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Abstract-Solving a banded linear system efficiently is im­
portant to many scientific and engineering applications. Current 
solvers achieve good scalability only on the linear systems that 
can be partitioned into independent subsystems. In this paper, we 
present a GPU based, scalable Bi-Conjugate Gradient Stabilized 
solver that can be used to solve a wide range of banded linear 
systems. We utilize a row-oriented matrix decomposition method 
to divide the banded linear system into several correlated sub­
linear systems and solve them on multiple GPUs collaboratively. 
We design a number of GPU and MPI optimizations to speedup 
inter-GPU and inter-machine communications. We evaluate the 
solver on Poisson equation and advection diffusion equation as 
well as several other banded linear systems. The solver achieves 
a speedup of more than 21 times running from 6 to 192 GPUs 
on the XSEDE's Keeneland supercomputer and because of small 
communication overhead, can scale upto 32 GPUs on Amazon 
EC2 with relatively slow ethernet network. 

1. INTRODUCTION 

A fast solver of banded linear systems is critical for a 
variety of scientific simulations, e.g, quantum chromodynam­
ics (QCD) and computational fluid dynamics (CFD), where 
solving large banded linear systems accounts for the majority 
of the runtime, e.g., 90% or more of the CFD runtime can be 
spent on solving two partial differential equations (PDE) [1]. 
Clearly, there is an urgent need for a generic solver, especially 
a scalable solver for a single integrated linear system, like 
our motivating problem of cardiac simulation that we will 
present shortly. In this paper, we are interested in developing a 
GPU based high-performance solver for such linear systems. 
In our case, there is inherent dependence within the linear 
system, thus the problem could not easily be decomposed into 
disjointed sub-systems, which in turn poses a challenge in 
achieving high scalability on large-scale GPU based super­
computers. 

Recent works fall short in delivering either generality or 
scalability. On one hand, existing scalable solvers are only 
applicable for specific banded linear systems. For example, [2] 
employs domain decomposition to divide the QCD problem 
into smaller independent blocks. In this case, when applying 
the Dirichlet boundary [3], each block can be solved inde­
pendently. In other words, matching one sub-domain with 
one block largely avoids the inter-node communication, which 
contributes to good scalability of this solver. For another 
example, [4] is a solver for tridiagonal matrix (simplified 
banded linear system) with stable feature. Using the SPIKE 
algorithm [5] that divides a large banded matrix into several 
smaller, independently solvable matrices, this solver requires 
the gathering of all "spikes" and solving them on a single 
machine. This limit explains its modest scalability of 16 GPUs. 
Furthermore, there are a few projects that can scale on many 
GPUs for certain problems, such as wave simulation [6][7], 
basin simulation [8] and FFT [9]. 
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On the other hand, current generic banded system solvers 
cannot work with large problems. For example, NVIDIA's 
CUSP [10] provides a Bi-Conjugate Gradient STABilized 
(BiCGSTAB) solver that is applicable for banded problems, 

but it only works on one GPU. Similar limitation on scalability 
is also observed in other related works [11][12][13]. Notably, 
in [14], the solver decomposes the banded system into a set of 
the equations solved by multiple GPU threads, but again this 
solver runs only on one GPU. 

In this paper, we design and develop a GPU based 
BiCGSTAB solver (GBCG) that meets both generality and 
scalability requirements. It is well suited for all types of 
banded linear systems. And this solver combines a new 
matrix decomposition method with several optimizations for 
inter-GPU and inter-machine communications to achieve good 
scalability on large-scale GPU clusters. The popular iterative 

solvers for linear system Ax = b are the multi-grid (MG) 
methods [15][16][17], and the Krylov space solvers (e.g., 
conjugate gradient (CG) solver [3][18], generalized minimal 
residual method (GMRES) [19], and BiCGSTAB [20]). Gen­
eral speaking, Krylov space solvers enjoy several benefits 
such as inherent parallelism, applicability on arbitrary grid 
size, and suitable for any boundary conditions. Note that we 
also develop a GPU based Stencil Conjugate Gradient solver 
(GSCG) that can be used to accelerate the symmetric positive 
definite matrix banded linear systems. 

