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Abstract—Multiple-robot systems (MRS) that are decentrally could be collected for processing. Because of this, much of
organized have many benefits over centralized systems. Deee the research to date has concentrated coordination meohgni
tralized systems are less affected by computational and canu- ¢, ghacific tasks, or the simultaneous execution of multipl

nicative bottlenecks, and they are more robust to the loss dhdi- . .
vidual member robots. System-level cognitive operationghough, tasks that do not interfere with each other. Often, these

are much more difficult to implement in decentralized systers. algorithms are tightly coupled to specific environments [3]
One example is the best-of-N decision-making problem, in wibh ~ Abstract cognitive operations like best-of-N decisionking

a team attempts to unanimously select a single alternativeedm  gre domain-independent, and thus can be applied to a wide

a_llst that maximizes a given metric. This is a valuable operton, variety of dec-MRS and reused in many situations.
since many system-level operations can be expressed in tfasm.

Optimal best-of-N decision-making, however, is intractate in Naturally occurring decentralized multiple-agent system
large decentralized systems. The contribution of this workis like ant and bee colonies have served as valuable examples

a biologically inspired algorithm that enables a decentrakzed . L )
MRS composed of very simple robots to make good, unanimous in the past for dec-MRS applications, and we follow this

decisions. In a series of physical experiments using real bots, Model by presenting a biologically inspired solution to the
the best decision was made at least 80% of the time. 100% of the decentralized best-of-N decision-making problem in thisky

decisions achieved perfect consensus, which prevented tMRS  Social insects are constrained similarly to the robots of a
from becoming fragmented. The decisions are made using only yec_MRS. In both systems, communication tends to be local
anonymous, local communication, with no direct comparisos of o
the available alternatives by the individual robots. a.nd thus _Iargely one-to-one. The individuals also tend to be
simple, with noisy sensors and incomplete global knowledge
Because of these limitations, individual robots, just ltkeir
insect counterparts, should not be relied upon to deterthime
appropriate response to their environment beyond the naest b
|. INTRODUCTION sic situations. Otherwise, the global behavior of decdintrd
The inability of decentralized multiple-robot systemsdde systems would be dominated by interference [11] due to the
MRS) to make intelligent collective decisions is a significa conflicting actions of erroneous individuals; a problemttha
obstacle to their deployment in the real world. A dec-MR&nds to worsen as population size increases.

is a robotic team which lacks any centralized (or hierarchi- In response to these concerns, this work presents a de-

cal) organization [8]. Robustness to individual robotuesls .oniralized algorithm that enables a dec-MRS to make group
and sc_alab|l|ty are two advantaggs of dec-MRS OV?r_th%fecisions cooperatively, that takes advantage of a decRS

centralized counterparts. A ceqtrqllzed MRS would failt# i redundancy and highly parallel structure instead of being
central _controller falled_, but this is n_o_t th? case for a dei)'enalized by it. We demonstrate our work with real robots in a
MRS since they contain no such critical individuals. The'éollective relocation domain, but our algorithm easily id

absence also allows dec-MRS to be scaled up to very large,jie 1o any problem that could be expressed as a best-of-N
population sizes (such systems sometimes are referred 104g@5igion |n the next section, we discuss research related t

swarms), since communicative and computational bOttleme‘i)ur problem of interest. In Section Ill, we formally defineeth

Iﬁrgzly are zla_bszné. In tfh's (;Nor_kz we F’L‘;pos‘? a ﬁplﬁt'og Hecentralized best-of-N decision-making problem andrilesc
the decentra 1zed est-lo -NI ecision gro elm, In which @ 0&y,q strategy used by honeybees and ants to solve it. Inspired
MRS must unanimously select one of N alternatives 10 SOTBG yeir solution, we propose our best-of-N decision-mgkin
problem facing it. Empowering a system to make collectivg,iihm for dec-MRS in Section IV. We also present quorum
dec!smns as though it were a single intelligent entity Mb testing, a new mechanism in dec-MRS that plays a central role
designers to abstract away from the low-level complexmqﬁ our algorithm. In Sections V and VI, we describe a series
of decentralized control and instead focus on the hithev& experiments that we carried out to demonstrate best-of-N
details of the ta_Sk art1 har:jd. hat thev do b decision-making by a real dec-MRS. We generalize the result
Dec-MRS enjoy the advantages that they do because thify,ase experiments with further discussion in Section VI
control is bottom-up (emergent), which also is the sourdeef .4 yhen close with some conclusions and suggest the next
d'ﬁ!CUIty in thelr. develop_ment, since there is no _top fro_msteps for research in this area. We first introduced the use of
which control signals might emerge, nor where informatiog, i~ insect behavior to guide consensus-based [9] desisi
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1. RELATED WORK different opponents’ strategies in [5]. Like many smatesi

league techniques, however, this was a centralized ahgorit
Interest in cooperative teams of mobile robots [14], [34 hanat dictated roles to the individual robots. Strategieshia

increased in recent years. Often, dec-MRS are composed\fifi-sized league tend to be more decentralized, since these
small, simple robots such as those described in [6], [14]. A§pots cannot take advantage of centralized off-field harew
Campbell et al. have pointed out, the cost of computation gk et al. presented several truly decentralized algorithm
independent of robot size [7], but the ability to compute i play selection in [17], [18]. Because soccer teams have
not. Therefore, smaller autonomous robots, which due to thgma) population sizes, many of the cooperative decision-
small size cannot carry sophisticated on-board contsylteor making algorithms used in this domain are optimized for
the batteries necessary to power them are more cCompWgeed in small dec-MRS and take advantage of communicative
tionally constrained than larger robots. These are thes Sokenavior that would be impractical in for larger population
of robots likely to compose many dec-MRS in the futurgt is unlikely that these algorithms would scale up to large
and so cooperative decision-making algorithms intended fﬁopmaﬂon populations. Also, in both of these works, the se
these systems must take their limitations into considemati of giternatives over which the systems deliberated werevkno
To date, however, most of the research concerning dec-MB&orehand. This is not a general property of a best-of-N
has concentrated on their coordination when carrying ogt Syecision.

