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Abstract-Graphic processing Units (GPUs) are gaining 

ground in high-performance computing. CUDA (an extension 

to C) is most widely used parallel programming framework 

for general purpose GPU computations. However, the task of 

writing optimized CUDA program is complex even for 

experts. We present a method for restructuring loops into an 

optimized CUDA kernels based on a 3-step algorithm which 

are loop tiling, coalesced memory access, and resource 

optimization. We also establish the relationships between the 

influencing parameters and propose a method for finding 

possible tiling solutions with coalesced memory access that 

best meets the identified constraints. We also present a 

simplified algorithm for restructuring loops and rewrite them 

as an efficient CUDA Kernel. The execution model of 

synthesized kernel consists of uniformly distributing the 

kernel threads to keep all cores busy while transferring a 

tailored data locality which is accessed using coalesced 

pattern to amortize the long latency of the secondary memory. 

In the evaluation, we implement some simple applications 

using the proposed restructuring strategy and evaluate the 

performance in terms of execution time and GPU throughput. 

Keywords: CUDA, GPU, Parallel Programming, Compiler 

Transformations, directive-based language, source-to-source 
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I. INTRODUCTION 

Massively parallel computing has obtained prominence 
through advances in implementing massive multithreading 
and recent improvements in its programming [1, 2, 3], 
Recent development in Graphic Processing Units (GPUs) 
has opened a new challenge in harnessing their computing 
power as a new general purpose computing paradigm, 
Strong implications are expected on computational science 
and engineering, especially in the area of discrete numerical 
simulation [4], 

Modern GPUs use multiple streaming multiprocessors 
(SMs) with potentially hundreds of cores that run multiple 
threads in parallel and provide memory latency hiding by 
overlapping long-latency loads in stalled threads with useful 
computation in other threads [5], The Compute Unified 
Device Architecture (CUDA) is an extension to C 
programming for NVIDIA GPUs. However, porting 
applications to CUDA remains a non-trivial task even for 
expert programmers. CUDA programmers have to write 
GPU code in separate functions with explicit management 
of data transfer between the host and GPU memories and 
manual optimization of the GPU memory hierarchy [3]. 

Performance study of general-purpose GPU 
programming have been reported [11] for applications such 
as SRAD structured grid, back-propagation unstructured 
grid, data encryptions standard, Needleman - Wunsch 

978-1-4673-2925-5/12/$31.00 ©2012 IEEE 55 

dynamic programming, and k-means data mining. A CUDA 
implementation for the gravitational N-body simulations 
using GPU is reported [12], The GPU performs force 
calculation and updating, while the host CPU performs the 
predictor, corrector, and integration steps. Implementation is 
based on two direct N-body integration codes, using the 4th 

order predictor-corrector Hermite integrator with block 
time-steps, and one Barnes-Hut tree-code, which uses a 
second order leapfrog integration. 

Software tuning of high-performance kernels [6] for 
GPUs is critical for efficiently running linear solver 
algorithms such as the Basic Linear Algebra Subprograms 
(BLAS) kernels. Optimizing programs using the Vector 
blocking techniques [7] over hybrid architectures 
(multicore and GPU) proved to be useful for improving 
performance of the matrix multiply routine (GEMM). 
Orders of magnitude acceleration is reported compared to 
multicore without GPU accelerators when architecture and 
algorithm-specific optimizations are used for implementing 
dense linear algebra solvers such as the MAGMA library 
[8]. A three-step optimization is proposed for the QR 
factorization [9]. QR is factorized as a sequence of tasks 
with chosen granularity. The kernel for each task is 
designed. Finally, static scheduling is used when a priori 
knowledge is available. Otherwise, dynamic scheduling is 
used by managing data availability and coherency. The 
reported performance is very close to that obtained using 
Linear Programming with some limited portability. The 
implementation complements kernels already available in 
the MAGMA library. 