Our approach of matrix decomposition [21] is to factorize 
the large matrix into smaller sub-matrices in the row-oriented 
fashion, and solve the sub linear systems in parallel. For a 
generic linear system like Poisson equation and advection­
diffusion (AD) equation that are generated from our motivating 
heart simulation problem, large matrices cannot be partitioned 
into independent sub-matrices. Since the construction of the 
matrix is already done row-wise in the target problem, our 
method requires no additional communication during matrix 
decomposition, for every machine solves the rows it has 
already constructed. However, a number of data transfers are 
still required in order to correctly solve the problem. For 
example, the correlation of the sub-matrices is maintained 
by a vector communication before the Sparse Matrix-Vector 
Multiplication (SpMV). Specifically, each machine talks to its 
neighboring machines to update the vectors that are needed 
by the boundary rows of the sub-matrices during SpMV 
operations. For the vector communications, we introduce two­
phase communication protocol for neighboring machines to 
reduce the overhead, and for the scalar communications, we 
apply a tree based broadcast method for all the participating 
machines. In addition, we utilize the registered memory on 
MPI calls to inform the network adapter about the virtual-to­
physical address of the buffer, and overlap data copying from 
GPU to the registered memory with GPU computation. By 
combining these techniques, we are able to significantly reduce 
the time required for both vector and scalar communications. 

The contributions of our work are two-fold. First, to the 



TABLE I: Summary for GPU based solvers 
Solver Problem Type Decomposition Type Subsystem type GPU No. AchievedlMax Speedup Efficiency 
CUSP BICG[lO] General N.A. N.A. 1 N.A. N.A. 
Li[14] Banded system SPIKE Independent 1 N.A. N.A. 

Ament[12] Poisson Domain based Dependent I=;.6 1.9/6 32% 
Babich[2] QCD Domain based Independent 64=;.256 2.56/4 64% 
Chang[4] Tridiagonal system SPIKE Independent 1=;.16 10/16 62.5% 
Our GBCG Banded system Matrix based Dependent 6=;.192 21.8/32 68.1% 

best of our knowledge, this is the first work in designing 
and implementing a scalable GPU-based solver for a single 

integrated banded Ai = b linear system. In particular, we 
design row-oriented matrix decomposition method to divide 
the banded linear system, and utilize several GPU and MPI 
optimization techniques to minimize the communication over­
heads from the tight correlation among the sub-systems. As 
a result, we are able to achieve 70% of the ideal network 
(InfiniBand) bandwidth. Table I presents a comparison of our 
GBCG and several existing solvers. 

Second, we evaluate our solvers and new combined simu­
lator on two different GPU clusters, i.e., XSEDE's Keeneland 
supercomputer and Amazon EC2 GPU cluster. With our new 
GBCG solver, we can run the cardiac simulation with very 
high resolutions which was difficult before. Furthennore, the 
tests show that our GSCG outperforms the CUSP CG solver by 
more than 22%. Also, the GBCG solver can achieve close to 22 
times speedup from 6 to 192 GPUs, enjoying fast InfiniBand 
network on Keeneland, and thanks to small communication 
overhead, can scale upto 32 GPUs on Amazon EC2 with 
ethernet network. Note that all the experiments in this paper 
are studied in double precision, and it is easy to support other 
precisions. 

The paper is organized as follows: we present the back­
ground of our simulation and discuss the problem definition in 
Section II. In Section III, we propose the matrix decomposition 
based scalable GBCG and GSCG solvers, and present several 
hardware based optimizations. In Section IV, we evaluate 
GBCG on Keeneland and Amazon GPU clusters. Finally, we 
conclude in Section V. 

II. BACKGROUND 
A. Motivation 

CFD is widely used in scientific and engineering fields to 
investigate fluid motion and its interactions with certain defined 
boundaries. In CFD, the Navier-Stokes equations which govern 
the fluid motion are discretized into linear systems of millions 
of equations and thus the solution for large scale problem 
remains computationally challenging. Most of CFD codes are 
however written in Fortran or C, and translation of whole code 
to CUDA for GPUs is non-trivial. The major time consumption 
part of CFD code is the linear system of equations that can 

be written in the fonn of Ai = b, which is also the target 
problem for our GPU based banded system solver. 

For the application of GPU accelerated flow solver we 
consider the simulation of blood flow pattern inside the human 
left ventricle. Features of cardiac flows that include highly 
complex three-dimensional geometries, relatively high (4,000) 
Reynolds numbers [1] that result in transition to turbulence, 
and finally, large-scale boundary motion induced by active 
(muscle contraction) as well as passive (flow-induced such as 

Fig. 2: GPU accelerated diastole and asystole of left ventricle 

in valve leaflets) mechanisms, represent a significant challenge 
for modeling of cardiac hemodynamics and it demands large 
amount of computational resources. A related work [22] uses 
GPU to simulate the complex boundary CFD which is the 
same type as our work, but this work is conducted on only 
one GPU. In addition, muscle based cardiac simulation is also 
a popular research topic [23][24][25][26]. 