cific tasks, rather than general purpose system-level Gogni  An area of research that is somewhat similar to that of
operations. swarm-style dec-MRS with respect to population size and
Examples of dec-MRS applications in the literature includggent complexity is sensor networks. A sensor network con-
object sorting [13], cooperative transportation [19],nf@tion  sjsts of a large number of simple, expendable sensor nodes th
movement, and the stick-pulling experiment [15]. Thes@-stuare spread over a region to monitor some phenomenon within
ies illustrate that dec-MRS are capable of a wide variety gf [1]. Decentralized decision-making often is performed i
tasks, but each of these dec-MRS were single-purpose systegansor networks to reduce the amount of data that must be
A more complicated task like cooperative construction [3Qassed to the central sink node of the network, such as the
can be expressed as the composition of foraging, transport ecision-fusion proposed in [16], but because the indaidu
sorting [24], but in order to organize it as such, a MRS woulsensor nodes tend to be immobile, these decisions usually ar
have to be able to make collective decisions regarding whe&@al, combining the independent decisions of nearby nodes
to build a desired structure, when to begin, where to gathgiore distant nodes are unaffected by these decisions beyond
the materials, and when each subtask had been completegiegfiction in the volume of network traffic that they might bav
that the next could begin [25]. Otherwise, the group tasiiyik to carry. The resulting behavior might better be described a
would fail as each robot mlght determine a different courfse geh‘_organizing rather than decision_making as we intdre t
action on its own. Each of these questions can be posed &g in this article. System-wide decisions in sensor neta/o
best-of-N decision. are more likely to be made by a centralized sink node and
There has been work in artificial intelligence studying teagfictated to the rest of the network. Although there has been
decision-making, but much of it focuses on smaller tearg®me interest in mobile sensor nodes, the majority of the
of relatively sophisticated agents, rather than the logtcaesearch in this field concerns stationary nodes, and thaus th
resource-constrained and expendable robots that often @igology of a sensor network is quite stable when compared
envisioned composing large dec-MRS. Its extension to largethat of a dec-MRS.
dec-MRS therefore is questionable. One example of suchTo our knowledge, the only other work that has investigated
work is Pynadath and Tambe’s communicative multiagent teasfoperative decision-making in large dec-MRS is that of
decision problem (COM-MTDP) in [27]. Similar work has castyessnitzer and Melhuish in [31]. In that work, a dec-MRS
the cooperative decision-making problem as a decentthlizgas tasked with pursuing and immobilizing two “prey” in a
partially observable Markov decision process, or dec-P@®MDseries of simulated experiments. The robots, each of which
[4], suggesting that a general purpose solution to the dec@idyssessed minimal sensing capability and short communi-
tralized best-of-N problem will have to be heuristic, sinceation ranges used majority voting and a hormone-inspired
an optimal solution to this problem would be intractable fogpproach to cooperatively decide which prey to follow. They
decentralized systems containing many robots. then pursued the other one once they agreed that first had been
International competition in robotic soccer also has drivdmmobilized. Our work here is somewhat similar, but unlike
cooperative decision-making research. If a robotic sotn that of Wessnitzer and Melhuish, we present an approach that
is to compete effectively, its players must coordinate rtheis only very loosely coupled to the specific decision being
actions. This coordination often takes the form of a groupade, and thus is more general in its approach.
decision regarding which play to follow. Plays commonly
are fixeda priori in a playbook and the robots must agree,
which play best suits the circumstances in which they find"
themselves. Therefore, the manner in which they deliberate
constitutes a solution to the best-of-N decision problem.In this section we formally introduce the decentralized
Bowling et al. developed an effective play-selector forithebest-of-N decision-making problem and describe the enmérge
team in the small-size league that was able to adapt behavior used by honeybees and ants to solve it. In the

THE DECENTRALIZED BEST-OF-N DECISION-MAKING
PROBLEM



next section, we present our algorithm for best-of-N decisi own, likely incomplete, list of alternatives. Two roundsazich
making in a dec-MRS which is patterned after the insectsdbot broadcasting would be required: one to share all of the
behavior. known alternatives, and one for the robots to cast theirsvote

The best-of-N decision-making problem arises when a si@learly, a better strategy is required.
gle alternative that maximizes some value function must belnstead of trying to adapt the tools of centralized control
selected from a set of candidate alternatives. The set @f-alt(e.g. global broadcast communication) to dec-MRS, a decen-
natives could be anything: locations at which to perform sontralized algorithm for best-of-N decision-making shoudde
operation, heuristically determined solutions to an ictathle advantage of decentralized structure. We now presentygbt s
problem, etc. A solitary robot need only select the best oad algorithm that social insects have evolved to solve tbig v
in its list of known alternatives in order to make a best-ofsroblem.
N decision. In a MRS, the robots must unanimously select
one alternative, since the goal is for thgstemto make the A. A Social Insect Solution to the Best-of-N Decision Proble
best-of-N decision. The solution for a centralized system i Social insects live in decentrally organized colonies,jlsim
much the same as that of a solitary robot. Making a besr many ways to the idealized notion of a large dec-MRS.
of-N decision in a decentralized system, however, is mogbme species periodically relocate their nests, and trésaep
complex. Because of its structure, knowledge is spreadsacr@ion represents a best-of-N decision, since a relocatitgngo
the individual members, meaning that none of them are likely presented with the problem of selecting the single bést si
to know of the entire set of candidate alternatives. Itisdb&t from those that its members are able to find. Recent research
of sharing each robot's knowledge with every other membgQ], [26], [28] has described an elegant emergent behavior
of a dec-MRS that makes optimal best-of-N decision-makingat honeybees an@iemnothoraxants use in order to solve
intractable. Even if this information could be shared, onlghis problem.
one of the alternatives ultimately will be selected by thed en Once a colony determines that it must relocate, scouts
of a decision, so much time and energy would be wastgdarch the surrounding environment for a new site. Each
spreading knowledge of alternatives that will not be selctscout that finds a candidate site contributes an alternative
system-wide. In the presence noisy sensors, even if eadh rof decentralized list from which the colony must select only
could be made aware of each candidate alternative, it canpae. The individual insects measure the quality of candidat
be assumed that each robot would make the same best-ofifds on an absolute scale, albeit noisily. When a scoutrretu
decision as every other robot, since the values ascribeteby fo the colony, it recruits other insects to its site. The rate
various robots to each of the alternatives likely wouldefiff which a scout recruits is determined by its opinion of itg’sit