CUDA programming requires an expert level 
understanding of the memory hierarchy and execution 
model to reach peak performance. Even for experts, 
rewriting a program to exploit the architecture in achieving 
high speedups can be tedious and error prone. Several high­
level interfaces [1, 2, 3] has been proposed to perform 
source-to-source translation based on programmer defmed 
"pragmas" or annotations to generate CUDA programs 
with less burden to the programmers. Most execution of a 
scientific program is spent on loops. Compiler analysis and 
compiler optimizations have been proposed to make the 
execution of loops faster. CUDA-lite [1], an experimental 
enhancement to CUDA, allows programmers to write 
CUDA kernels by using only global memory and 
automatically transform it in an optimize CUDA kernel to 
leverage the complex memory hierarchy. Authors claim the 
tool produces code with performance comparable to hand­
coded versions. 

Lee et. al have proposed a framework for source-to­
source translation of standard OpenMP applications into 
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CUDA-based code [2]. It has two phases: (1) a compile­
time optimization techniques which applied parallel loop­
swap and loop-collapsing, and (2) an OpenMP to GPGPU 
translation system. It is reported a performance 
improvements of up to 50x over the un-optimized 
translation (up to 328x over serial on a CPU. 

A high-level directive-based compiler (hiCUDA) [3] is 
proposed to ease the task of writing CUDA programs. The 
compiler translates a hiCUDA program to a CUDA 
program using a computation model and a data model in 
which programmers allocate and de-allocate memory on the 
GPU and move data between the host memory and the GPU 
memory. Evaluation of five CUDA benchmarks (MM, CP, 
SAD, TPACF, RPES) shows that the provided simplicity 
and flexibility come at no expense to performance as 
execution times is within 2% of that of the hand-written 
CUDA version. A source-to-source compiler transformation 
(CUDACHiLL) [13] aims at alleviating the need for 
understanding memory hierarchy and execution model in 
writing optimized CUDA programs. It proposes a source-to­
source transformation based on the polyhedral program 
transformation and ChiLL framework which is capable of 
composing transformations while preserving the correctness 
of the program at each step. 

In this paper we present a method for restructuring loops 
into an optimized CUDA kernels based on a 3-step 
algorithm which are loop tiling, coalesced memory access, 
and resource optimization. For this we identify the GPU 
constraints for maximum performance such that the 
memory usage (global memory and shared memory), 
number of blocks, and number of threads per block. In 
addition we identify the condition for maximizing 
utilization of the GPU resources. We also establish the 
relationships between the influencing parameters and 
propose a method for finding possible tiling solutions with 
coalesced memory access that best meets the identified 
constraints. The execution model of synthesized kernel 
consists of uniformly distributing the kernel threads to keep 
all cores busy while transferring a tailored data locality 
which is accessed using coalesced pattern to amortize the 
long latency of the secondary memory. In the evaluation, 
we implement some simple applications using the proposed 
restructuring strategy and evaluate the performance in terms 
of execution time and GPU throughput. 

This paper is organized as follows. Section II presents a 
proposed approach for restructuring algorithm for CUDA. 
Section III presents an example of applying the proposed 
strategy to develop and optimized kernel for matrix 
multiplication. Section IV presents the comparison of 
proposed strategy with other approaches. Finally, Section V 
concludes about this work. 

II. A RESTRUCTURING ALGORITHM FOR CUDA 

In this section we proposed a CUDA kernel 
restructuring algorithm, a general strategy to achieve 
maximum possible performance by better utilization of the 
machine. In CUDA, the worker threads are identified by 
thread ID and being organized by blocks which are 
identified by block ID. This identification is used in a kernel 
to define a mapping of computations to threads (workers). 
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The proposed restructuring algorithm aimed at generating 
efficient CUDA kernels. It is based on the three key 
concepts that are explained in detail in following 
subsections. 

A. Tiling 

In CUDA the programmer has to explicitly transfer data 
from slow low-level GM which is visible by all SMs to a 
fast high-level shared memory ShM within each SM. Tiling 
the code is to account for the small ShM capacity. The 
execution style is based on transferring small amount of 
data followed by data processing. While transforming the 
code, it is required to perform proper calculation of 
effective address of array elements (results) based on the 
workers identifiers which are the block ID and thread ID. It 
is required to design an algorithm/mechanism that can be 
used to apply loop tiling on any CUDA program with 
proper memory hierarchy optimizations. Tiling is guided by 
the following steps: 

1. Identification of proper tile size to be stored in shared 
memory based on the limited capacity of ShM per 
CUDA kernel block based on determining the tile size 
and matching overall tile data locality with ShM 
capacity. 