In Figure 1, we use a simplified three-dimensional geomet­
ric model of the left ventricle which is constructed based on 
high resolution, multi-detector contrast CT scan data of the 
nonnal human left ventricle. The 3D ventricle model is rep­
resented by triangular surface meshes and immersed into the 
rectangular, Cartesian volume grid for the flow simulation. The 
left ventricle motion (expansion and contraction) is prescribed 
by satisfying the blood volume flow rate. A size of physical 
domain for the flow simulation is 6em x 6em x Ilem in real 
dimension and the blood flow comes into the ventricle through 
the mitral inlet by the expansion of the ventricle. The flow 
field simulation is performed by solving the incompressible 
Navier-Stokes equations using the immersed boundary method. 
In this method, the boundary condition on the surface of 
arbitrary geometry is satisfied by using the ghost cells so that 
the problem can be solved on the Cartesian topology. The 
details about immersed boundary technique can be found in 
[l]. Figure 2 presents the screenshot of one heartbeat cycle 
at three different stages with iso-surface of vortical struclure, 
stream lines, and velocity vectors which are generated by our 
new simulator. This 2562 x 512 problem running for 10,000 
time steps I is calculated using GBCG in this work, which 
was not possible before with the previous MG solver due to 
its limitations for large problem sizes. Note that we discretize 
a heart of 6em x 6em x l1em in physical dimensions into a 

1 [n this work, a whole left-ventricle beat time interval is sampled by 10,000 
times, each time is called a time step. 



mathematical model with 2562 x 512 cells. The evaluations of 
our new cardiac simulation are discussed in Section IV. 

B. Problem Definition 

The incompressible Navier-Stokes equations are written as 

" � ail ( � " ) � 1 " ,,2 � 
v . U = 0, ,,+ u· v U + - vp = Vv u (1) 

vt P 

where U is a velocity vector, p is a pressure, p and v are 
the density and kinematic viscosity of the fluid. The base line 
flow solver used in this study is Vicar3D which is developed 
by our group at JHU. Here, the equation (1) is solved on the 
non-body conformal Cartesian grid and the physical boundary 
of any shape is treated by the sharp-interface immersed bound­
ary method. The incompressible Navier-Stokes equations are 
usually solved by the fractional step method and a three-step 
method implemented in the current flow solver can be written 
as � -n U * -u 

= -til. V')il + vV'2il 
t:.t ' 

V'2p = �
t 

(V' . il* ), 
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p 

(2) 
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The equation (2) is the advection-diffusion (AD) equation 
solved for the intermediate velocity, u*. The pressure is 
obtained by solving the Poisson equation, equation (3), and 
the final velocity field is obtained by the velocity correction 
step, equation (4). It is important to note that equation (2) 
and (3) are differential equations and solving these equations 
takes most of computational time for the flow simulation. If we 
apply second-order central finite differencing method, equation 
(2) and (3) are written as 

( 1 - � t:.tv . 82 
i.j,k ) il* = 

iln + t:.t { -til· V')il + � vV'2il} = RHSAD, (5) 
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t 

(V'. il* ) = RHSp, (6) 

where 52 i,j,k is a central differencing operator for the Lapla­
cian on the Cartesian grid system which is defined by 

82.. c/> = _1_ ( -c/>i+l,j,k + c/>i,j,k + c/>i,j,k - c/>i-l,j,k ) + ',J,k 
t:.Xi 0.5(t:.Xi+l + t:.x;) 0.5(t:.Xi + t:.xi-d 

_1_ ( -c/>i,J+l,k + c/>i,j,k + c/>i,j,k - c/>i,j-l,k ) + 
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where (i, j, k) are the indices in (x, y, z) dimension, 
respectively and (t:.x, t:.y, t:.z) are computational grid spacing. 
Once <Pi"k is arranged into one dimensional array X, equations 
(5) and (6) are linear systems of equations that can be written 
in the matrix form as 

(8) 
where each row of A is the stencil of corresponding entry in 

X. In this paper, we develop GBCG and GSCG for different 
type of flow simulations, and they are integrated with the flow 
simulator Vicar3D to solve equations (5) and (6). The storage 
format of A is optimized for GSCG and GBCG, respectively. 
We will discuss them in detail in Section III. 

III. SCALABLE GPU-BASED SOLVERS 

In this section, we first discuss the matrix decomposition 
method. Next, our GPU based GBCG solver is presented. 
We further address the communication overheads in GBCG 
by MPI and GPU communication optimizations. Last, we 
introduce GSCG method. 

A. Matrix Decomposition 

Current decomposition methods such as domain decom­
position, functional decomposition [27], or SPIKE algorithm 
[28] are not applicable for an integrated banded linear system. 
Briefly, domain decomposition aims to split the whole physical 
domain into several smaller sub-domains and iteratively seek 
the solution by coordinating the calculation of adjacent sub­
domains [29][30]. Often the problems for each sub-domain 
should be intrinsically independent to avoid massive communi­
cation overhead. Similarly, functional decomposition calculates 
several sub-functions, which are independent with each other, 
in parallelism. Further, the SPIKE algorithm also aims to 
divide a large banded linear systems into several independent 
sub-system. In this case, the solving of the "spikes" is a 
global procedure done by a single thread, thereby limiting the 
scalability. 