A conceptually simple approach to the decentralized besfuality. The better it believes its favored site to be, thereno
of-N decision-making problem would take advantage of glob&equently it will recruit. The recruits form their own opans
broadcast communication. Following an initial search aheo of site quality before returning to the colony to recruit eve
predetermined length, each robot would broadcast its owbre insects to it. Over time, the differences in site qualit
local solution to the rest of its team. Once all of the broatica will become apparent in the number insects recruiting tdheac
had been made, each robot would then select the alternative.
that had received the most support, completing the collecti  While visiting a candidate site, insects estimate its papul
decision. There are several problems with this approadty, by measuring the rate at which they encounter their nest-
though, that make it undesirable. First of all, it is an imjlly mates. The recruiting insects periodically visit their dead
centralized algorithm. It strives to treat every member dée- sites, so the size of a site’s recruiting population - andsthu
MRS as though it was a central controller, giving it completiés popularity - can be inferred from the size of its visiting
knowledge in order to make an omnipotent decision. Secompulation. Once an insect determines that its site is @wpul
it relies heavily on global broadcast communication. Ndiyonenough, it commits to it, which alters its recruiting beluayi
is this a relatively expensive operation, it can be unrédiab A committed individual recruits its teammates as rapidlytas
a decentralized system, and the success of the group decigian, inducing the rest of its colony to commit to its favored
depends critically on every robot receiving every one of itsite, completing the collective best-of-N decision. Thestbe
teammates’ broadcasts. Furthermore, each robot is rebjaire site, able to attract the most vigorous recruitment, is the o
know precisely how many robots compose the system, singst likely to induce commitment first, and thus will tend
they can only make their decisions about which alternative fo be the one selected by the colony as a whole. Note that
select once every teammate has broadcast its opinion. Eweiy local communication is required in this approach, and n
if this number was known initially, recall that robustness tdirect comparisons of the candidate sites by individuabtsb
individual failure is one of the main arguments in favor ofieed ever occur.
dec-MRS. The simple, disposable robots [14] that are likely
compose these systems might fail during a dangerous missid- M ULTIPLE-ROBOT DECISION-MAKING FROM SOCIAL
It is unlikely that the surviving robots would be able to INSECTBEHAVIOR
maintain an accurate list of their functional teammatesr ove The nest-site selection behavior of the insects described
the course of a mission. In the end, this approach is niot the last section forms the basis of our dec-MRS best-
even guaranteed to make good best-of-N decisions, sinte eaf:N decision-making algorithm. All inter-robot communi-
robot’s vote for the “best” alternative would be based on itsation is local, which allows many one-on-one exchanges



;’ Searching : and advocating states are recruitable, and when such a robot
Searching Phase receives a recruit-message, it enters the researching. stat
: 1 Here, it evaluates the quality of the specified alternative,
and then enters the advocating state favoring it. Over time,
the proportion of robots advocating in favor of the better
alternatives will tend to increase, since it is more likety f
robots to be recruited from poorer to better alternativesth
vice versa

In order to estimate the popularity of a favored alternative
advocating robots send vote-queries to the teammatediat t

encounter in between their sending of recruit-messages. Th
‘ response to a vote-query is a vote-message, which is either
Advocatmg ] Researc‘““g “agree” or “disagree”, indicating whether or not the quérie
robot favors the same alternative as the sender of the vote-
queny. The robots use the proportion of the most recently

I
Found an |
Alternative |
|
|

Deliberation -
Phase -

' Received Recruit—
\ Message

AN

Evaluated Alternative /

i 7 receivedn votes that agree to estimate the popularity of their
| Received Commit—  / favored alternative. The specific manner in which this iselon
| Message / is described in Section IV-B.
Y L7 Commitment : Once a robot determines that its alternative is sufficiently
itted - - Phase popular, that it has satisfied a quorum, the robot enters the
: committed state. It is in this state that a robot begins the
Responses to Commit— | process of completing the group decision and from which una-
Messages Cease : nimity emerges. Robots in the committed state send commit-
Y : messages to those that they encounter. When a robot receives
Finished f such a message, it commits to the specified alternative. If it
: ] was not already committed to that alternative, it also rasigo
R e R ‘ with an acknowledgment. As more robots commit to the same
Fig. 1. This flowchart illustrates our proposed collectivecidion-making altematlve’. the aCk.nOW|edgmem messages will become less
algorithm. Decisions are made in three phases, identifiethéylotted boxes. frequent, disappearing altogether once complete consévasu
The state transitions between the individual robot statesimdicated by peen achieved. When committed robots no longer receive
B e e ock aecosots acknowledgments o their commit-messages they enter the i
received from teammates. Refer to Section IV for a detailelamation of ished state, completing the group decision and begin whatev
this behavior. created the need for a decision in the first place (e.g. deploy
a solar array at a selected location).