2. Loop transformations and proper identification of range 
of outer and inner loops. 

3. Effective address calculations of the array elements to 
be accessed within the loop iterations (see coalesced 
access). 

4. Boundary check for avoiding the out of bound array 
index access. 

5. Synchronization among loading of data into ShM, 
execution of operations, and storing the results back 
into GM. 

B. Coalesced Global Memory Access 

In this section, the objective is to restructure the code so 
that at execution warps access to GM is done according to 
a coalesced access pattern to amortize the excessive access 
cost. Fetching a group of data elements which are stored in 
distinct memories (coalesced access) is critical to amortize 
the high cost of accessing GM compared to the speed of the 
logic. The key idea is to determine all possible mapping 

In CUDA a I-D kernel having NW threads is 
represented as a set of N blocks each has W elements. To 
assign some work to each individual thread, each kernel 
thread is identified by the block b to which it belongs to 
and some offset t, i.e. thid = b. W + t or as a vector thid = ( b, 
t)N,W ,where O:::;b:::;N-l and O:::;t:::;W-i. Suppose we have 
a 2-D array of U.V computation results which are stored 
using row-major scheme as U rows and V columns, the 
address of the element in row r and column c is EA= 
(r,c)u,v = r. U + c, where 0:::; r:::; U-l and 0:::; c:::; V-I. 
Assigning a thread (worker) to compute a result requires 
defining a mapping from the thread IDs onto the results so 
that when the SPMD program is run, each thread uses its 
own ID in the code to determine the result that it must 
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compute. The mapping of threads IDs onto the result 
address admits a few possible mapping solutions for EA = 
(r,c )u.v as computes: 

1. EA = « b, t)N,W , C )u,v I N. W=U, each thread has one 
loop to compute V results, no coalesced access, 

2. EA = (r, ( b, t)N,W )U,V I N.W=V, each thread has one 
compute U results, coalesced access, 

3. EA = « b, t')N,W , ( b', t)N,W)U,V I N.W'=U and 
N'.W=V, each thread has two loops (denoted by ') to 
computes (u. V)/(N. W) results, coalesced access, 

4. EA = « b', t)N',W, ( b, t' )N,W )u,v IN'. W=U and 
N.W'=V, each thread has two loops (denoted by ') to 
computes (U.V)/(W.N) results, coalesced access. 

Note that a coalesced access takes place only when the 
offset, or second component of EA, is mapped to the thread 
index, i.e. identified by offset t. The reason is that warps 
are formed by successive thread IDs for any dimension, i.e. 
according to row major organization. Table 1 shows the 
possible mappings of CUDA for I-D and 2-D kernels 
(blocks and threads) to a 2-D array of results of size space 
N.W with corresponding tile size (upper parameter) and 
coalesced (Yes) or non-coalesced (No) accesses. Similar 
approach is used for higher dimension kernels. 