In this work, we design a row-oriented matrix decompo­
sition for a generic banded linear system. In this approach, 
the matrix A is factorized into an equal number of smaller 
canonical forms, each of which contains the same number of 
the rows of matrix A. Similar division is also applied to x 
and b. Figure 3 describes the matrix decomposition method 

for Ax = b when employing three GPUs. In this case, GPU 
o has Aoxo = bo, GPU 1 Alxl = bl and GPU 2 A2x2 = b2 . 
Specifically, A is divided into three sub-matrices (AI, A2 
and A3) that have the same number of rows. next, the sub­
vectors that multiply with the sub-matrices should contain 
extra buffers so that they can be reached by the boundary 
rows of the sub-matrices. For example, the second GPU which 

solves Alxl = b� contains a SpMV of Al and Xl. Assuming 
the first row of Al (AdO]) is the k-th row of A (A[k]), the first 
non-zero element of Al [0] (note Al contains seven elements) 
reaches as far as (k-plane width) element of X. Therefore, Xl 
need to have extra buffers at the boundary. If the vectors do 
not participate in SpMV operation, they are divided without 
buffers. Due to A is a narrow-banded matrix, every row of 
A only needs a relatively small portion of (plane width) the 
vector for SpMY. 

bo 

b= 

b2 

Fig. 3: Matrix decomposition 



Our approach of row-oriented matrix decomposition is 
more appropriate for banded linear system than typical LU 
(lower-upper, LU factorization) or column-oriented matrix 
decomposition [3]. For one, this approach avoids the inter­
machine communication during the procedure of dividing 

Ax = b into sub-systems. In our target problem, every row of 
A is constructed by one machine. And after the construction 
of the linear system, all GPUs of the machine only solve the 
sub-linear equation constructed by its own CPUs. Therefore, 
there is no communication needed for decomposition. In 
contrast, both LU and column-oriented matrix decomposition 
need inter-machine communication for adjusting the workload 
during decomposition. And for the solving procedure, all of 
them need the same amount of communications as ours. 

B. GPU-based Bi-Conjugate Gradient stabilized (GBCG) 

The high level idea of GBCG is similar to pre-conditioner 
BiCGSTAB [31], which can be divided in four components: 
pre-conditioner, CG, Bi (bi-direction) and stabilized. The pre­
conditioner aims to improve the condition number of the sparse 
matrix and hence accelerate the solver's convergence speed 
[3]. CG means that BiCGSTAB evolves from CG solver, and 
Bi means the search direction contains two parts which are 
introduced by the BiCG algorithm. Since BiCG aims to solve 
the linear system without requiring matrix A to be self-adjoint, 
it maintains the correct search direction by combining the 
direction with the residual direction, where Pi and s stand for 
these two directions in BiCGSTAB. Last, stabilized indicates 
that two convergence constants are computed to repair the 
irregular convergence behavior of BiCG. This is done by 
computing Pi and 0: with the initial vector fa which does not 
change. Theoretically, BiCGSTAB is likely to become stagnate 
when the convergence requirement is very high. But we vary 
precision requirement to 10-15 without suffering this problem. 
For the common cases, we only require the precision to 10-5 

at most. 

The algorithm of GBCG is presented in algorithm 1. 

Algorithm 1: GBCG 
1'0 = fO = b - Axo Po = a = Wo = 1 Vo = Po = 0 
Whilelll fi-ill Wax > Eland i = 1,2, ... , imax do: 
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.
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Matrix decomposition distributes each GPU the same size 
of workload and every GPU performs GBCG on its own 
workload. Once each GPU proceeds to the boxes in GBCG, 
inter-GPU communication is required. In algorithm 1, we use 
solid and dotted boxes to show two types of communications. 
The solid box indicates the scalar communication and dotted 
box stands for vector communication. The first solid box 
represents residual checking. Each GPU communicates with all 
other GPUs to obtain the global maximum norm of residual. 
If the precision requirement is not achieved and the current 
iteration time is below the iteration limit, GBCG continues to 
correct Xi; otherwise GBCG terminates and retums Xi. Within 

every iteration, there are three more solid boxes that stand for 
the global scalar sum communication, e.g., the first solid box 
is Pi communication. Each GPU only holds its own part of the 
inner dot product of < ra, ri-l >. Therefore, a communication 
is required to sum all PiS reside on different GPUs. And the last 
solid box stands for the sum communication for the numerator 
and denominator respectively. GBCG puts the local values in a 
single MPI message in order to save the communication time. 