Quorum

of information to occur in parallel. From the standpoint of
network contention, using very short-range communicatigh 'Ndividual Knowledge, Direct Comparisons and Recruit-
significantly reduces the chance of two robots inten‘erm@]ent
with each other [12]. In a dec-MRS, in which there is no Conspicuously absent from our proposed algorithm are
central arbiter to coordinate the robots’ transmissiohis, is direct comparisons of alternatives by individual robots. A
an important consideration. Its inclusion makes our athari recruit-message induces its recipient to advocate for plee-s
ideally suited to the locally-interactive nature of dec-BIR ified alternative regardless of the quality of any alteneti
Refer to Figure 1 for the following discussion. The individpreviously favored. At first, it might seem as though group
ual robots’ behaviors during the decision-making process &lecision-making would be improved were the robots to ignore
arranged into six statesearchingidle, advocating research- recruitments to alternatives of lesser quality, but thitialty
ing, committed and finished organized into three phasesiS not the case. It is important to understand that it is not
searching deliberation andcommitmentRobots begin a de- the individual robots that make the best-of-N decision sit i
cision in either the searching state or the idle state. Thwsetheir collected interactions that do so. Individual robotight
the searching state search for candidate alternativete we make errors when evaluating the quality of an alternatiue, b
idle robots wait to be recruited into the process. When atrodbe average of several robots’ evaluations is less likelpeo
finds an alternative, it determines its quality, and therent €rroneous. The rate of recruitment to a specific alternasive
the advocating state and rejoins its teammates. based on the collected opinions of its advocating popuiatio
It is the deliberation phase, composed of the advocating affich reduces the impact of individual robot errors. If a
researching states, that allows a dec-MRS to determine {0t were to overestimate an alternative’s quality andevter
best alternative from those that have been found. Advogatiftubbornly refuse to accept recruitment to another, thislévo

robots periodically send recruit-messages to their teaesna _ _ _
Robots also respond to recruit-messages with vote-messagis ensures

the frequency qf which increases WiFh their opiniolns O.f fRat robots that recruit frequently are not deprived of sotkie to their
favored alternative’s quality. Robots in the searchinde idproportionally less frequent vote-queries.



amplify the effect of its error leading to potential stagoat of agreeing vote-messages is greater than or equab,to

In a previous study, we showed that even in the presentbe test concludes that quorum has been met. Because the
of perfect sensing, direct comparisons of alternativesHgy tmessages are anonymous, some robots’ opinions might be
individual robots do not improve the performance of the growver-represented in a particular setrobamples, introducing
decision-making, and can even degrade the overall groepors into the result of the test. Our goal in this sectiotois
decision-making in certain cases [23]. Of course, under oigientify values for the quorum threshol€), and the sample
proposed model of quality-dependent stochastic recruitn@e size,n, such that the probability of a false-positive is reduced.
robot might occasionally be recruited from a better altbivea  The first task is to determine the probability of a quorum
to a poorer one, but the reverse is far more likely. test returning a positive result (including both false- amnek-

The value of this sort of selfless behavior in a largpositives) in terms of andn and then minimize the con-
decentralized system anecdotally is supported by the ifogagditional probability of a false-positive. The minimum nuerb
strategies employed by different species of ant. Beclet¢rsof agreeing votes that must be received to produce a positive
al. examined foraging in 98 different species of ant aneksult is[@-n]. When at least this many of the most recent
found that the larger a species’ average colony populatisate-messages are agreeing votes, the test will conclate th
size is, the less self-reliant the individual foragers témde quorum has been met. If the MRS\gll-stirrec?, then each
[2]. Small-colony species commonly forage individuallydanvote received by a robot is equally likely to have come from
rely on their own abilities to navigate between the colongny of its teammates. Assume that a MRS contéinsobots,
and a food source, whereas members of species that live of which are advocating for the same alternative. When
in colonies with larger populations rely more on emergenne of these robots receives a vote-message, the propalilit
group navigation, such as pheromone trail-following. In that vote agreeing is given by the Equation(l, stands for
large decentralized system, it is more efficient to levetthge apparent consensusind we use this quantity since it is the
redundancy of the swarm, whereas smaller systems are bettensensus for a particular alternative that is apparentobat
off taking advantage of the intelligence and unique indiald favoring it. The robots do not count their own opinions inithe
skills of their members in the absence of numerical strenggstimates of consensus, since they would need to know their
The selfless iterative recruitment employed by our decisiosystem’s population size in order to do so. As we explained
making algorithm follows the example set by larger colongarlier, it is unrealistic for individual robots in a dec-8Ro
population insects, and so we believe that our algorithnh whteep track of this quantity, nor is it necessary, since apmar
scale well to very large dec-MRS. consensus is very nearly equal to true consensus for all but

the smallest systems.

B. Quorum, its Evaluation, and the Probability of Commit- N, -1
ment Ca = N _1 @)

~ In this section, we describe the manner in which the Each vote can be viewed as a Bernoulli trial with a proba-
individual robots test quorum for an alternative that theyof  bility of being true equal ta”,. The probability of receiving

and explain how our algorithm minimizes the likelihood of agreeing votes in a set of therefore follows the binomial
selecting a suboptimal one. It is important to remember thgistribution, Equation 2:

best-of-N decisions are made in our algorithm through two

separate processes (refer to Figure 1). First, alterrsative n

compared in the deliberation phase through iterative, mlece P(i of n votes are agreeing= <,>O}l(1 —C)"" (@)

tralized recruitment. Second, the system coalesces artend t

single alternative in the commitment phase that attraded t The overall probability of a positive quorum test is obtaine

most substantial recruitment. The best solution is idetifi by summing Equation 2 over all of the valuesio$uch that

via a quorum test, and whichever alternative the quorum testpositive result will be returned: € [[Q - n],n]. This is

identifies first will be the one chosen by the system as a whotgven by Equation 3 which also is the probability that a robot
Once quorum is detected and the commitment phase h& commit to its alternative, since commitment immedigite

begun, alternative quality no longer plays any role in th®llows a positive quorum test.

process. The commitment phase unanimously selects the al-

ternative favored by the first robot to conclude that quorum n n
has been met. Therefore, the algorithm’s ability to seleet t  Peomit(Ca, 1, Q) = Z K .)C,i(l - Oa)ni:| (3
best available alternative depends critically on the gbibif i=[Q-n] !

the individual robots to accurately determine whether ar no . . .
- o ...~ To calculate the probability of a false-positive occurting
quorum has been satisfied. Specifically, we must minimi

the chance of a robot concluding prematurely that its faWor?eggattr']c;qng :Jsof::nmﬁmei %eF theQ\%al_uelT oliisgﬁ)argn;ﬁc&nsensus
alternative has satisfied quorum. We refer to this phenomeng q “ 1 ) Y. "

o are chosen to reduce this sum. Graphically, wies),,,.: IS
as afalse-positive quorum test ) .
S : lotted as a function of apparent consensus, the prohabfiit
The individual robots test quorum by comparing the pro-

portion of then most recently received vote-message_s thatz, 4 well-stirred system, a robot is equally likely to enctarmany of its
agree to thequorum threshold@ € [0, 1]. If the proportion teammates and each encounter is an independent event.



