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Abstract—Multiple-robot systems (MRS) that are decentrally
organized have many benefits over centralized systems. Decen-
tralized systems are less affected by computational and commu-
nicative bottlenecks, and they are more robust to the loss ofindi-
vidual member robots. System-level cognitive operations,though,
are much more difficult to implement in decentralized systems.
One example is the best-of-N decision-making problem, in which
a team attempts to unanimously select a single alternative from
a list that maximizes a given metric. This is a valuable operation,
since many system-level operations can be expressed in thisform.
Optimal best-of-N decision-making, however, is intractable in
large decentralized systems. The contribution of this workis
a biologically inspired algorithm that enables a decentralized
MRS composed of very simple robots to make good, unanimous
decisions. In a series of physical experiments using real robots,
the best decision was made at least 80% of the time. 100% of the
decisions achieved perfect consensus, which prevented theMRS
from becoming fragmented. The decisions are made using only
anonymous, local communication, with no direct comparisons of
the available alternatives by the individual robots.

Index Terms—Decentralized, multi-robot system, decision-
making.

I. I NTRODUCTION

The inability of decentralized multiple-robot systems (dec-
MRS) to make intelligent collective decisions is a significant
obstacle to their deployment in the real world. A dec-MRS
is a robotic team which lacks any centralized (or hierarchi-
cal) organization [8]. Robustness to individual robot failures
and scalability are two advantages of dec-MRS over their
centralized counterparts. A centralized MRS would fail if its
central controller failed, but this is not the case for a dec-
MRS since they contain no such critical individuals. Their
absence also allows dec-MRS to be scaled up to very large
population sizes (such systems sometimes are referred to as
swarms), since communicative and computational bottlenecks
largely are absent. In this work, we propose a solution to
the decentralized best-of-N decision problem, in which a dec-
MRS must unanimously select one of N alternatives to some
problem facing it. Empowering a system to make collective
decisions as though it were a single intelligent entity enables
designers to abstract away from the low-level complexities
of decentralized control and instead focus on the high-level
details of the task at hand.

Dec-MRS enjoy the advantages that they do because their
control is bottom-up (emergent), which also is the source ofthe
difficulty in their development, since there is no “top” from
which control signals might emerge, nor where information
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could be collected for processing. Because of this, much of
the research to date has concentrated coordination mechanisms
for specific tasks, or the simultaneous execution of multiple
tasks that do not interfere with each other. Often, these
algorithms are tightly coupled to specific environments [3].
Abstract cognitive operations like best-of-N decision-making
are domain-independent, and thus can be applied to a wide
variety of dec-MRS and reused in many situations.

Naturally occurring decentralized multiple-agent systems
like ant and bee colonies have served as valuable examples
in the past for dec-MRS applications, and we follow this
model by presenting a biologically inspired solution to the
decentralized best-of-N decision-making problem in this work.
Social insects are constrained similarly to the robots of a
dec-MRS. In both systems, communication tends to be local
and thus largely one-to-one. The individuals also tend to be
simple, with noisy sensors and incomplete global knowledge.
Because of these limitations, individual robots, just liketheir
insect counterparts, should not be relied upon to determinethe
appropriate response to their environment beyond the most ba-
sic situations. Otherwise, the global behavior of decentralized
systems would be dominated by interference [11] due to the
conflicting actions of erroneous individuals; a problem that
tends to worsen as population size increases.

In response to these concerns, this work presents a de-
centralized algorithm that enables a dec-MRS to make group
decisions cooperatively, that takes advantage of a dec-MRS’s
redundancy and highly parallel structure instead of being
penalized by it. We demonstrate our work with real robots in a
collective relocation domain, but our algorithm easily could be
applied to any problem that could be expressed as a best-of-N
decision. In the next section, we discuss research related to
our problem of interest. In Section III, we formally define the
decentralized best-of-N decision-making problem and describe
the strategy used by honeybees and ants to solve it. Inspired
by their solution, we propose our best-of-N decision-making
algorithm for dec-MRS in Section IV. We also present quorum
testing, a new mechanism in dec-MRS that plays a central role
in our algorithm. In Sections V and VI, we describe a series
of experiments that we carried out to demonstrate best-of-N
decision-making by a real dec-MRS. We generalize the results
of these experiments with further discussion in Section VII,
and then close with some conclusions and suggest the next
steps for research in this area. We first introduced the use of
social insect behavior to guide consensus-based [9] decisions
in dec-MRS in [21], [22]. Some parts of those works are
reproduced herein.
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II. RELATED WORK

Interest in cooperative teams of mobile robots [14], [32] has
increased in recent years. Often, dec-MRS are composed of
small, simple robots such as those described in [6], [14]. As
Campbell et al. have pointed out, the cost of computation is
independent of robot size [7], but the ability to compute is
not. Therefore, smaller autonomous robots, which due to their
small size cannot carry sophisticated on-board controllers, nor
the batteries necessary to power them are more computa-
tionally constrained than larger robots. These are the sorts
of robots likely to compose many dec-MRS in the future,
and so cooperative decision-making algorithms intended for
these systems must take their limitations into consideration.
To date, however, most of the research concerning dec-MRS
has concentrated on their coordination when carrying out spe-
cific tasks, rather than general purpose system-level cognitive
operations.

Examples of dec-MRS applications in the literature include
object sorting [13], cooperative transportation [19], formation
movement, and the stick-pulling experiment [15]. These stud-
ies illustrate that dec-MRS are capable of a wide variety of
tasks, but each of these dec-MRS were single-purpose systems.
A more complicated task like cooperative construction [30]
can be expressed as the composition of foraging, transport and
sorting [24], but in order to organize it as such, a MRS would
have to be able to make collective decisions regarding where
to build a desired structure, when to begin, where to gather
the materials, and when each subtask had been completed so
that the next could begin [25]. Otherwise, the group task likely
would fail as each robot might determine a different course of
action on its own. Each of these questions can be posed as a
best-of-N decision.