ID Kernel 

thid= b.W + 1= (b, tlN.wl OS bSN-l 
andOStSW-l 

EA= (r,c)u.v = r. U + c, 
OSrSU-l andOScSV-1 

Note: X' is a local loop within the 
Ihread 

« b, tlN.w, c)u.v U 
N.W=U No 

(r, ( b, t),.w )u.v I V 
N.W=V Yes 

« b, I'),.w, (b', t),.w)u.v (U.V)/(N.W) 
N.W'=U Yes 

« b', t),·.w, ( b, I'),.w )u.v (U.V)/(N.W) 
N'.W=U No 

2D Kernel 
thid (bx.Wx + tx, by.Wy + ty) 
= « bx, Ix)".w, , ( by, ty)'y.Wy) I 

Os bxS Nx-I, Os byS Ny-l 
OS txS Wx-l, Os tyS Wy-l 

EA= (r,c)u.v = r. U + c, 
OSrSU-1 andOScSV-1 

« bx, Ix)".w, , ( by, ty)'y.w,.) I 
Nx.Wx=U, Ny.Wy=V No 

« by, ty),y.wy , « bx, Ix)".w,) 1 
Nx.Wx=U, Ny.Wy=V Yes 

« by, IX),y.w, , ( bx, ty)".Wy) I 
Ny.Wx=U, Nx.Wy=V No 

« bx, ty),.,.w,. , ( by, Ix),y.w, ) 1 
Nx.Wy=U, Ny.Wx=V Yes 

Table 1: PossIble 1-D and 2-D Kernel mappmg to a 2-D Array of results 

For example, assume a 2-D(U,U) array res() of results, 
and TxT as being the tile size. Let's use a ID kernel defined 
by thid= (b, t)N.W . For I-D kernel, we may use the solut!on 
shown in the third row of Table 1. The correspondmg 
constraints leads to N=U/T blocks and each block has each 
W=T threads. The effective address of a result resO is EA = 
(b*T+t')*U + b'*T+t. Each kernel thread consists of a 
double nested loop, where the outer loop (t': U/T iterations) 
and inner loop (b': T iterations). It is clear that access is 
coalesced because t is in the least significant position. 

C. Resource Optimization 

Within each SM, ShM is partitioned among active 
blocks which are assigned to SM for simultaneous 
execution. Therefore the tile sizes must be selected such that 
the tile data locality that must be loaded into ShM does not 
constrain the maximum number of active blocks which can 
be assigned to an SM at a time. 
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(I Warp perSM l 
J 

min ,Max. Blocks per SM 
Warp per Block 

Aclive Blocks = min 

Here, 

(I Shared Memory per SM l 
S 

J 
min , Max. Blocks per M 

Shared Memory per Block 

Threads Per Block 
� (1 1) Warps Per Block � . 

Threads Per Warp 

Shared MemoryPer Block = Tile Si:ex Dala Element Size 

--7(1) 

x Number of Data Eiemenlstoload for one result --7 (12) 

256 
Warps Per Block=-=S 

32 
:::�:

B

����:� 

B

I::[r::F]2 -2M8 

mi{i l63S4l s 

min [S.S] 
=min ;] =4 

Tolal Kernel Blocks 
Average Kernel Blocks per SM(AKBPSM) 

Total SMs 

Here, Total Kernel Blocks = Application SpaceSize / Tile Size 

(Active Blocks x Threads Per Block ) 
S - Cycles = -+ (3) 

SPs per SM 

-+ (2) 

The block size must be chosen less than or equal to tile 
size such that each thread in a block loads one or more 
elements of a tile into ShM. This will reduce instruction 
fetch and processing overhead of load instruction since the 
device perfonn one instruction fetch for a block of threads 
which is in SIMT manner. On the other hand, too large 
block sizes must be avoided limiting the number of active 
blocks per SM due to large number of warps per block. The 
number of active warps must be no less than the maximum 
warps per SM (for full occupancy) in any given SM to 
avoid limiting the number of active threads per SM. Active 
Blocks can be calculated using equation (1). 

For example, if Threads per Block is 256, Tile Size is 
256, Data Element Size is 4 bytes, and Number of Data 
Elements to load for one result is 2, then the Active Blocks 
is 4. Suppose Warps Per SM is 32, Shared Memory Per SM 
is 16384, and Max. Blocks Per SM is 8. Therefore the 
number of active blocks that can be handled by an SM at a 
given time can be calculated using eq. (1). 

To expose to peak performance, the application threads 
must be massively and uniformly spread over the SMs so 
that the only perfonnance saturation comes from mapping 
the application to the GPu. Furthermore, peak performance 
will be expected because all the SM and SPs are involved 
in the execution. Since, there are two levels of kernel block 
and threads scheduling in the device. The blocks are first 
scheduled to be executed on each SM and then each SM 
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schedules the individual threads within a block to mUltiple 
SPs within the SM based on selecting one warp at a time. 
The repetitions due to first scheduling can be analyzed as 
average kernel blocks per SM and the repetitions due to 
second scheduling as small cycles (S-Cycles) which occur 
due to limited number of SPs (Thread Processors) that can 
execute one thread at a time. 

These repetitions should satisfy the following 
conditions to achieve peak performance: 

1. Both AKBPSM and S-Cycles should be greater 
than or equal to 1. 

2. S-Cycles should be an integer value to balance the 
threads among multiple SPs. 

3. S-Cycles should be as large as possible. 
4. AKBPSM should be the least possible to minimize 

serialization. 

