

COE301: Computer Organization

Designing an Overflow Detector Circuit

Done By:

Adnan Mustafa Sawas 201027600

Rakan Hussain Yamani 201027460

15 September 2013

Instructor:

Mayez Abdullah Al-Mouhamed

Designing an Overflow Detector Circuit:

❖ Inputs:-

- A: The most significant bit of the 1st operand. (represents the sign)
- B: The most significant bit of the 2nd operand. (represents the sign)
- Res.: The most significant bit of the result. (represents the sign)

❖ Outputs :-

A single bit that shows if there is an overflow or not .

❖ Procedure :-

If the most significant bit is (0) , that means the number is +ve. However, if the most significant bit is (1) , that means the number is -ve. The overflow happens when :

- 1. Adding two +ve numbers, and the result is –ve.
- 2. Adding two -ve numbers, and the result is +ve.

The truth table below shows all the cases:

А	В	Res	Overflow
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

From this truth table we can make up the K-map that will help us to design the desired circuit.

Res AB	0	1
00	0	1
01	0	0
11	1	0
10	0	0

The resulting Equation that represents the K-map is :

$$F = AB\bar{R} + \bar{A}\bar{B}R$$

The circuit implementation is shown below. The last two pictures shows the simulation of the two Overflow cases .