There has been work in artificial intelligence studying team
decision-making, but much of it focuses on smaller teams
of relatively sophisticated agents, rather than the low-cost
resource-constrained and expendable robots that often are
envisioned composing large dec-MRS. Its extension to large
dec-MRS therefore is questionable. One example of such
work is Pynadath and Tambe’s communicative multiagent team
decision problem (COM-MTDP) in [27]. Similar work has cast
the cooperative decision-making problem as a decentralized
partially observable Markov decision process, or dec-POMDP
[4], suggesting that a general purpose solution to the decen-
tralized best-of-N problem will have to be heuristic, since
an optimal solution to this problem would be intractable for
decentralized systems containing many robots.

International competition in robotic soccer also has driven
cooperative decision-making research. If a robotic soccerteam
is to compete effectively, its players must coordinate their
actions. This coordination often takes the form of a group
decision regarding which play to follow. Plays commonly
are fixeda priori in a playbook and the robots must agree
which play best suits the circumstances in which they find
themselves. Therefore, the manner in which they deliberate
constitutes a solution to the best-of-N decision problem.
Bowling et al. developed an effective play-selector for their
team in the small-size league that was able to adapt to

different opponents’ strategies in [5]. Like many small-size
league techniques, however, this was a centralized algorithm
that dictated roles to the individual robots. Strategies inthe
mid-sized league tend to be more decentralized, since these
robots cannot take advantage of centralized off-field hardware.
Kok et al. presented several truly decentralized algorithms
for play selection in [17], [18]. Because soccer teams have
small population sizes, many of the cooperative decision-
making algorithms used in this domain are optimized for
speed in small dec-MRS and take advantage of communicative
behavior that would be impractical in for larger populations.
It is unlikely that these algorithms would scale up to large
population populations. Also, in both of these works, the set
of alternatives over which the systems deliberated were known
beforehand. This is not a general property of a best-of-N
decision.

An area of research that is somewhat similar to that of
swarm-style dec-MRS with respect to population size and
agent complexity is sensor networks. A sensor network con-
sists of a large number of simple, expendable sensor nodes that
are spread over a region to monitor some phenomenon within
it [1]. Decentralized decision-making often is performed in
sensor networks to reduce the amount of data that must be
passed to the central sink node of the network, such as the
decision-fusion proposed in [16], but because the individual
sensor nodes tend to be immobile, these decisions usually are
local, combining the independent decisions of nearby nodes.
More distant nodes are unaffected by these decisions beyonda
reduction in the volume of network traffic that they might have
to carry. The resulting behavior might better be described as
self-organizing rather than decision-making as we intend the
term in this article. System-wide decisions in sensor networks
are more likely to be made by a centralized sink node and
dictated to the rest of the network. Although there has been
some interest in mobile sensor nodes, the majority of the
research in this field concerns stationary nodes, and thus the
topology of a sensor network is quite stable when compared
to that of a dec-MRS.

To our knowledge, the only other work that has investigated
cooperative decision-making in large dec-MRS is that of
Wessnitzer and Melhuish in [31]. In that work, a dec-MRS
was tasked with pursuing and immobilizing two “prey” in a
series of simulated experiments. The robots, each of which
possessed minimal sensing capability and short communi-
cation ranges used majority voting and a hormone-inspired
approach to cooperatively decide which prey to follow. They
then pursued the other one once they agreed that first had been
immobilized. Our work here is somewhat similar, but unlike
that of Wessnitzer and Melhuish, we present an approach that
is only very loosely coupled to the specific decision being
made, and thus is more general in its approach.

III. T HE DECENTRALIZED BEST-OF-N DECISION-MAKING

PROBLEM

In this section we formally introduce the decentralized
best-of-N decision-making problem and describe the emergent
behavior used by honeybees and ants to solve it. In the
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next section, we present our algorithm for best-of-N decision-
making in a dec-MRS which is patterned after the insects’
behavior.

The best-of-N decision-making problem arises when a sin-
gle alternative that maximizes some value function must be
selected from a set of candidate alternatives. The set of alter-
natives could be anything: locations at which to perform some
operation, heuristically determined solutions to an intractable
problem, etc. A solitary robot need only select the best one
in its list of known alternatives in order to make a best-of-
N decision. In a MRS, the robots must unanimously select
one alternative, since the goal is for thesystemto make the
best-of-N decision. The solution for a centralized system is
much the same as that of a solitary robot. Making a best-
of-N decision in a decentralized system, however, is more
complex. Because of its structure, knowledge is spread across
the individual members, meaning that none of them are likely
to know of the entire set of candidate alternatives. It is thecost
of sharing each robot’s knowledge with every other member
of a dec-MRS that makes optimal best-of-N decision-making
intractable. Even if this information could be shared, only
one of the alternatives ultimately will be selected by the end
of a decision, so much time and energy would be wasted
spreading knowledge of alternatives that will not be selected
system-wide. In the presence noisy sensors, even if each robot
could be made aware of each candidate alternative, it cannot
be assumed that each robot would make the same best-of-N
decision as every other robot, since the values ascribed by the
various robots to each of the alternatives likely would differ.

A conceptually simple approach to the decentralized best-
of-N decision-making problem would take advantage of global
broadcast communication. Following an initial search of some
predetermined length, each robot would broadcast its own
local solution to the rest of its team. Once all of the broadcasts
had been made, each robot would then select the alternative
that had received the most support, completing the collective
decision. There are several problems with this approach,
though, that make it undesirable. First of all, it is an implicitly
centralized algorithm. It strives to treat every member of adec-
MRS as though it was a central controller, giving it complete
knowledge in order to make an omnipotent decision. Second,
it relies heavily on global broadcast communication. Not only
is this a relatively expensive operation, it can be unreliable in
a decentralized system, and the success of the group decision
depends critically on every robot receiving every one of its
teammates’ broadcasts. Furthermore, each robot is required to
know precisely how many robots compose the system, since
they can only make their decisions about which alternative to
select once every teammate has broadcast its opinion. Even
if this number was known initially, recall that robustness to
individual failure is one of the main arguments in favor of
dec-MRS. The simple, disposable robots [14] that are likelyto
compose these systems might fail during a dangerous mission.
It is unlikely that the surviving robots would be able to
maintain an accurate list of their functional teammates over
the course of a mission. In the end, this approach is not
even guaranteed to make good best-of-N decisions, since each
robot’s vote for the “best” alternative would be based on its

own, likely incomplete, list of alternatives. Two rounds ofeach
robot broadcasting would be required: one to share all of the
known alternatives, and one for the robots to cast their votes.
Clearly, a better strategy is required.