The dotted boxes in algorithm 1 are for vector communica­
tion to update the vector buffer before a SpMV. The reason of 
vector communication is explained earlier in Section III-A. In 
total, six vector communications is required per-iteration for 
GBCG. 

GBCG stores the banded matrix by a format evolves from 
Diagonal (DIA) format [32][33]. Specifically, we utilize DIA 
format other than other formats such as Coordinate (COO), 
Compressed Sparse Row (CSR), ELLPACK (ELL), Hybrid 
(HYBRID) to store banded matrix for two reasons. First, DIA 
is space efficient for banded matrices. For example, in a cubic 
domain with n as the number of cells in each dimension, the 
generated sparse matrix A needs to store 7n3 - 6n2 + 12n - 8 
double precision values. DIA consumes 7n3 storage units, and 
ELL, CSR, COO and HYBRID require more storage spaces. 
Second, we optimize the matrix entry access time by arranging 
every row of DIA format contiguously into one array. In 
particular, DIA stores the seven diagonal parallel sequences 
into several arrays. We put the seven arrays into one array by 
row-wise fashion. Therefore, every row of the banded matrix is 
stored contiguously. As a result, one warp threads can access 
global memory in one time to fetch all the requested data for 
this whole warp since they are stored contiguously [34]. In the 
meantime, continuous data storage leads to more TLB hits that 
deliver the faster memory access time. 

Applicability to Banded Lineaf Systems: As it has 
already shown that BiCGSTAB is applicable for all sparse 
linear systems [3], our solver can be applied to other linear 
systems, beyond Possion and AD equations in our cardiac 
simulation. We further evaluate our solver on other banded 
linear systems from the Matrix Market [35], such as SHER­
MANI (oil reservoir simulation), NOS7 (Lanczos with partial 
re-orthogonalization) and GR_30_30 (finite-difference Lapla­
cians). Further explanation for these systems can be found 
in [35]. For these linear systems, as the largest matrix is 
I,OOOx 1,000, our solver can solve them within 200 ms per 
iteration on a single GPU. 

C. Communication Optimization Strategies 

Six communications per-iteration as required by our solver 
could possibly become the Achilles' heel for high scalability. 
The native implementation shows long communication time 
and leads to poor GBCG scalability. To address this problem, 
we develop two inter-machine communication optimization 
strategies to improve the communication speed substantially. 
Specifically, we can achieve 70% of the idealized communi­
cation bandwidth. As a result, these optimizations lead GBCG 
scale to 0(100) GPUs. 

With Poisson equation expressed in terms of Ax = b, 25.3 
double precision Gflop per-iteration is required for GBCG to 
solve 2562 x 512 problem. And assuming 16 double precision 



Gflops can be achieved for each GPU, one GBCG iteration can 
be completed within 8 ms of waJl clock time by 192 GPUs. 
Here we use 16 Gflops per GPU, double the numbers from [9] 
that achieves 8 Gflops double precision per GPU (including 
communication time) when employing 192 GPUs. As this 
is all computation time in one iteration, all communication 
operations of GBCG must be faster than 8 ms. 

The Keeneland supercomputer uses Mellanox FDR Infini­
Band with 56Gb/s bandwidth (54.54 Gb/s after signaling over­
heads). Ideally, the vector communication between neighboring 
machines, for 256x512 double precision array, can be as short 
as 154 f-lS. And the scalar communication is almost the time 
of sending protocol headers time since the data is only one 
double precision scaJar. In total, six communications can be 
completed in around 300 f-lS which is shorter than 8 ms. 
Therefore, GBCG can scale to large number of GPUs even if 
we only achieve 5% of idealized bandwidth. But without any 
optimization, our first implementation cannot achieve even 1 % 
of the idealized network bandwidth mostly due to congestion. 
Figure 6(a) shows that the native communication for vector is 
around 50 ms. 

Fig. 4: Two-phase based neighboring machine vector communication 
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Fig. 5: Tree topology based scalar communication 

Vector communication: Our optimized vector communi­
cation leverages three optimization techniques. First, we utilize 
registered memory for MPI data exchange. Specifically, the 
sending and receiving buffers are allocated as pinned memory. 
In the meantime, we use the mpUeave_pinned flag to inform 
the network adapter the virtual-to-physicaJ address mapping 
of the sending and receiving buffers. Second, we overlap the 
copying of sending data from GPU to CPU with GPU com­
putation. Third, we exploit two-phase communication strategy 
to overcome communication congestion. Figure 4 presents the 
two-phase strategy with eight machines. In the first phase, 
we allow machine pairs [0 1], [2 3], ... , [6 7] to communi­
cate. In the second phase, the [1 2], [3 4], ... , [5 6] machine 
pairs talk with each other. Figure 6(a) plots the performance 
of different vector communication techniques. Compared to 
native implementation, two-phase optimization alone renders 
3x speedup for 64 machines. One step further, the combination 
of two-phase and registered memory optimizations enables our 
solver to achieve 70% of idealized communication bandwidth. 
Figure 6(a) also points out that any optimization strategy alone 
cannot provide such communication speed. In detail, our vector 
communication time for 64 machines is 448f-ls seconds (the 
average of 0.2 million tests). 