D. Proposed CUDA Restructuring Algorithm 

The proposed restructuring algorithm is based on the 
following steps: 
Step 1: Analyze the granule size in the loop body and the 

data locality needed and determine thread granule size: 
a. Thread Granule Size: carry out loop 

distribution/jusion or statement distribution/jusion 

to control the thread granule: the number of 

load/store, number of arithmetic operations, and 

the needed data locality 
b. Carry out statement distribution if statement has 

too many arithmetic operations or requiring too 
many locality 

c. Might carry out the opposite of the above steps in 

the case of too fine granule size of very limited 

locality 
Step 2: Tile the resulting loop (or loops) by generating all 

possible tiled loop arrangements and select one or more 
tiled arrangements with coalesced memory access. 
Step 3: Determine the best possible combination of 

Threads per block (TPB) and the Tile Size(TS) to get the 

optimal distribution of blocks and threads among SMs and 
SPs respectively. We need to generate all possible TPB and 

TS, and their respective Warps Per Block (WPB) and 
Shared Memory Per Block (ShMPB) using the equation 
(1.1 and 1 .2). 

a. IdentifY Active Blocks using equation (1) for each 
of the combination of TPB and TS 

b. Calculate S-Cycles for each of the combinations 

using equation (3) and select the combinations 

that have the maximum value. 

c. Calculate AKBPSM for the selected combinations 

and the one that has the minimum value of 
AKBPSM will give the best performance. 

III. EXAMPLE 

In this section, we will show the working steps of 
wntmg a matrix mUltiplication application from the 
sequential code (Code Listing 1, for N x N matrices) to 
optimized CUDA kernel. 
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void matrix_multiply(float **C, float **B, float **A, int N) 
{ 

for(int ty=O; ty < N; ty++) 
for(int tx=O; tx < N; tx++){ 

C[iW] = 0; 
for(int k=O; k < N; k++) 

C[iW] += A[i][k] * B[k][j]; 

Code Listing I: Matrix Multiplication Sequential Code 

void tiled_matrix_multiply(float **C, float **B, float **A, int N) 
{ 

for(int by=O; by < N; by+=TILE _ Y) 
for(int bx=O; bx < N; bx+=TILE_X) 

for(int ty=0; ty < TILE_Y; ty++) 
for(int tx=O; tx < TILE_X; tx++) 

for(int bk=O; bk < N; bk+=TILE _ X) 
for(int k=O; k < TILE_X; k++) 
C[by+ty][bx+tx] = A[by+ty][bk+k] * B[bk+k][bx+tx]; 

Code Listing 2(a): Matrix Multiplication Tiled Version 

_global_ void 
tiled_matrix _ multiply(float *C, float *B, float * A, int N) 
{ 

int by = blockldx.y * TILE_ Y; 
int bx = blockIdx.x * TILE_X; 
int ty = threadldx.y; 
int tx = threadIdx.x; 

for(int bk=O; bk < N; bk+=TILE_X) 
for(int k=0; k < TILE_X; k++) 

C[(by + ty) * N + bx + tx] = A[(by + ty) * N + bk + k] 
* B[(bk + k) * N + bx + tx]; 

Code Listing 2(b): Matrix Multiplication CUDA kernel 

_global_ void 
coalesced_matrix_multiply(float *C, float *B, float *A, int N) 
{ 

int by = blockldx.y * TILE_ Y; 
int bx = blockldx.x * TILE_X; 
int ty = threadIdx.y; 
int tx = threadldx.x; 

float Csub=O; 
_shared_ float As [TILE _ Y][TILE _Xl; 
_shared_ float Bs[TILE_X] [TILE_X]; 

for(int bk=O; bk < N; bk+=TILE_X){ 
As[ty][tx] = A[(by + ty) * N + bk + tx]; 
Bs[ty][tx] = B[(bk + ty) * N + bx + tx]; 

_syncthreadsO; 

for(int k=O; k < TILE_X; k++) 
Csub += As[ty][k] * Bs[k][tx]; 

_syncthreadsO; 

C[(by + ty) * N + bx + tx] = Csub; 

Code Listing 3: CUDA kernel with coalesced memory accesses 
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_global_ void 
gen_coalesced_matrix_multiply(float *C, float *B, float *A, int N) 
{ 

int by = blockIdx.y * TILE_Y; 
int bx = blockIdx.x * TILE X; 
int ty = threadIdx.y; 