Probability of a Positive Quorum Test Versus Probability of a Positive Quorum Test Versus
o Apparent Consensus and Quorum Threshold
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Fig. 2. This figure plots the probability of a quorum test doding that Fig. 3. This figure plots the probability of a quorum test doding that

quorum has been met versus the apparent consensus preaeytsiem (refer quorum has been met versus the apparent consensus preaayssiem (refer
to Section IV-B) for three values of quorum threshofgl, with n = 15. As  to Section IV-B) for three sample sizes, with Q@ = 50%. As consensus
consensus increases, so does the probability of a poséiste To prevent increases, so does the probability of a positive test. &sing n makes the
premature commitment by the individual robots, the paramet and @ curve approach the shape of a step, decreasing the areaiutalére left of

should be chosen to reduce the area under the curve to thef €ff = 50%. @, thus decreasing chance of a premature commitment.

a false-positive is represented by the area under the carveygst-of-N decision-making using our algorithm by a real
the left of C, = Q dec-MRS is feasible despite noisy, real-world sensors. Our
Figure 2 plotsPeommic VErsus apparent consensus for thregxperimental environment (see Figure 4) was an enclosed
values of@. Changing@) does not reduce the likelihood ofarena that contained two sites located on opposite sidet Ea
a false-positive, since it simply shifts the curve to the ®f sjte was represented by an illuminated spot on the floor, the
the right. The area under the curves to the leftttf = Q  prightness of which could be controlled. A colored beacon
remains relatively constant. was located on the floor next to each site, which made them
Figure 3, illustrates the effect of changing As n is yniquely identifiable. In all of our experiments, the robots
increased, the curve becomes more step-like, reducingéi@e g quated the quality of a site with the brightness of its ovath
to the left of C, = @ and thus the probability of a false-jight. The brighter site was considered better than the dimm
positive. However, a quorum test with a largerwill take one, and so the goal of the robots was to collectively choose
longer to compute, since more votes will have to be receivage brighter site.
This will slow down a group decision. All of the experiments were carried out with an 11-robot
Ultimately, our goal is to prevent robots from committing\iRs, each robot following the decision-making algorithm
until at least half of their teammates agree with them, &s thjjystrated by Figure 1. At the beginning of an experimental
guarantees that that only one site will trigger commitmentia|, the robots began in either the idle or searching state
The quorum test can be tailored to this criterion by reducinghose in the searching state wandered the environmentigoki
the probability of a positive quorum test whes, < 50%. for sites. Idle robots remained motionless, waiting to be re
Returning to Figures 2 and 3, this corresponds to the argqjited into the decision-making process. The better ifigua
under the curves to the left af, = 50%, while keepingn 3 ropot believed a favored site to be, the more frequently it
sufficiently small that, does not take too long to computeyguid send recruit-messages to teammates. The frequency of
The@ = 80%, n = 15 curve in Figure 2 achieves this goal. Byyecruit-messages increased linearly with perceived sitgity,
using these values for and @), the likelihood of an individual ranging from once per minute to once every 10 minutes.
robot prematurely committing is greatly reduced, impravinguorum was tested by the robots using the method outlined
the overall accuracy of the group decision-making procesg.the last section, using the = 15 most recently received
This result is independent of MRS population size, and t%te-messages to estimatg. Quorum threshold<{) of 33%,

computational cost of quorum testing to the individual 1sb053% and80% (corresponding to 5, 8, and 12 agreeing votes
depends neither on the population size of their system,heor ¢ of 15) were implemented.

Each robot carried an upward-pointing set of light sensass,
V. EXPERIMENTS well as colored-light sensors on its front. The robots used t
The behavior of our decision-making algorithm was exanoverhead light sensors to search for sights while wandering
ined in a site-selection domain using real robots. The mepaheir environment. Once a robot found a site, it would move
of our experimentation was to demonstrate that unanimoimsthe direction of the overhead light's gradient in order to



Site Overhead Lamp

Site Beacon

Fig. 4. Our experiments were carried out in an enclosed apetaining
two sites from which the robots had to select the best one.sltke were
represented by illuminated spots on the ground with a cdldeacon next
to each one to permit unique identification. The quality ofheaite was
determined by its brightness, which could be precisely rotiet.

Fig. 5. This figure illustrates one of the robots used in thislg Each robot
possessed overhead light sensors that allowed it to findidatedsites and
measure their quality. Each robot also carried forwarditaccolored light

. . . . sensors that were used to search for the beacons that ynidestified each
position itself at the center of the site before measurisg ijte in the environment. Rising above the robot at the redtsig02.11B

guality. Next, the robot would rotate, scanning for coloredireless Ethernet interface, with which it communicatedhvifs teammates.
beacons. The brightest beacon found during this rotatiardvo
be the one that it would associate with its found site.