Scalar communication: Here tree topology based scalar 
broadcast is utilized to optimize scalar communication. Specif­
ically, our solver conducts scalar communication for exchang­
ing the global maximum or global sum information across all 
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Fig. 6: Conununication optimizations: (a) Vector communication 
with registered memory and two-phase communication (b) Scalar 
communication with tree topology for broadcast. 

the machines. In the native implementation, every machine 
simply conducts the broadcast and performs the calculation. 
This introduces both network congestion and long communica­
tion time. Figure 5 describes our tree topology based broadcast 
method. Specifically, the scalar number from each machine is 
to gather to one machine in a tree based manner for processing. 
Afterwards, the result is distributed to all machines in the 
reverse order. Through this optimization, the number of scalar 
communication decreases from 642 x 2 to 63 x 2 times. Figure 
6(b) demonstrates that our solver can complete 64 machines 
scalar communication in 46.2 f-lS (the average of 0.2 million 
tests). 

D. GPU-based Stencil CG (GSCG) Algorithm 

In this part, we develop the GSCG method that is dedicated 
for banded linear systems with positive definite symmetric 
matrices by applying matrix decomposition to standard CG 
method [18]. From the decomposition aspect, the distribution 
of the workload in GSCG is the same as the GBCG algorithm. 
We develop GSCG for several reasons. First, CG is applicable 
for several existing problems, e.g., heat dissipation and PDE 
on uniform grid. And most importantly, if our heart simulation 
problem is non-immersed body case discretized on uniform 
mesh, CG is applicable as well. Second, it solves a simpler 
matrix that can be further optimized. Specifically, CG has only 
one SpMV and three communications (one vector, two scalar) 
per iteration. Third, since CG requires the sparse matrix to 
be positive definite symmetric, we propose to use a stencil 
to represent the whole sparse matrix in Poisson and AD 
equations. In the cardiac simulation, we gather all the cells 
of the fluid body x[x_axis, y-axis, z_axis] into x by x_axis 
first, y_axis and z_axis last. Therefore, (X3xiS, y_axis, z_axis) 
of every entry x[i] can be induced by index i easily. With the 
cell's position, we can decide its stencil (note the stencil of 
each cell is uniquely determined by its location). For example, 
every interior cell (x_axis x y_axis x z_axis#O) has the stencil 
[-1, -1, -1, 6, -1, -1, -1], and the boundary cell is applied with 
Neumann or Dirichlet condition [1]. 

TABLE II: GSCG vs. CUSP-CG time consumption 

Problem size GSCG CUSP-CG Speedup 
(# of grid points) (seconds) (seconds) 

1280 1.97 2.20 1.12 
2560 30.6 35.9 1.17 
3000 59.0 72.2 1.22 

The stencil representation for banded matrix helps save 
the precious on-device memory space and reduce the data 
access time. SpecificaJly, as we discuss in Section III-B, the 
generated sparse matrix for Poisson or AD equations consumes 



7n3 - 6n2 + 12n - 8 double precIsIOn storage, where n is 
the number of cells in each dimension (cube case). Here 
the stencil representation for sparse matrix needs only one 
integer to indicate the dimension of the physical domain, as 
it is discretized on a uniform grid mesh. As we discussed 
before, GSCG does not have to access on-device memory for 
matrix entries any more. And [36] points out memory data 

access is the bottleneck for solving sparse Ax = b on GPU. 
At meantime, our evaluation shows SpMV consumes around 
80% of per-iteration CG time. And the results show that our 
GSCG is 22% faster than CUSP CG. The detail test results 
are presented in Table II. 

IV. EXPERIMENTS 

In this work, we mainly use two GPU clusters: Keeneland, 
a supercomputer belong to NSF Extreme Science and En­
gineering Discovery Environment (XSEDE) program; and 
Amazon Elastic Compute Cloud (EC2), which provides GPU 
instances on demand for high-performance computing appli­
cations. In Amazon EC2, the users need to pay for other 
resources, e.g., storage and network, besides the GPU in­
stances. Keeneland and EC2 have NVIDIA Telsa M-class 
GPU codenamed Fermi M2090 and M2050, respectively. 
Keeneland installs three GPUs on each node and EC2 two 
GPUs. Specifically, M2050 has one Telsa GPU with 448 
CUDA cores with 515 Gflops double precision floating point 
peak performance, and M2090 has one GPU Tesla GPU with 
512 CUDA cores with 665 Gflops double precision floating 
point peak performance. M2090 has 6GB GDDR5 memory, 
twice as much as M2050. ECC is on for both M2050 and 
M2090. By default, the results present in this section are run 
on Keeneland, which has Linux 2.6.32 kernel with libraries 
such as gcc 4.4.6, ifort 12.1.5, Open MPI 1.6.1, and CUDA 
5.0. Note that GPUDirect v3 of CUDA 5.0 on Keeneland is 
not supported. The compilation optimization flag is set as -
00. We set up the same environment on Amazon instances as 
Keeneland. 