Instead of trying to adapt the tools of centralized control
(e.g. global broadcast communication) to dec-MRS, a decen-
tralized algorithm for best-of-N decision-making should take
advantage of decentralized structure. We now present just such
an algorithm that social insects have evolved to solve this very
problem.

A. A Social Insect Solution to the Best-of-N Decision Problem

Social insects live in decentrally organized colonies, similar
in many ways to the idealized notion of a large dec-MRS.
Some species periodically relocate their nests, and this opera-
tion represents a best-of-N decision, since a relocating colony
is presented with the problem of selecting the single best site
from those that its members are able to find. Recent research
[20], [26], [28] has described an elegant emergent behavior
that honeybees andTemnothoraxants use in order to solve
this problem.

Once a colony determines that it must relocate, scouts
search the surrounding environment for a new site. Each
scout that finds a candidate site contributes an alternativeto
a decentralized list from which the colony must select only
one. The individual insects measure the quality of candidate
sites on an absolute scale, albeit noisily. When a scout returns
to the colony, it recruits other insects to its site. The rateat
which a scout recruits is determined by its opinion of its site’s
quality. The better it believes its favored site to be, the more
frequently it will recruit. The recruits form their own opinions
of site quality before returning to the colony to recruit even
more insects to it. Over time, the differences in site quality
will become apparent in the number insects recruiting to each
one.

While visiting a candidate site, insects estimate its popular-
ity by measuring the rate at which they encounter their nest-
mates. The recruiting insects periodically visit their favored
sites, so the size of a site’s recruiting population - and thus
its popularity - can be inferred from the size of its visiting
population. Once an insect determines that its site is popular
enough, it commits to it, which alters its recruiting behavior.
A committed individual recruits its teammates as rapidly asit
can, inducing the rest of its colony to commit to its favored
site, completing the collective best-of-N decision. The best
site, able to attract the most vigorous recruitment, is the one
most likely to induce commitment first, and thus will tend
to be the one selected by the colony as a whole. Note that
only local communication is required in this approach, and no
direct comparisons of the candidate sites by individual robots
need ever occur.

IV. M ULTIPLE-ROBOT DECISION-MAKING FROM SOCIAL

INSECTBEHAVIOR

The nest-site selection behavior of the insects described
in the last section forms the basis of our dec-MRS best-
of-N decision-making algorithm. All inter-robot communi-
cation is local, which allows many one-on-one exchanges
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Fig. 1. This flowchart illustrates our proposed collective decision-making
algorithm. Decisions are made in three phases, identified bythe dotted boxes.
The state transitions between the individual robot states are indicated by
the arrows. Solid arrows indicate state transitions by a robot that are self-
motivated, while dashed arrows correspond to those inducedby messages
received from teammates. Refer to Section IV for a detailed explanation of
this behavior.

of information to occur in parallel. From the standpoint of
network contention, using very short-range communication
significantly reduces the chance of two robots interfering
with each other [12]. In a dec-MRS, in which there is no
central arbiter to coordinate the robots’ transmissions, this is
an important consideration. Its inclusion makes our algorithm
ideally suited to the locally-interactive nature of dec-MRS.

Refer to Figure 1 for the following discussion. The individ-
ual robots’ behaviors during the decision-making process are
arranged into six states:searching, idle, advocating, research-
ing, committed, and finished, organized into three phases:
searching, deliberation, andcommitment. Robots begin a de-
cision in either the searching state or the idle state. Thosein
the searching state search for candidate alternatives, while the
idle robots wait to be recruited into the process. When a robot
finds an alternative, it determines its quality, and then enters
the advocating state and rejoins its teammates.

It is the deliberation phase, composed of the advocating and
researching states, that allows a dec-MRS to determine the
best alternative from those that have been found. Advocating
robots periodically send recruit-messages to their teammates,
the frequency of which increases with their opinions of a
favored alternative’s quality. Robots in the searching, idle

and advocating states are recruitable, and when such a robot
receives a recruit-message, it enters the researching state.
Here, it evaluates the quality of the specified alternative,
and then enters the advocating state favoring it. Over time,
the proportion of robots advocating in favor of the better
alternatives will tend to increase, since it is more likely for
robots to be recruited from poorer to better alternatives than
vice versa.

In order to estimate the popularity of a favored alternative,
advocating robots send vote-queries to the teammates that they
encounter in between their sending of recruit-messages. The
response to a vote-query is a vote-message, which is either
“agree” or “disagree”, indicating whether or not the queried
robot favors the same alternative as the sender of the vote-
query1. The robots use the proportion of the most recently
receivedn votes that agree to estimate the popularity of their
favored alternative. The specific manner in which this is done
is described in Section IV-B.

Once a robot determines that its alternative is sufficiently
popular, that it has satisfied a quorum, the robot enters the
committed state. It is in this state that a robot begins the
process of completing the group decision and from which una-
nimity emerges. Robots in the committed state send commit-
messages to those that they encounter. When a robot receives
such a message, it commits to the specified alternative. If it
was not already committed to that alternative, it also responds
with an acknowledgment. As more robots commit to the same
alternative, the acknowledgment messages will become less
frequent, disappearing altogether once complete consensus has
been achieved. When committed robots no longer receive
acknowledgments to their commit-messages they enter the fin-
ished state, completing the group decision and begin whatever
created the need for a decision in the first place (e.g. deploy
a solar array at a selected location).

