
COE 308 – Computer Architecture
Term 112
Project 1: Writing, Simulating, and Testing MIPS Assembly Code
Due 14 November 2012
Objectives:

· Using the MARS MIPS simulator tool
· Writing, simulating, and testing MIPS assembly language code

· Doing floating-point arithmetic in software to understand it thoroughly
· Teamwork

Problem 1: Simulating Heat Transfer over a Square Region.
Write and test a MIPS assembly language program to Simulating Heat Transfer over a Square Region. Most problems in parallel computing require communication among the tasks (see https://computing.llnl.gov/tutorials/parallel_comp/#ExamplesHeat for more details). A number of common problems require communication with "neighbor" tasks. The heat equation describes the temperature change over time, given initial temperature distribution and boundary conditions. A finite differencing scheme is employed to solve the heat equation numerically on a square region
	
 INCLUDEPICTURE "https://computing.llnl.gov/tutorials/parallel_comp/images/heat_initial.gif" * MERGEFORMATINET

A simple algorithm to implement the heat transfer is given below:

for(iter = 0; iter < MAX_ITER; iter ++){

for(i = 0; i < N; i++){

for(j = 0; j < N; j++)

anew[i][j] = a[i][j] +

 (a[i+1][j]+ a[i-1][j]- 2*a[i][j]) + a[i][j+1]+ a[i][j-1] - 2*a[i][j])/32;

} }

The above equation represents the heat propagation using the nearest neighbor relationship. The division by 32 is meant to control the rate of heat transfer per iteration.

The heat in a square area is defined by matrix a(i,j) at pixel (i.j), where i and j are in [0, 10,0000]. The algorithm iterates for a given number of iterations equal to MAX_ITER=100. In each iteration, the newly computed values are stored in a matrix anew[i][j] whose computation depends on the previously computed values which are found in a[i][j]. After each iteration the algorithm update the value of a[i][j]. Each element a[i][j] is 32-bit integer, where i is in [0,N-1]. A[] is NxN array whose N^2 elements are stored in successive memory locations where each element occupies 4 bytes.
The initial temperature is zero on the boundaries and high in the middle. The boundary temperature is held at zero. For the fully explicit problem, a time stepping algorithm is used. The elements of a 2-dimensional array represent the temperature at points on the square. The calculation of an element is dependent upon neighbor element values.

We use matrices where each matrix a[i,j] is NxN to say that there are N rows and each row has N elements. Matrix element a[i][j] is also 32-bit integer, where i and j are in [0,N-1]. a[] is a 2-dimentional array that is stored according to Row-Major scheme, each row of three elements are stored in successive memory locations starting from first row, second row, and at last the third row.
The matrix a[] is to be initialized to zero indicated that the head at each pixel is zero. Next we should set up the heat at one middle pixel a[N/2,N/2]=v, where v is 10, 100, and 1000 for different experiments. These values are to be read from an input text file. Comments that begin with a hash (#) symbol can appear at the end of each line and should be ignored. A sample input text file is given below for N=6. The vector and matrix element values are separated by space or tab characters.
1000 # value N

First experiment:

10 500 500 # value v1 to be set at a(500, 500)
Second experiment:

100 300 300 # value v1 to be set at a(300, 300)

100 800 800 # value v1 to be set at a(800, 800)

The program asks the user to enter the name of the text file. Open the text file and read its content. Use syscall 13 ($v0 = 13) to open a text file and syscall 14 to read from a file. Check the MARS Help to learn more about syscalls. Read all the characters of the input file into an array in memory. Then traverse the array character by character to convert digit character strings into integer values. Skip the comments at the end of each line. Initialize the arrays in your program with their corresponding integer values.
The aim of this project is to iteratively compute the heat transfer equation system:

1. Read data for each experiment and store into the memory.

2. Initialize the heat matrix.
3. Iterate for MAX_ITER=100.
4. Print the value of the heat at pixel a[200,200] for each iteration.
5. Plot the resulting heat matrix.
The program outputs are the final heat matrix. You need to submit your source assembly code written in MIPS for MARS, the running output of the program, and your comments on the above implementation.

Problem 2: Single-Precision Floating-Point Addition in Software

Write and test a MIPS assembly language program to do single-precision floating-point addition in software rather than in hardware. The procedure floatadd should receive its input parameters in $a0 and $a1 (as single-precision floating-point numbers) and produce its result in $v0 (as single-precision float). You cannot use the floating-point addition instruction add.s to do the addition. Only integer instructions are allowed. Write additional procedures, if needed, to extract the fields, normalize, and round the result significand.

You should also make sure to handle special cases:

■
Zero, infinity, and NaN
■
Overflow and underflow

■
Denormalized numbers

Round the result to the nearest even, which is the default rounding mode in IEEE 754 standard. This is the only rounding mode that should be supported.

Write a check procedure to do the floating-point addition using the add.s instruction. Compare the result of the check procedure against the result produced by the floatadd procedure to ensure correctness.
Write a main procedure to call and test the floatadd procedure. Specifically, you should ask the user to input two floating-point numbers and to print the result.

A sample run should look as follows:

Enter 1st float: 1.25e-4
Enter 2nd float: 0.75e-3
Result of floatadd: 8.75e-4
Result of add.s: 8.75e-4
Tool
Use the MARS tool to write, execute, and test your code. To get started, familiarize yourself with the MARS MIPS simulator. You should familiarize yourself with the assembly language syntax and system calls. The MARS Help provides a description of all the syscalls that are needed to complete this project. It also provides a list of all the basic and pseudo instructions.
Groups
Two or at most three students can form a group. Make sure to write the names of all the students involved in your group on the project report.

Coding and Documentation
Develop the code for the given problems with the following aspects in mind:
· Correctness: the code works properly

· Completeness: all cases have been covered

· Efficiency: the use of relevant instructions and algorithms

· Documentation: the code is well documented through the appropriate use of comments.

Report Document
The project report must contain sections highlighting the following:

■
Program Design

Specify clearly the design of each procedure giving detailed description of the algorithm used/developed and the implementation details.

■
Program Simulation

Describe all the simulator features that you have used for simulating your code with a clear emphasis on its advantages and limitations (if any), debugging for errors, the use of system calls and displaying the results of the program.

■
Program Output and Discussion

Provide snapshots of the Simulator window and show all the results.

Discuss all the cases that were handled. For program 1, provide more than one input text file and show the final values of M and V for each run.

For program 2, provide sample inputs and outputs and discuss all the cases that were handled by the floatadd procedure, such as normalized and denormalized numbers, zero, overflow, and underflow. Also test and demonstrate rounding.

■
Teamwork

Group members are required to divide the work equally among themselves, so that everyone is involved in algorithm design, program development, and debugging.

Show clearly the division of work among the group members using a Chart and also prepare a Project execution plan showing the time frame for completing the subtasks of the project.

Students who helped other team members should mention that to earn credit for that.

Submission Guidelines
All submissions will be done to the course TA (to be arranged later). Plan on submitting one zip file containing the source code of programs 1, 2, and the report document. Also, submit a hard copy of the report in class.
Grading Policy
The grade will be divided according to the following components:

■
Correctness of code: program produces correct results

■
Completeness of code: all cases were handled properly

■
Documentation of code: program is well documented

■
Team Work: Participation and contribution to the project

■
Report document

Late Policy
The project should be submitted on the due date by midnight. Late projects are accepted, but will be penalized 5% for each late day and for a maximum of 5 late days (or 25%). Projects submitted after 5 late days will not be accepted.

PAGE