We have implemented both GSCG and GBCG in C and 
CUDA with Jacobi pre-conditioner [3], and have also in­
tegrated the solvers with our cardiac simulation code. On 
each machine, we utilize one host thread to issue all GPU 
kernels with GPU stream. During scalar communication, host 
thread works out the local result first. Next, a MPI based 
communication is used to obtain the global result. For vector 
communication, the inter-GPU communication can happen on 
the same machine or two different machines. We overlap 
these two communications. First, GBCG issues GPUDirect 
P2P inter-GPU communication to stream for two GPUs on the 
same machine. Next, GBCG conducts two-phase, registered 
memory based inter-GPU vector communication for two GPUs 
on different machines. 

In this work, we study GBCG scalability by testing our 
new cardiac simulator. Since FEM leads to the same type of 

Ax = b for AD and Poisson equations, here we report the 
evaluation of Poisson equation unless otherwise specified. We 
conduct the evaluation of GBCG with different optimization 
approaches, problem sizes, precision requirements and plat­
form environments. In this section, we use small, medium, 
and large problems to stand for 1283, 2563 and 2562 x 512 
problem sizes, respectively. For different precision criteria, 
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Fig. 7: Gflops of different optimization techniques for GBCG. 

we use low, medium, and high precisions for 5E-2, 5E-3 
and 5E-4 precision requirements, respectively. By default, we 
present GBCG results with large problem and high precision 
requirement. 

Every test is run for 1,000 time steps of the cardiac 
simulation. Within each time step, GBCG requires from 67 
to 216 iterations to converge. Therefore, our performance 
measurement is an average (arithmetic mean) of 67,000 to 
216,000 iterations. The computation rates are reported in terms 
of Gflops that is determined by dividing the total arithmetic 
operations-treating all types of double precision floating point 
operations as 1 flop-per iteration by the average per iteration 
time (including computation and communication time). To 
clearly characterize the reason of strong or weak scalability 
trends in our solver, we define communication overhead as the 
ratio of communication time and the total runtime. Note this 
communication ratio only measures the MPI communication 
and does not include the communication between CPU and 
GPU, as MPI communication is the major overhead for our 
solver. 

A. Scalability Analysis 

Different Optimizations: Overcoming communication 
limitation is vital for our solver to achieve strong scaling. 
Figure 7 plots the strong scaling of GBCG corresponding to 
different communication optimization methods as mentioned 
in Section III-B. We see significant Gflops increase after the 
two optimized GBCG due to native GBCG having higher 
communication ratio. Specifically, native GBCG consumes 9 
ms, 9.8 {is and 33 ms for vector, scalar communication 
and one iteration when using 24 GPUs. As a result, the 
communication overhead is 54.5%. For 48 GPUs, native 
GBCG spends 47.79 ms per iteration. But it needs 20.72 
ms for vector communication (scalar communication is 10 
{is) which leads to communication ratio of 86.3%. Therefore, 
native GBCG can only scale to 24 GPUs but instantly feel 
a Gflops drop when GPU number increases to 48. For the 
vector communication optimized GBCG, it needs 7.63 ms 
per-iteration with 448 {is and 350 {is for vector and scalar 
communication on 192 GPUs, respectively. The corresponding 
communication ratio is 30.1 %. This result shows that scalar 
communication becomes important as vector communication 
decreases. With the tree-based scalar communication, the total 
time consumption, vector and scalar communication times are 
5.91 ms, 448 {is and 46.2 {is, respectively. The communication 
ratio becomes 18.3%. This evaluation highlights that efficient 
MPI communication is essential for scaling our solver. 

Different Problem Sizes: Figure 8 shows the scalability 
trends of different problem sizes. As expected, GBCG cannot 
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Fig. 9: The scalability of different precision criteria. 

scale well for small problem size with 192 GPUs since 
the total time consumption, vector communication and scalar 
communication time consumption are 1.7 ms, 428 f..LS and 
46.2 f..LS, respectively. The communication ratio is 61.2%. 
But for medium problem, the total time consumption, vector 
communication, scalar communication takes 3.3 ms, 438 f..LS 
and 46.2 f..LS, respectively. Therefore, the communication ratio 
is 32.1 %. For large problem, the communication ratio is very 
small at 18.3%. One can see that both medium and large 
problems can scale nicely to 0(100) GPUs. 