A. Individual Knowledge, Direct Comparisons and Recruit-
ment

Conspicuously absent from our proposed algorithm are
direct comparisons of alternatives by individual robots. A
recruit-message induces its recipient to advocate for the spec-
ified alternative regardless of the quality of any alternative
previously favored. At first, it might seem as though group
decision-making would be improved were the robots to ignore
recruitments to alternatives of lesser quality, but this actually
is not the case. It is important to understand that it is not
the individual robots that make the best-of-N decision - it is
their collected interactions that do so. Individual robotsmight
make errors when evaluating the quality of an alternative, but
the average of several robots’ evaluations is less likely tobe
erroneous. The rate of recruitment to a specific alternativeis
based on the collected opinions of its advocating population,
which reduces the impact of individual robot errors. If a
robot were to overestimate an alternative’s quality and were to
stubbornly refuse to accept recruitment to another, this would

1Robots also respond to recruit-messages with vote-messages. This ensures
that robots that recruit frequently are not deprived of votes due to their
proportionally less frequent vote-queries.
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amplify the effect of its error leading to potential stagnation.
In a previous study, we showed that even in the presence
of perfect sensing, direct comparisons of alternatives by the
individual robots do not improve the performance of the group
decision-making, and can even degrade the overall group
decision-making in certain cases [23]. Of course, under our
proposed model of quality-dependent stochastic recruitment, a
robot might occasionally be recruited from a better alternative
to a poorer one, but the reverse is far more likely.

The value of this sort of selfless behavior in a large
decentralized system anecdotally is supported by the foraging
strategies employed by different species of ant. Beckerset
al. examined foraging in 98 different species of ant and
found that the larger a species’ average colony population
size is, the less self-reliant the individual foragers tendto be
[2]. Small-colony species commonly forage individually and
rely on their own abilities to navigate between the colony
and a food source, whereas members of species that live
in colonies with larger populations rely more on emergent
group navigation, such as pheromone trail-following. In a
large decentralized system, it is more efficient to leveragethe
redundancy of the swarm, whereas smaller systems are better
off taking advantage of the intelligence and unique individual
skills of their members in the absence of numerical strength.
The selfless iterative recruitment employed by our decision-
making algorithm follows the example set by larger colony
population insects, and so we believe that our algorithm will
scale well to very large dec-MRS.

B. Quorum, its Evaluation, and the Probability of Commit-
ment

In this section, we describe the manner in which the
individual robots test quorum for an alternative that they favor
and explain how our algorithm minimizes the likelihood of
selecting a suboptimal one. It is important to remember that
best-of-N decisions are made in our algorithm through two
separate processes (refer to Figure 1). First, alternatives are
compared in the deliberation phase through iterative, decen-
tralized recruitment. Second, the system coalesces aroundthe
single alternative in the commitment phase that attracted the
most substantial recruitment. The best solution is identified
via a quorum test, and whichever alternative the quorum test
identifies first will be the one chosen by the system as a whole.

Once quorum is detected and the commitment phase has
begun, alternative quality no longer plays any role in the
process. The commitment phase unanimously selects the al-
ternative favored by the first robot to conclude that quorum
has been met. Therefore, the algorithm’s ability to select the
best available alternative depends critically on the ability of
the individual robots to accurately determine whether or not
quorum has been satisfied. Specifically, we must minimize
the chance of a robot concluding prematurely that its favored
alternative has satisfied quorum. We refer to this phenomenon
as afalse-positive quorum test.

The individual robots test quorum by comparing the pro-
portion of then most recently received vote-messages that
agree to thequorum threshold, Q ∈ [0, 1]. If the proportion

of agreeing vote-messages is greater than or equal toQ,
the test concludes that quorum has been met. Because the
messages are anonymous, some robots’ opinions might be
over-represented in a particular set ofn samples, introducing
errors into the result of the test. Our goal in this section isto
identify values for the quorum threshold,Q, and the sample
size,n, such that the probability of a false-positive is reduced.

The first task is to determine the probability of a quorum
test returning a positive result (including both false- andtrue-
positives) in terms ofQ and n and then minimize the con-
ditional probability of a false-positive. The minimum number
of agreeing votes that must be received to produce a positive
result is⌈Q ·n⌉. When at least this many of the most recentn

vote-messages are agreeing votes, the test will conclude that
quorum has been met. If the MRS iswell-stirred2, then each
vote received by a robot is equally likely to have come from
any of its teammates. Assume that a MRS containsN robots,
Na of which are advocating for the same alternative. When
one of these robots receives a vote-message, the probability of
that vote agreeing is given by the Equation 1.Ca stands for
apparent consensus, and we use this quantity since it is the
consensus for a particular alternative that is apparent to arobot
favoring it. The robots do not count their own opinions in their
estimates of consensus, since they would need to know their
system’s population size in order to do so. As we explained
earlier, it is unrealistic for individual robots in a dec-MRS to
keep track of this quantity, nor is it necessary, since apparent
consensus is very nearly equal to true consensus for all but
the smallest systems.

Ca =
Na − 1

N − 1
(1)

Each vote can be viewed as a Bernoulli trial with a proba-
bility of being true equal toCa. The probability of receiving
i agreeing votes in a set ofn therefore follows the binomial
distribution, Equation 2:

P (i of n votes are agreeing) =

(

n

i

)

Ci
a(1 − Ca)n−i (2)

The overall probability of a positive quorum test is obtained
by summing Equation 2 over all of the values ofi such that
a positive result will be returned:i ∈ [⌈Q · n⌉, n]. This is
given by Equation 3 which also is the probability that a robot
will commit to its alternative, since commitment immediately
follows a positive quorum test.