When a robot recruited a teammate or requested a voteOur decision-making algorithm assumes that all of the inter
message, it included the color of the beacon of its favord siobot communication is very short range. Robots are meant to
in its message. Robots that received a vote-query respongethmunicate only when they encounter a teammate as they
positively if they favored the specified site and negativedyander about their environment. However, our robots pesses
otherwise. Robots would search for sites nearby the specifienly 802.11B wireless Ethernet interfaces, which have aalo
beacon while in the researching state. However, until tfi@nge in our experimental environment. In order to simulate
specified site had been found, a researching robot wolf¢al one-to-one communication, the robots were provided
continue to favor any site that it had favored prior to beingith a list of their teammates’ IP addresses. When a robot
recruited, and it would respond to vote-queries accorgingencountered a teammate, it would select an address from its
A recruited robot would favor the site specified in the regruilist at random and would send that robot a message via unicast
message only once it had successfully found it. If a resémgch The recipient of such a message would respond via unicast
robot was unable to find the site to which it had been recruitd@ck to its original sender. A simulation that we conducted
within three minutes, it would revert to whatever state With the Teambots [29] package showed that the communica-
had been in prior to the reception of the recruit-messatjen behavior of our randomized approach is similar enowgh t
(searching for a site as a scout, advocating for a differiémt s that of true short-range peer-to-peer communication asakem
or sitting idle). The robots’ beacon sensors had a relativetny differences between them insignificant. This simufatio
short range, and they searched for a site in the researchagp demonstrated that the well-stirred assumption is @ val
state by following a random walk while scanning for the site’one.
beacon. Less than 8% of recruited robots were unable to findn order to examine its impact on the decision-making
a site once recruited, so the three minute time limit rared wprocess, we also varied the number of robots that began each
reached. trial in the searching state. Any robots that did not begin

Once a robot determined that quorum had been satisfied@ trial in the searching state began in the idle state and
would enter the committed state, in which it would instrue t needed to receive a recruit- or commit-message in order to be
teammates that it encountered to commit to its favored Kite.brought into the decision-making process. Each experiatent
the recipient of a commit-message was not already committe@nfiguration was repeated with 4 and 11 robots particigatin
to the site specified in the commit-message, it would respotidthis initial search for sites.
with an acknowledgment and then commit to the site. Com-The quality (brightness) of the two sites was set such that
mitted robots entered the finished state (exiting the daeisi one tended to be perceived as better than the other, yeasimil
making process) once they had been in the committed statedoough that the noise in the individual robots’ site evaduret
one minute without receiving an acknowledgment to a commiiesulted in some overlap between the two. Each of the six
message. experimental configurations (three quorum thresholds aod t
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Fig. 6. This figure depicts a timeline of a single decisiorking trial. Each  Fig. 7. This figure illustrates the accuracy of the proposecision-making
horizontal sequence of symbols records the actions of ardiit robot in algorithm as a function of the quorum threshold used by théefating
the decision. Solid shapes correspond to the better sitefesh hollow ones robots. A decision was considered to be accurate if the bestfaind by
correspond to the poorer site. In this trial, the first foubats searched for the scouts during the initial search was selected unanipduysthe system
sites, while the remaining seven began the decision in tieesidte. Refer to by a trial's end. The horizontal dotted line is the accuratya system that
the Section VI for a more complete explanation. favored all known sites equally. Using our decision-makaigorithm, even
when quorum was less than 50%, the robots were able to makeatec
decisions when selecting amongst alternatives. Incrgagirorum tended to
. . . . increase the decision-making accuracy of the robots.

searching populations) was repeated at least 20 timeshéth

robots logging all of their actions and communications uiFégy

6 graphically depicts a timeline of a typical decision-nmaki The better site induces the most frequent recruitment, la@d t
trial, and a video of a trial can be viewed onfine population favoring it increases rapidly. Eventually, ool

A control experiment also was run in which the advocatingetermines that the apparent consensus for its favored site
robots recruited at a constant rate (every 90 seconds)llegar (the better one) has met quorum, and it commits. The rest
of their favored sites’ measured qualities. Other thanrtheif the system rapidly commits to the better site as commit-
constant, site-quality independent rate of recruitmemésé messages flood the MRS. Approximately one minute after the

robots behaved identically to those outlined above. last commitment, the robots enter the finished state having
unanimously selected the better of the two sites.
VI. RESULTS Every one of the decision-making trials in this work

achieved unanimity. That is, every decision ended with all

In Fh's section, we present the results of our physicg the robots in the finished state favoring the same site.
experiments, and discuss the effects of the parameters T.%ﬁli

. - : : Is result demonstrates that the commitment phase of the
were varied on the decision-making behavior of the robots, ~ . . : .
. . —algorithm was effective. The sole purpose of this phase is
In the next section, we generalize these results and dISCP

: L 0 ensure unanimity regardless of which site is selecte@. Si
our algorithm as a general-purpose best-of-N decisionimgak . . . . o
framework. quality plays no role in a decision once quorum is satisfied.

Fiqure 6 presents a timeline for one of our ex erimentltl is in the preceding deliberation phase that good decssion
tr'alsg In th'F; ial two of the scouts find the pood it 8re promoted over bad ones. The remainder of this section
as. IS tral, ) uts 1l 9 "Sherefore is devoted to the performance of the deliberation
(filled symbols) and two find the poor site (hollow symbols) h : . :
; N . ‘bhase in the experimental trials.
Recruitment is indicated by triangles. When a robot rez;rw’tlJ
a teammate, the sending of a recruit-message is indicated .
by an upward pointing triangle, and the reception of thid- Decision Accuracy
message is indicated by a downward pointing triangle in theA decision was considered accurate if the robots selected th
recruited robot’s timeline at the same time. For example, best site that the scouts were able to find during the search-
approximately 200 seconds, robot-3 recruits robot-10 ® ting phase. The relationship between decision accuracy and
better site, and robot-10 robot finds the site shortly thigeela quorum for of each experimental configuration is presented
in Figure 7. In all six of the experimental configurations
Shttp://www.cs. ualberta.caparker/movies/decision.mov _ investigated, the robots were able to collectively chodee t
“In this timeline, it appears as though robot-4 never attertptecruit any better site much more frequently than they would be able to
of its teammates despite having found one of the sites. Shisti actually the . .
case. It sent a recruit-message to robot-11.4t628 seconds, and another at SIMply by chance (indicated by the performance of the céntro
t = 1237 seconds to robot-1. However, both of these robots alreadyrdd

the same site as robot-4, and so the messages were treatés dae votes, 5In other words, a trial that selected the poor site was natléabinaccurate
and thus they are not plotted on the timeline. if the better site was never found.