-

int tx = threadldx.x; 

float Csub[TlLE_Y/BLOCK_Y]; 
_shared_ float As [TILE_ Y][TILE_X]; 
_shared_ float Bs[TILE_X][TILE_X]; 

for(int bk=O; bk < N; bk+=TlLE_X){ 
for(int i=O; i < TILE_ Y/BLOCK_ Y; i++){ 

As[ty + i * BLOCK_ Y][tx] = A[(by + ty + i * BLOCK_ Y) 
*N + bk + tx]; } 

for(int i=O; i < TILE_XlBLOCK_ Y; i++){ 
Bs[ty + i * BLOCK_ Y][tx] = B[(bk + ty + i * BLOCK_ Y) 

*N + bx + tx]; } 
_syncthreadsO; 
for(int i=O; i < TILE_ Y/BLOCK_ Y; i++) 

for(int k=0; k < TILE_X; k++) 
Csub[i] += As[ty + i * BLOCK_ Y][k] * Bs[k][txJ; 

_syncthreadsO; 
for(int i=O; i < TlLE_Y/BLOCK_Y; i++) 

C[(by + ty + i * BLOCK_ Y) * N + bx + txt = Csub[i]; 

Code Listing 4: Optimized CUDA Kernel 

Step 1: due to the limited data locality and few arithmetic 
operations in the statement, each thread can simply focus 
on calculating one resultant element that is thread granule 
size = 1. 

Step 2: Code Listing 2(a) shows the tiled version of Code 
Listing 1 by using general strategy of loop tiling for 
uniprocessors that is split each loop of a nested loop-set 
into a pair of adjacent loops in the loop nest, with the outer 
loop (tiling loop) traversing tiles (blocks), and the inner 
loop (intra-tile loop) covering the iteration points within the 
tile. Code Listing 2(b) shows the corresponding CUDA 
kernel implementation using 2D blocks and threads that 
maps the outer four loops of Code Listing 2(a) to the 
blocks and threads dimensions in Code Listing 2(b). At this 
stage, accessing to matrix C and B are satisfying the 
mappings of coalesced memory access as shows in second 
row of 2D kernel mappings in Table 1 while access to 
matrix A is not coalesced. 

Code Listing 3 shows the modified kernel to perform 
coalesced loads of matrix A and B using shared memory 
and coalesced stores to the resultant matrix C. Here, we are 
assuming the same dimensions for thread blocks and matrix 
tiles. We also need to add barrier synchronization among 
threads of the same block using syncthreadsO between 
tiles load and compute statement within the traversal of all 
tiles of matrices A and B. Also a barrier is required before 
storing the resultant tile of matrix C due to difference in the 
traversal order of load/store and computation statements. 

Step 3: For Tesla C2070 using the resource optimization 
strategy as explained in section II.C, we found optimal 
values for threads per block and tile sizes as TPB = 32 * 16 
512 and TS = 32 * 64 = 2048. Code Listing 4 shows the 

59 

modified kernel of Code Listing 3 to handle the case of 
TPB < TS, for this we need to add loop for each load, 
compute and store statement to correctly load the whole 
tile, compute the results, and store the whole resultant tile 
to the destination. 

IV. ApPLICATION RESULTS COMPARISON 

A. Matrix Multiplication 

We have analyzed the structure of matrix multiplication 
kernels using CUDALite [1] approach and NVIDIA SDK 
approach [10]. Both of these implementations used 
arbitrary values for defining threads per block (TPB) and 
tile size (TS) which are not optimal values in terms of 
resource utilization as we have explained in section H.C. In 
CUDALite, each thread work on the entire row of the tile 
resulting in very few threads per block (TPB = 32 as shown 
in Table 2 that only 1 warp per block) which is not 
sufficient to hide latency of the global memory transfers. 
Also, in CUDALite, a tile allocation is also done for results 
which causes large shared memory usage per thread block 
that restricts the number of Active Blocks (AB = 1, see 
Table 2, can be calculated using eq. (1)) that highly reduces 
the S-Cycles to 1. In NVIDIA SDK approach, 2D thread 
blocks of 16 x 16 dimensions is defmed with same tile 
sizes so each thread work on one element of each tile but 
these values produces large number of average kernel 
blocks per SM which causes increased overhead of blocks 
allocation and thus limited performance. The optimal value 
of TPB and TS for Tesla C2070 GPU are 512 and 2048 
respectively as proposed by our restructuring algorithm and 
gives the minimum execution time in comparison of the 
other approaches. 