Pcommit(Ca, n, Q) =
n

∑

i=⌈Q·n⌉

[(

n

i

)

Ci
a(1 − Ca)n−i

]

(3)

To calculate the probability of a false-positive occurring,
Equation 3 is summed over the values of apparent consensus
less than quorum,Ca ∈ [0, ⌈n · Q⌉ − 1]. Finally, Q and n

are chosen to reduce this sum. Graphically, whenPcommit is
plotted as a function of apparent consensus, the probability of

2In a well-stirred system, a robot is equally likely to encounter any of its
teammates and each encounter is an independent event.
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Fig. 2. This figure plots the probability of a quorum test concluding that
quorum has been met versus the apparent consensus present ina system (refer
to Section IV-B) for three values of quorum threshold,Q, with n = 15. As
consensus increases, so does the probability of a positive test. To prevent
premature commitment by the individual robots, the parameters n and Q

should be chosen to reduce the area under the curve to the leftof Ca = 50%.

a false-positive is represented by the area under the curve to
the left of Ca = Q

Figure 2 plotsPcommit versus apparent consensus for three
values ofQ. ChangingQ does not reduce the likelihood of
a false-positive, since it simply shifts the curve to the left or
the right. The area under the curves to the left ofCa = Q

remains relatively constant.
Figure 3, illustrates the effect of changingn. As n is

increased, the curve becomes more step-like, reducing the area
to the left of Ca = Q and thus the probability of a false-
positive. However, a quorum test with a largern will take
longer to compute, since more votes will have to be received.
This will slow down a group decision.

Ultimately, our goal is to prevent robots from committing
until at least half of their teammates agree with them, as this
guarantees that that only one site will trigger commitment.
The quorum test can be tailored to this criterion by reducing
the probability of a positive quorum test whenCa < 50%.
Returning to Figures 2 and 3, this corresponds to the area
under the curves to the left ofCa = 50%, while keepingn

sufficiently small thatCa does not take too long to compute.
TheQ = 80%, n = 15 curve in Figure 2 achieves this goal. By
using these values forn andQ, the likelihood of an individual
robot prematurely committing is greatly reduced, improving
the overall accuracy of the group decision-making process.
This result is independent of MRS population size, and the
computational cost of quorum testing to the individual robots
depends neither on the population size of their system, nor the
number of alternatives over which a dec-MRS deliberates.

V. EXPERIMENTS

The behavior of our decision-making algorithm was exam-
ined in a site-selection domain using real robots. The purpose
of our experimentation was to demonstrate that unanimous
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Fig. 3. This figure plots the probability of a quorum test concluding that
quorum has been met versus the apparent consensus present ina system (refer
to Section IV-B) for three sample sizes,n, with Q = 50%. As consensus
increases, so does the probability of a positive test. Increasing n makes the
curve approach the shape of a step, decreasing the area underit to the left of
Q, thus decreasing chance of a premature commitment.

best-of-N decision-making using our algorithm by a real
dec-MRS is feasible despite noisy, real-world sensors. Our
experimental environment (see Figure 4) was an enclosed
arena that contained two sites located on opposite sides. Each
site was represented by an illuminated spot on the floor, the
brightness of which could be controlled. A colored beacon
was located on the floor next to each site, which made them
uniquely identifiable. In all of our experiments, the robots
equated the quality of a site with the brightness of its overhead
light. The brighter site was considered better than the dimmer
one, and so the goal of the robots was to collectively choose
the brighter site.

All of the experiments were carried out with an 11-robot
MRS, each robot following the decision-making algorithm
illustrated by Figure 1. At the beginning of an experimental
trial, the robots began in either the idle or searching states.
Those in the searching state wandered the environment looking
for sites. Idle robots remained motionless, waiting to be re-
cruited into the decision-making process. The better in quality
a robot believed a favored site to be, the more frequently it
would send recruit-messages to teammates. The frequency of
recruit-messages increased linearly with perceived site quality,
ranging from once per minute to once every 10 minutes.
Quorum was tested by the robots using the method outlined
in the last section, using then = 15 most recently received
vote-messages to estimateCa. Quorum thresholds (Q) of 33%,
53%, and80% (corresponding to 5, 8, and 12 agreeing votes
out of 15) were implemented.

A photograph of one of our robots is given in Figure 5.
Each robot carried an upward-pointing set of light sensors,as
well as colored-light sensors on its front. The robots used the
overhead light sensors to search for sights while wandering
their environment. Once a robot found a site, it would move
in the direction of the overhead light’s gradient in order to
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Site Beacon

Site Overhead Lamp

Fig. 4. Our experiments were carried out in an enclosed area containing
two sites from which the robots had to select the best one. Thesites were
represented by illuminated spots on the ground with a colored beacon next
to each one to permit unique identification. The quality of each site was
determined by its brightness, which could be precisely controlled.

position itself at the center of the site before measuring its
quality. Next, the robot would rotate, scanning for colored
beacons. The brightest beacon found during this rotation would
be the one that it would associate with its found site.

When a robot recruited a teammate or requested a vote-
message, it included the color of the beacon of its favored site
in its message. Robots that received a vote-query responded
positively if they favored the specified site and negatively
otherwise. Robots would search for sites nearby the specified
beacon while in the researching state. However, until the
specified site had been found, a researching robot would
continue to favor any site that it had favored prior to being
recruited, and it would respond to vote-queries accordingly.
A recruited robot would favor the site specified in the recruit-
message only once it had successfully found it. If a researching
robot was unable to find the site to which it had been recruited
within three minutes, it would revert to whatever state it
had been in prior to the reception of the recruit-message
(searching for a site as a scout, advocating for a different site,
or sitting idle). The robots’ beacon sensors had a relatively
short range, and they searched for a site in the researching
state by following a random walk while scanning for the site’s
beacon. Less than 8% of recruited robots were unable to find
a site once recruited, so the three minute time limit rarely was
reached.

Once a robot determined that quorum had been satisfied, it
would enter the committed state, in which it would instruct the
teammates that it encountered to commit to its favored site.If
the recipient of a commit-message was not already committed
to the site specified in the commit-message, it would respond
with an acknowledgment and then commit to the site. Com-
mitted robots entered the finished state (exiting the decision-
making process) once they had been in the committed state for
one minute without receiving an acknowledgment to a commit-
message.

Fig. 5. This figure illustrates one of the robots used in this study. Each robot
possessed overhead light sensors that allowed it to find candidate sites and
measure their quality. Each robot also carried forward-facing colored light
sensors that were used to search for the beacons that uniquely identified each
site in the environment. Rising above the robot at the rear isits 802.11B
wireless Ethernet interface, with which it communicated with its teammates.