trial). In general, increasing the quorum threshold of asien Observed Quorum at Time of Commitment
tended to increase its accuracy, as earlier work sugges}s [2 Versus Quorum Threshold

However, decision accuracy appears to decrease for theut-sc 100
system when quorum was increased from 53% to 80%. Why?
The drop in performance of the 4-scout system is within ¢, |
experimental error, as it corresponds to results of just on@
best-of-N decision out of the 20 that were run. However, theg
11-scout systershouldtend to outperform the 4-scout system E 60
when quorum is higher andce versaOur experimental envi- 8
ronment contained only two candidate sites. If every ondef t '§ 40
scouts in the 11-scout system found a site, then quorum would
have been satisfied without any recruitment when quorum was
33%, sinceC, would have been at least 50% for one of the
two sites. It is random which of the sites this would have
been, which explains the decreased decision-making amcura 0 : . : :
of this configuration. Because the robots did not find sites at 20 40 60 80 100
the same time, there still was time for the deliberation phas Quorum Threshold (%)
promote the better site somewhat, which explains why the llgfg';. 8. Observed quorum is the actual consensus present gc-MBRS
scout, 33% quorum system performed better than the contfdkn the commitment phase begins. This figure illustrates tthe observed
trial's performance suggests it should have. It is impdssibauorum clearly depends on the quorum threshdl) (ised by the robots

. i in thei tests. The ob d istentlyrésitgr thanQ,
for the searching phase alone to satisfy quorum when or'ﬁ eir quorum tests. The observed quorum consistentyeatgr thant)

. - . Mich is to be expected given the conservative nature ofdbeds described
four of the robots scouted, making deliberation necessary in Section VI-B.
commitment to occur. We therefore should expect this system

to out-perform the 11-scout system when quorumis low, whicn . .
it did. threshold, but also note that the former consistently isitgre

man the latter.
Observed quorum is a measure of true consen%& (so

(=]

When quorum is higher, necessitating deliberation for bo

scouting populations, the 11-scout system is the more atzur, ol h 1Y but thi
of the two. This is due to the relative impact of stochastit. ' stncty_greatert an apparent (_:onsens%zfg), ut this
fference is only a few percent in an 11-robot system. It

effects in the early stages of the deliberation phase. A hy- .
pothetical example best illustrates why. Consider a 4c es not account for the degree to which the observed quorum

system in which three of the scouts find the poorer site aﬁélceegjs :_he qluVOéum threshlo!d '3 (t)#r ?Xp(f”mf? n;a![ resultih
only one finds the better site. The chance of this occurring is N section 1V=b, we explained the tra e-o’ etween the
25%, so it is not unlikely. If one of the poorer-site favorin peed and accuracy of the individual robots’ quorum tests.

robots recruited the lone better-site favoring robot befowas easuring apparent consensus takes time. During the time

able to recruit, the better site would be forgotten by the- deE:eqUIrecj by the quorum test to measure it, the robots’ delib-

MRS, since from a system-level point of view, only thosesiteeration simultaneously is changing the proportion of the-de
' ' S that favors each of the known alternatives. As a result,

that are favored by at least one of its robots are remember%ﬁ> imat ; ¢ de b h robot
This outcome would be classified as an inaccurate decisid > estimates of apparent consensus made by each robot are

since the best site found would not ultimately be selected/cra9es ol during the period in which the vote-messages

Increasing the scouting population increases the likelihbat were received. . . .
more than one robot will find each of the sites during the The consensus in favor of the best alternative will tend

initial search, making this stochastic effect less likelyhave to éncre?_se ?verBtlme, sot:]hebesttlmﬁ\tes(?f fo.r ':hW'lrlkbe i
an impact. In general, a greater scouting population wiltite underestimates. Because the best alternative is the rkel |

to improve the accuracy of decision making as long as tttl%trigger commitmen_t, we should expect the observed quorum
initial search is unlikely to satisfy quorum on its own. Thid" a dec-MRS at the ime of commitment to exceed the quorum

: : R threshold, which is what we observe in Figure 8.
conclusion agrees with the data plotted in Figure 7. ’ . . . .
g P 9 The quorum test outlined in Section IV-B will be con-
servative in nature, tending to underestimate consensas in
B. Observed Quorum best-of-N decision. This is a good property, since the role

Consensus cannot be observed directly by the individe?II the quorum test is to indicate reliably when quorum has
robots. Instead, they can only estimate its value by sarglplineen met, and not to do so_prer,naturely. The data of Fl_gure 8
their anonymous teammates’ opinions through the recepﬁondemonstrates that our algorithm’s quorum test meets ttdas go
vote-messages. We use the teotvserved quorunto denote ) ) ) _
the actual consensus present in a dec-MRS at the time Gf Time Required for Deliberation
commitment, and this is plotted against the quorum threshol The accuracy of a decision increases with quorum, and
(the threshold to which the robots compare their estimatestbere is an inherent tradeoff between speed and accuraay whe
apparent consensus when testing quorum) in Figure 8. As anaking group decisions [9]. This is evident in the duratién o
would expect, the observed quorum increases with the quortime deliberation phase of the trials. Figure 9 plots the tieng
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Fig. 9. The length of the deliberation phase, the phase irclwigiood Fig. 10. The deliberation phase of our emergent decisiokingaprocess

decisions are promoted over bad ones, increases with qudrbim occurs is able to focus its effort on the site that ultimately is ahrody the dec-
because more recruitment is necessary in order to build updancating MRS. As quorum increases, more attention is paid to the rbsite through
population large enough to satisfy quorum. Increasing tbpufation that increased recruitment, but recruitment to the site not @has minimal and
executes the initial search for sites decreases the daiberperiod because relatively constant.

fewer robots need to be recruited into the process.