We have also analyzed the matrix scaling kernel shown 
as an example in CUDALite [1] paper. We have found 
similar problems of limited number of active blocks due to 
large shared memory usage and also large number of 
average kernel blocks per SM due to small number of 
threads per blocks as explained in the previous section II.C 
in the case of matrix multiplication. The optimal value of 
TPB and TS for Tesla C2070 GPU are 512 and 4096 
respectively as proposed by our restructuring algorithm 
(see Table 3) and gives the minimum execution time in 
comparison of the CUDALite approach. 

Te,l" C2070 (N � 2048 x 2048) 

TPB TS AD TKD 
S-

AKBPSM 
Exec. 

Cycles Time 

Restructuring 512 2048 3 2048 48 146.2857143 2.4486 
Algorithm 

NVIDIA SDK 256 256 6 16384 48 1170285714 2 6268 

CUDALite 32 1024 I 4096 I 292.5714286 21.2396 

Table 2: Parameters comparison of different implementations of 
Matrix Multiplication 
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B. Matrix Scaling 

Tesla C2070 (N � 2048 x 2048) 

TPB TS AB TKB 
S-

AKBPSM 
Exec. 

Cycles Time 

Restructuring 512 4096 3 1024 48 73.14285714 0.0014 
Algorithm 

CUDALite 32 1024 I 4096 I 292 5714286 0.0096 

Table 3: Parameters comparison of different implementations of 
Matrix Scaling 

C. Matrix Transpose 

NVIDIA provides optimized kernels of matrix 
transpose by analyzing the architectures of shared memory 
and global memory. In these optimizations, tiles are 
allocated in shared memory in such a way that the access to 
the shared memory by different threads at the same time 
should be free from shared memory bank conflicts. 
Furthermore, access to global memory by concurrent thread 
blocks will be done in different partitions of global 
memory to load the tile from the source matrix and store 
the tile into transposed matrix. We have applied our 
resource optimization strategy to two different matrix 
transpose kernels as provided in NVIDIA SDK. TPB = 512 
is obtained as an optimal value for threads per block that 
maximize S-Cycles (see Table 4 and 5) and hence 
minimize the execution time in comparison of the defmed 
parameters in NVIDIA documentation. 

Quadro FX 7000 (N � 2048 x 2048) 

TPB TS AB TKB 
S-

AKBPSM 
Exec. 

Cycles Time 

Restructuring 512 1024 3 4096 48 256 0.0776 
Algorithm 

NVIDIA SDK 256 1024 5 4096 40 256 0.1084 

Table 4: Parameters comparison of Matrix Transpose kernels with no 
shared memory bank conflicts 

Quadro FX 7000 (N � 2048 x 2048) 

TPB TS AB TKB 
S-

AKBPSM 
Exec. 

Cycles Time 

Restructuring 512 1024 3 4096 48 256 0.0800 
Algorithm 

NVIDIA SDK 256 1024 5 4096 40 256 0.1234 

Table 5: Parameters comparison of Matrix Transpose kernels with 
diagonal tiles mapping to blocks to avoid partition camping 

V. CONCLUSION 

We presented a restructuring algorithm to optimize a 
CUD A program based on three key concepts: (1) tiling, (2) 
coalesced global memory access, and (3) resource 
optimization. Obtained results were analyzed in view of 
proposed optimization parameters which reinforces the 
proposed restructuring and alleviate the tedious task of 
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finding an optimized solution based manually optimizing 
many parameters using brute-force approach. We have also 
compared our strategy with other implemented approaches 
of matrix multiplication, matrix scaling, and matrix 
transpose kernels mentioned in CUDALite and NVIDIA 
SDK. Currently some frameworks provide auto-tuning of 
kernel parameters using brute-force approach but none of 
the approach defines a strategy for defining optimal 
number of threads per block and tile size while our 
resource optimization strategy helps to determine the 
optimal values of these parameters that maximize the 
performance in comparison of the other approaches. 
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