Our decision-making algorithm assumes that all of the inter-
robot communication is very short range. Robots are meant to
communicate only when they encounter a teammate as they
wander about their environment. However, our robots possess
only 802.11B wireless Ethernet interfaces, which have a global
range in our experimental environment. In order to simulate
local one-to-one communication, the robots were provided
with a list of their teammates’ IP addresses. When a robot
encountered a teammate, it would select an address from its
list at random and would send that robot a message via unicast.
The recipient of such a message would respond via unicast
back to its original sender. A simulation that we conducted
with the Teambots [29] package showed that the communica-
tion behavior of our randomized approach is similar enough to
that of true short-range peer-to-peer communication as to make
any differences between them insignificant. This simulation
also demonstrated that the well-stirred assumption is a valid
one.

In order to examine its impact on the decision-making
process, we also varied the number of robots that began each
trial in the searching state. Any robots that did not begin
a trial in the searching state began in the idle state and
needed to receive a recruit- or commit-message in order to be
brought into the decision-making process. Each experimental
configuration was repeated with 4 and 11 robots participating
in this initial search for sites.

The quality (brightness) of the two sites was set such that
one tended to be perceived as better than the other, yet similar
enough that the noise in the individual robots’ site evaluations
resulted in some overlap between the two. Each of the six
experimental configurations (three quorum thresholds and two
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Fig. 6. This figure depicts a timeline of a single decision-making trial. Each
horizontal sequence of symbols records the actions of a different robot in
the decision. Solid shapes correspond to the better site, whereas hollow ones
correspond to the poorer site. In this trial, the first four robots searched for
sites, while the remaining seven began the decision in the idle state. Refer to
the Section VI for a more complete explanation.

searching populations) was repeated at least 20 times, withthe
robots logging all of their actions and communications. Figure
6 graphically depicts a timeline of a typical decision-making
trial, and a video of a trial can be viewed online3.

A control experiment also was run in which the advocating
robots recruited at a constant rate (every 90 seconds) regardless
of their favored sites’ measured qualities. Other than their
constant, site-quality independent rate of recruitment, these
robots behaved identically to those outlined above.

VI. RESULTS

In this section, we present the results of our physical
experiments, and discuss the effects of the parameters that
were varied on the decision-making behavior of the robots.
In the next section, we generalize these results and discuss
our algorithm as a general-purpose best-of-N decision-making
framework.

Figure 6 presents a timeline for one of our experimental
trials. In this trial, two of the scouts find the good site
(filled symbols) and two find the poor site (hollow symbols).
Recruitment is indicated by triangles. When a robot recruits
a teammate, the sending of a recruit-message is indicated
by an upward pointing triangle, and the reception of this
message is indicated by a downward pointing triangle in the
recruited robot’s timeline at the same time. For example, at
approximately 200 seconds, robot-3 recruits robot-10 to the
better site, and robot-10 robot finds the site shortly thereafter4.

3http://www.cs.ualberta.ca/∼parker/movies/decision.mov
4In this timeline, it appears as though robot-4 never attempts to recruit any

of its teammates despite having found one of the sites. This is not actually the
case. It sent a recruit-message to robot-11 att = 628 seconds, and another at
t = 1237 seconds to robot-1. However, both of these robots already favored
the same site as robot-4, and so the messages were treated queries for votes,
and thus they are not plotted on the timeline.
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Fig. 7. This figure illustrates the accuracy of the proposed decision-making
algorithm as a function of the quorum threshold used by the deliberating
robots. A decision was considered to be accurate if the best site found by
the scouts during the initial search was selected unanimously by the system
by a trial’s end. The horizontal dotted line is the accuracy of a system that
favored all known sites equally. Using our decision-makingalgorithm, even
when quorum was less than 50%, the robots were able to make accurate
decisions when selecting amongst alternatives. Increasing quorum tended to
increase the decision-making accuracy of the robots.

The better site induces the most frequent recruitment, and the
population favoring it increases rapidly. Eventually, robot-11
determines that the apparent consensus for its favored site
(the better one) has met quorum, and it commits. The rest
of the system rapidly commits to the better site as commit-
messages flood the MRS. Approximately one minute after the
last commitment, the robots enter the finished state having
unanimously selected the better of the two sites.

Every one of the decision-making trials in this work
achieved unanimity. That is, every decision ended with all
of the robots in the finished state favoring the same site.
This result demonstrates that the commitment phase of the
algorithm was effective. The sole purpose of this phase is
to ensure unanimity regardless of which site is selected. Site
quality plays no role in a decision once quorum is satisfied.
It is in the preceding deliberation phase that good decisions
are promoted over bad ones. The remainder of this section
therefore is devoted to the performance of the deliberation
phase in the experimental trials.

A. Decision Accuracy

A decision was considered accurate if the robots selected the
best site that the scouts were able to find during the search-
ing phase5. The relationship between decision accuracy and
quorum for of each experimental configuration is presented
in Figure 7. In all six of the experimental configurations
investigated, the robots were able to collectively choose the
better site much more frequently than they would be able to
simply by chance (indicated by the performance of the control

5In other words, a trial that selected the poor site was not labeled inaccurate
if the better site was never found.
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trial). In general, increasing the quorum threshold of a decision
tended to increase its accuracy, as earlier work suggests [21].
However, decision accuracy appears to decrease for the 4-scout
system when quorum was increased from 53% to 80%. Why?

The drop in performance of the 4-scout system is within
experimental error, as it corresponds to results of just one
best-of-N decision out of the 20 that were run. However, the
11-scout systemshouldtend to outperform the 4-scout system
when quorum is higher andvice versa. Our experimental envi-
ronment contained only two candidate sites. If every one of the
scouts in the 11-scout system found a site, then quorum would
have been satisfied without any recruitment when quorum was
33%, sinceCa would have been at least 50% for one of the
two sites. It is random which of the sites this would have
been, which explains the decreased decision-making accuracy
of this configuration. Because the robots did not find sites at
the same time, there still was time for the deliberation phase to
promote the better site somewhat, which explains why the 11-
scout, 33% quorum system performed better than the control
trial’s performance suggests it should have. It is impossible
for the searching phase alone to satisfy quorum when only
four of the robots scouted, making deliberation necessary for
commitment to occur. We therefore should expect this system
to out-perform the 11-scout system when quorum is low, which
it did.