) ) making algorithm is able to discard lesser alternativesidyi
of the deliberation phase versus quorum threshold. Both thgq focus its attention on the best one known.

4- and 11-scout systems required more time to deliberate as
the quorum threshold was increased. This occurred because
more recruitment was necessary to build sufficient support i Vil
order for quorum to be satisfied. From the system-level pointThe experiments described in this work all were conducted
of view, we can say that the group was more careful in ite an environment containing exactly two alternatives.liear
comparisons of the known sites as quorum was increased. Biraulated work has demonstrated that our algorithm pedorm
cost of this increased accuracy is the increased delibaratequally well when more than two alternatives are available
time. [23]. Ultimately, a dec-MRS can make a best-of-N decision
The incremental cost of increasing quorum, indicated ®nd compare as many alternatives as there are scouts that
the slopes of the two regression lines, is very nearly equral foarticipate in the initial searching phase. Because allhef t
both scouting populations. Increasing the scouting pdjmma operations are decentralized, our algorithm could bezetii
speeds up the process because fewer robots need to bedyevery large dec-MRS without encountering computatiomal o
cruited into the decision, which accounts for the 11-scathd communicative bottlenecks that a more centralized approac
being less than that of the 4-scout system. Refer to ouregarkvould.
discussion of decision accuracy for a more detailed expilama  In the introduction, we stated that algorithms for use by-dec
of the effect of scouting population size on decentralizestbh MRS should be tolerant of individual robots’ faults, as tes
of-N decision-making. should be expected if low-cost mass-produced robots ae use
to compose dec-MRS. Individual robots can make errors by
either over- or under-valuing candidate alternatives. dthb
of these cases, our algorithm should be self-correctingt, ju
The ideal decision-making algorithm would waste as littléke the original insects’ behavior upon which our appro&ch
effort as possible considering alternatives that ultidyatéll based [10]. If an individual under-values an alternativeyiil
not be selected. Sites are considered by our algorithm gfirouecruit slowly, but those robots that it does recruit areliik
deliberation. Better ones induce recruitment more oftermthto make more accurate assessments of its quality and recruit
those less likely to be selected, and so the collective éelibmore rapidly. What if an alternative is over-valued? In this
ation tends to focus on them. In practice some time must base, the robot that made the error would recruit others more
spent considering each alternative, and so some recruitmigaquently than it should. Again, those that it recruited.ndo
should be expected towards each one found during the initisd tend to recruit at a rate more in line with the alternasive’
searching phase, but our algorithm keeps this to a minimutrye quality, and so they would be unlikely to further comitie
illustrated by Figure 10. The site ultimately chosen by thie the error. Nonetheless, the initial erroneous individicauld
system is responsible for the majority of the recruitmemontinue to recruit too frequently. However, robots faagra
carried out and this increases with quorum. Extra effortas nbetter site also would be recruiting quickly, and their tétsr
wasted on the other site. Our dec-MRS best-of-N decisioweould do tend to do so as well. After only a generation or

DIscussION

D. The Focus of Deliberation



two, the cumulative effect of recruitment to better sitesulglo

tend to render the erroneous individual’s counter-pradect

recruitment insignificant, and it likely would be recruitéa

favor a better site as well. This behavior is visible in Figur >

6. Robot-1 finds the poorer site, overestimates its qualitg,

quickly recruits robots 3 and 6. These robots, howeverurecr [3]

slowly, and robot-1 eventually is recruited to the bettéz by
robot-2, correcting the error. Noise in the individual rttio

sensing will make the overall group decision somewhat noisy

and so individuals’ errors might negatively impact the onte

of a given decision. However, as the population size of a dec-
MRS increases, the relative contributions of each robohéo t [5
deliberation phase decrease. This tends to reduce the frmpac

individual robots’ errors on a decision, increasing theteys
level reliability of the process.

VIII. CONCLUSIONS ANDFUTURE WORK

The contribution of this work is a best-of-N decision-makin
algorithm for use by dec-MRS. Central to this algorithm is
the use of quorum to link two emergent behaviors. The firs[t8
of these, a period of iterative deliberation compares a set
of alternatives and encourages the best one to attract the
most support. The detection of quorum by one of the robo

triggers the second collective behavior, in which the akiéve

that satisfied quorum is adopted by every member of the
system. By preceding the deliberative behavior with a searc

for alternatives, an intelligent decentralized best-adé¢ision-

making algorithm is produced. The manner in which quorum 1]
detected was calibrated to reduce the chance of adoptinlg an a
ternative before the support for it exceeds 50%, increatsiag [12]

decision-making accuracy. Because this algorithm uslaely

local interaction and communication, and because the codf
of iterative recruitment and quorum testing to the indiatu

robots are independent of MRS population size, our proposesi
algorithm is well-suited to very large dec-MRS. An empitica

study demonstrated the performance of our algorithm in a
series of physical experiments in which the robots were ahig;
to select the best alternative in their environment at least
80% of the time when the recommended value was used for
the quorum threshold. This is good performance given ti

intractable nature of the decentralized best-of-N probdert

the noisy individual sensing of our robots. Unanimity was

achieved by every trial.

Because robots are recruited asynchronously into desision

by their teammates, decisions could be initiated by indisid

robots as they identified the need for one. These robots wolld
serve as the initial scouts, and the commitment phase of the
algorithm would synchronize a dec-MRS around the outcontié]
of the decision. We would like to investigate the use of o
algorithm in this way to enable a dec-MRS to react cohesive
to a changing environment. Furthermore, because this work
presents an empirical study, only a limited portion of oufl!
algorithm’s parameter space could be investigated. Wendhte

to expand our analysis and application of iterative reoraitt,

consensus estimation, and quorum testing to dec-MRS (%l
future works, as well as compare the performance of our

algorithm to other decision-making strategies.
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