Different Precision Criteria: We also observe that 
the per-iteration time consumption varies when the precision 
criterion fluctuates. Figure 9 plots GBCG scalability trends 
corresponding to different precision requirements. Clearly, the 
simulation with high precision scales better than medium 
precision. And medium precision obtains better Gflops than 
low precision. According to our test, low, medium and high 
precision problems need 57, 67 and 145 iterations on average 
to converge, respectively. These iteration difference leads to 
the Gflops difference for two reasons. First, every time step, 
host memory has to talk to device memory for initializing 

Ai = b. More iterations cause host and device communication 
to occupy less percentage of per-iteration time. Second, [34] 
points out the L3 cache can hide the global memory access 
time. As L3 cache needs warm-up, it also helps when we 
increase the iteration count. 

Weak Scalability: To show our solver can balance work­
load well when problem size increases, we also evaluate the 
weak scalability of GBCG in cardiac simulation. Figure 10 
presents weak scalability of solving AD and Poisson equations. 
To keep every processor the same workload, as problem size 
increases, the GPU number increases accordingly. In this 
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Fig. 11: Runtime of Poisson, AD equation and the simulation. 

test, small problem employs 12 GPUs, medium problem 96 
GPUs and large problem 192 GPUs. The runtime of Poisson 
equation shows that our workload distribution approach can 
maintain a good weak scalability across different problem size. 
Specifically, per GPU Gflops of large problem on 192 GPUs 
can maintain 80% that of small problem on 12 GPUs. But 
for AD equation, since it can converge in 10 iterations every 
time step, data copy from host memory to on-device memory 
takes large portion of the runtime. Therefore, it has a worse 
weak scalability. Note that GBCG can converge quickly for 
AD equation due to its good matrix condition number. We use 
10-12 as the convergence criteria for AD equation. 

Time to Solution: With both AD and Poisson equations 
ported to GPU clusters, we further study the performance of 
our new cardiac simulation. Figure 11 plots the per time step 
time consumption for cardiac simulation, Poisson equation and 
AD equations. As one may recall, before these two equations 
account for around 90% of the cardiac simulation time. With 
the new solver, the runtime of two equations is only 11 % of 
the cardiac simulation. Figure 11 also shows that our new 
integrated cardiac simulation can maintain good scalability 
from 6 to 192 GPUs. We integrate our solver to cardiac 
simulator while giving other work full CPU resources. For 
Poisson equation, the time to solution speedup is 16 x, but for 
Gflops is 21.8 x. The difference results from 1) for different 
number of GPUs, it takes different numbers of iterations to 
converge, and 2) more GPUs mean more buffers, leading to 
more operations per-iteration. Therefore, the speedup of Gflops 
is higher than time to solution. 

B. Amazon 

We study our solver scalability on Amazon GPU high 
performance instance in this part. According to [37], the 



interconnection of Amazon high performance instance is much 
slower than on supercomputers such as Keeneland in this work. 
In our test, we put all instances in the same placement group 
that shall have good inter-node communication. Figure 12 
shows the strong scalability of our solver for large problem 
size from 4 GPUs (on 2 instances) to 32 GPUs (on 16 
instances) according to different communication optimizations. 
The runtimes for vector and scalar communication improve 
from 70 ms and 40 ms, to 8 ms and 6 ms, respectively. And 
per-iteration time consumption with 32 GPUs are 320 ms, 210 
ms and 73 ms for native, vector optimized and vector and 
scalar optimized tests. Therefore, the communication ratio of 
native, vector communication optimized and vector and scalar 
optimized tests are 93.8%, 80% and 54.8%, respectively. These 
ratios explain why our optimized solver can scale to 32 GPUs. 
Note that all the tests are the average report of 100 time steps 
with total around 17,000 iterations. 
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Fig. 12: Gflops on Amazon with different optimization techniques. 

V. CONCLUSION 

In conclusion, we propose matrix decomposition for 
banded linear system and develop a highly scalable banded 
system solver. In particular, our GSCG solver is 22% faster 
than CUSP CG solver, and the GBCG solver that is applicable 
for any banded system can achieve close to 22 speedup when 
running from 6 to 192 GPUs. Additionally, GBCG is scalable 
on Amazon EC2 instances. 

For future work, we intend to explore scalability further, 
and will focus on various optimizations, e.g., memory coalesc­
ing and memory locality as in [38], improving GPU bandwidth 
[39]. Furthermore, we will work on better pre-conditioners for 
the GSCG and GBCG solvers for the problems that need a 
large number of iterations. 
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