When quorum is higher, necessitating deliberation for both
scouting populations, the 11-scout system is the more accurate
of the two. This is due to the relative impact of stochastic
effects in the early stages of the deliberation phase. A hy-
pothetical example best illustrates why. Consider a 4-scout
system in which three of the scouts find the poorer site and
only one finds the better site. The chance of this occurring is
25%, so it is not unlikely. If one of the poorer-site favoring
robots recruited the lone better-site favoring robot before it was
able to recruit, the better site would be forgotten by the dec-
MRS, since from a system-level point of view, only those sites
that are favored by at least one of its robots are remembered.
This outcome would be classified as an inaccurate decision,
since the best site found would not ultimately be selected.
Increasing the scouting population increases the likelihood that
more than one robot will find each of the sites during the
initial search, making this stochastic effect less likely to have
an impact. In general, a greater scouting population will tend
to improve the accuracy of decision making as long as the
initial search is unlikely to satisfy quorum on its own. This
conclusion agrees with the data plotted in Figure 7.

B. Observed Quorum

Consensus cannot be observed directly by the individual
robots. Instead, they can only estimate its value by sampling
their anonymous teammates’ opinions through the receptionof
vote-messages. We use the termobserved quorumto denote
the actual consensus present in a dec-MRS at the time of
commitment, and this is plotted against the quorum threshold
(the threshold to which the robots compare their estimates of
apparent consensus when testing quorum) in Figure 8. As one
would expect, the observed quorum increases with the quorum
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Fig. 8. Observed quorum is the actual consensus present in a dec-MRS
when the commitment phase begins. This figure illustrates that the observed
quorum clearly depends on the quorum threshold (Q) used by the robots
in their quorum tests. The observed quorum consistently is greater thanQ,
which is to be expected given the conservative nature of the test as described
in Section VI-B.

threshold, but also note that the former consistently is greater
than the latter.

Observed quorum is a measure of true consensus (Na

N
), so

it is strictly greater than apparent consensus (Na−1

N−1
), but this

difference is only a few percent in an 11-robot system. It
does not account for the degree to which the observed quorum
exceeds the quorum threshold in our experimental results.

In Section IV-B, we explained the trade-off between the
speed and accuracy of the individual robots’ quorum tests.
Measuring apparent consensus takes time. During the time
required by the quorum test to measure it, the robots’ delib-
eration simultaneously is changing the proportion of the dec-
MRS that favors each of the known alternatives. As a result,
the estimates of apparent consensus made by each robot are
averages ofCa during the period in which the vote-messages
were received.

The consensus in favor of the best alternative will tend
to increase over time, so the estimates ofCa for it will be
underestimates. Because the best alternative is the most likely
to trigger commitment, we should expect the observed quorum
in a dec-MRS at the time of commitment to exceed the quorum
threshold, which is what we observe in Figure 8.

The quorum test outlined in Section IV-B will be con-
servative in nature, tending to underestimate consensus ina
best-of-N decision. This is a good property, since the role
of the quorum test is to indicate reliably when quorum has
been met, and not to do so prematurely. The data of Figure 8
demonstrates that our algorithm’s quorum test meets this goal.

C. Time Required for Deliberation

The accuracy of a decision increases with quorum, and
there is an inherent tradeoff between speed and accuracy when
making group decisions [9]. This is evident in the duration of
the deliberation phase of the trials. Figure 9 plots the length
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Fig. 9. The length of the deliberation phase, the phase in which good
decisions are promoted over bad ones, increases with quorum. This occurs
because more recruitment is necessary in order to build up anadvocating
population large enough to satisfy quorum. Increasing the population that
executes the initial search for sites decreases the deliberation period because
fewer robots need to be recruited into the process.

of the deliberation phase versus quorum threshold. Both the
4- and 11-scout systems required more time to deliberate as
the quorum threshold was increased. This occurred because
more recruitment was necessary to build sufficient support in
order for quorum to be satisfied. From the system-level point
of view, we can say that the group was more careful in its
comparisons of the known sites as quorum was increased. The
cost of this increased accuracy is the increased deliberation
time.

The incremental cost of increasing quorum, indicated by
the slopes of the two regression lines, is very nearly equal for
both scouting populations. Increasing the scouting population
speeds up the process because fewer robots need to be re-
cruited into the decision, which accounts for the 11-scout data
being less than that of the 4-scout system. Refer to our earlier
discussion of decision accuracy for a more detailed explanation
of the effect of scouting population size on decentralized best-
of-N decision-making.

D. The Focus of Deliberation

The ideal decision-making algorithm would waste as little
effort as possible considering alternatives that ultimately will
not be selected. Sites are considered by our algorithm through
deliberation. Better ones induce recruitment more often than
those less likely to be selected, and so the collective deliber-
ation tends to focus on them. In practice some time must be
spent considering each alternative, and so some recruitment
should be expected towards each one found during the initial
searching phase, but our algorithm keeps this to a minimum,
illustrated by Figure 10. The site ultimately chosen by the
system is responsible for the majority of the recruitment
carried out and this increases with quorum. Extra effort is not
wasted on the other site. Our dec-MRS best-of-N decision-
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Fig. 10. The deliberation phase of our emergent decision-making process
is able to focus its effort on the site that ultimately is chosen by the dec-
MRS. As quorum increases, more attention is paid to the better site through
increased recruitment, but recruitment to the site not chosen is minimal and
relatively constant.

making algorithm is able to discard lesser alternatives quickly
and focus its attention on the best one known.

VII. D ISCUSSION

The experiments described in this work all were conducted
in an environment containing exactly two alternatives. Earlier
simulated work has demonstrated that our algorithm performs
equally well when more than two alternatives are available
[23]. Ultimately, a dec-MRS can make a best-of-N decision
and compare as many alternatives as there are scouts that
participate in the initial searching phase. Because all of the
operations are decentralized, our algorithm could be utilized
by very large dec-MRS without encountering computational or
communicative bottlenecks that a more centralized approach
would.

