns are complex or vary
dynamically during execution

Ability to develop apps using familiar SMP model,
attention only on performance critical accesses

Lower communication overhead, better use of BW for small items, due to implicit
communication and memory mapping to implement protection in hardware,
rather than through I/0 system

HW-controlled caching to reduce remote comm.
by caching of all data, both shared and private

Advantages of Message-passing
Communication Model

The hardware can be simpler (esp. vs. NUMA)

Communication explicit => simpler to understand; in shared memory it can be
hard to know when communicating and when not, and how costly it is

Explicit communication focuses attention on costly aspect of parallel computation,
sometimes leading to improved structure in multiprocessor program

Synchronization is naturally associated with sending messages, reducing the
possibility for errors introduced by incorrect synchronization

Easier to use sender-initiated communication,
which may have some advantages in performance