In the introduction, we stated that algorithms for use by dec-
MRS should be tolerant of individual robots’ faults, as these
should be expected if low-cost mass-produced robots are used
to compose dec-MRS. Individual robots can make errors by
either over- or under-valuing candidate alternatives. In both
of these cases, our algorithm should be self-correcting, just
like the original insects’ behavior upon which our approachis
based [10]. If an individual under-values an alternative, it will
recruit slowly, but those robots that it does recruit are likely
to make more accurate assessments of its quality and recruit
more rapidly. What if an alternative is over-valued? In this
case, the robot that made the error would recruit others more
frequently than it should. Again, those that it recruited would
be tend to recruit at a rate more in line with the alternative’s
true quality, and so they would be unlikely to further contribute
to the error. Nonetheless, the initial erroneous individual would
continue to recruit too frequently. However, robots favoring a
better site also would be recruiting quickly, and their recruits
would do tend to do so as well. After only a generation or
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two, the cumulative effect of recruitment to better sites would
tend to render the erroneous individual’s counter-productive
recruitment insignificant, and it likely would be recruitedto
favor a better site as well. This behavior is visible in Figure
6. Robot-1 finds the poorer site, overestimates its quality,and
quickly recruits robots 3 and 6. These robots, however, recruit
slowly, and robot-1 eventually is recruited to the better site by
robot-2, correcting the error. Noise in the individual robots’
sensing will make the overall group decision somewhat noisy,
and so individuals’ errors might negatively impact the outcome
of a given decision. However, as the population size of a dec-
MRS increases, the relative contributions of each robot to the
deliberation phase decrease. This tends to reduce the impact of
individual robots’ errors on a decision, increasing the system-
level reliability of the process.

VIII. C ONCLUSIONS ANDFUTURE WORK

The contribution of this work is a best-of-N decision-making
algorithm for use by dec-MRS. Central to this algorithm is
the use of quorum to link two emergent behaviors. The first
of these, a period of iterative deliberation compares a set
of alternatives and encourages the best one to attract the
most support. The detection of quorum by one of the robots
triggers the second collective behavior, in which the alternative
that satisfied quorum is adopted by every member of the
system. By preceding the deliberative behavior with a search
for alternatives, an intelligent decentralized best-of-Ndecision-
making algorithm is produced. The manner in which quorum is
detected was calibrated to reduce the chance of adopting an al-
ternative before the support for it exceeds 50%, increasingthe
decision-making accuracy. Because this algorithm utilizes only
local interaction and communication, and because the costs
of iterative recruitment and quorum testing to the individual
robots are independent of MRS population size, our proposed
algorithm is well-suited to very large dec-MRS. An empirical
study demonstrated the performance of our algorithm in a
series of physical experiments in which the robots were able
to select the best alternative in their environment at least
80% of the time when the recommended value was used for
the quorum threshold. This is good performance given the
intractable nature of the decentralized best-of-N problemand
the noisy individual sensing of our robots. Unanimity was
achieved by every trial.

Because robots are recruited asynchronously into decisions
by their teammates, decisions could be initiated by individual
robots as they identified the need for one. These robots would
serve as the initial scouts, and the commitment phase of the
algorithm would synchronize a dec-MRS around the outcome
of the decision. We would like to investigate the use of our
algorithm in this way to enable a dec-MRS to react cohesively
to a changing environment. Furthermore, because this work
presents an empirical study, only a limited portion of our
algorithm’s parameter space could be investigated. We intend
to expand our analysis and application of iterative recruitment,
consensus estimation, and quorum testing to dec-MRS in
future works, as well as compare the performance of our
algorithm to other decision-making strategies.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless
sensor networks: A survey.Computer Networks, 38:393–422, 2002.

[2] R. Beckers, S. Goss, J. L. Deneubourg, and J. M. Pasteels.Colony size,
communication and ant foraging strategy.Psyche, 96:239–256, 1989.

[3] R. Beckers, O. E. Holland, and J.L. Deneubourg. From local actinos
to global tasks: Stigmergy and collective robotics. In R. Brooks and
P. Maes, editors,Artificial Life IV, pages 181–189. MIT Press, 1994.

[4] Daniel S. Bernstein, Shlomo Zilberstein, and Neil Immerman. The
complexity of decentralized control of markov decision processes. In
UAI ’00: Proceedings of the 16th Conference on Uncertainty in Artificial
Intelligence, pages 32–37, San Francisco, CA, USA, 2000. Morgan
Kaufmann Publishers Inc.

[5] Michael Bowling, Brett Browning, and Manuela Veloso. Plays as
effective multiagent plans enabling opponent-adaptive play selection. In
Proceedings of the Fourteenth International Conference onAutoma ted
Planning and Scheduling, pages 376–383, 2004.

[6] Benjamin H. Brown Jr., J. Michael Vande Weghe, Curt A. Bereton, and
Pradeep K. Khosla. Millibot trains for enhanced mobility.IEEE/ASME
Transactions on Mechatronics, 7(4):452–461, December 2002.

[7] Jason D. Campbell, Padmanabhan Pillai, and Seth Copen Goldstein.
The robot is the tether: Active, adaptive power routing for modular
robots with unary inter-robot connectors. InIEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2005), pages 4108–
15, Edmonton, Alberta Canada, August 2005.

[8] Y. Uny Cao, Alex S. Fukunaga, and Andrew B. Kahng. Cooperative
mobile robotics: Antecedents and directions.Autonomous Robots, 4:1–
23, 1997.

[9] Larissa Conradt and Timothy J. Roper. Consensus decision making in
animals.TRENDS in Ecology and Evolution, 20(8):449–456, 2005.

[10] Nigel R. Franks, Stephen C. Pratt, B. Mallon, Eamonn, Nickolas F.
Britton, and David J. T. Sumpter. Information flow, opinion polling and
collective intelligence in house-hunting social insects.Philosophical
Transactions of the Royal Society of London Series B, 357:1567–1583,
2002.

[11] Dani Goldberg and Maja J. Matarić. Interference as a tool for designing
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