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Abstract— Inter-robot communication is essential if general
purpose intelligent decentralized multiple-robot systems are to
become a reality. Traditionally, explicit communication amongst
the robots of a MRS has been broadcasted or eliminated alto-
gether. The limits of these two approaches prevent the widespread
deployment of useful decentralized MRS. In this paper, we
present and analyze, both analytically and empirically, a com-
munication protocol that we call random peer-to-peer or RP2P.
Using RP2P, a decentralized MRS can share state in logarithmic
time with respect to system population. Additionally, the load
placed upon the individual robots by RP2P is independent of
system population size. Potential applications of random peer-to-
peer communication also are provided, including state sharing,
decision-making and task allocation.

I. INTRODUCTION

Inter-robot communication is essential in a multiple-robot
system (MRS) if it is to exhibit truly cooperative behaviour
beyond simple reactive coordination [1]. There are three basic
organizational structures for MRS: centralized, hierarchical
and decentralized. In both centralized and hierarchical sys-
tems, the control is centralized in a single robot. Since control
flows in one direction in these systems (from the top down),
system-level coordination is relatively simple to visualize.
However, these classes of MRS suffer from communication
bottlenecks and both are vulnerable to single-point failures. If
the central control robot becomes overloaded or damaged, the
performance of the entire system will be degraded.

Decentralized systems are quite different in this regard, as
none of the robots in a decentralized MRS have any authority
over their teammates. As a result, these systems are relatively
unaffected by the failure of individual robots. Instead of group
behaviour being dictated from the top down, it emerges from
the bottom up via the robots’ peer-to-peer interactions. How-
ever, because there is no central controller in a decentralized
MRS, the problem of system-level coordination lacks intuitive
solutions.
Early decentralized MRS, such as the puck-sorting robots of
Deneubourg et al. did not communicate directly with each
other [2]. Instead, system-level coordination was achieved by

carefully tuning the robots’ reactions to each other and their
environment so that a useful global behaviour would emerge
out of their interactions. This approach to control is known
as stigmergy [3]. Several works have demonstrated the power
and simplicity of stigmergic control including the box-pushing
work of Kube and Zhang [4] and the stick-pulling robots of
Ijspeert et al. [5], but they also have demonstrated its primary
caveat. As Holland and Melhuish point out, “[T]he success of
[stigmergy] is crucially dependent on real-world physics [3].”
System-level coordination via stigmergy does not allow for
general purpose decentralized MRS that are not tied to specific
environments or tasks. System-level coordination is important
as we do not want to have to interact with each robot in a
system in order to direct it. Rather, we would prefer to be
able to direct a MRS as a single entity.

Without a centralized controller to schedule events within
a MRS, we must accept that the robots will interact with
each other stochastically. Any communication scheme that the
robots might employ must at least tolerate this randomness and
ideally should take advantage of it. The focus of this paper
is an analysis of what can be accomplished by the random
peer-to-peer exchange of messages between the members of
a decentralized MRS and how we can expect such random
communication to load the individual members of a system.
In the next section, we describe the random peer-to-peer
communication protocol as well as state the assumptions that
will guide our analysis. Then, in Section II, we carry out
a theoretical analysis of the protocol. In Section III, we
present an experimental verification of our theory based on
a set of computer simulations. We close this paper with some
conclusions and lay out our future work.

A. Random Peer-to-Peer Communication

Random peer-to-peer (RP2P) message passing is a very
simple concept that, as we will demonstrate, allows for surpris-
ingly efficient system-level coordination in a MRS. Because it
is based upon random peer-to-peer interactions, it is perfectly
suited to decentralized MRS. Individual robots simply wait
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for a communication channel to become available and then
send a message to a randomly chosen teammate. In a very
short period of time, information can be propagated across
an entire MRS and will become part of a system’s common
knowledge. Two very simple assumptions of our robots are
made in our analysis of this communication protocol, both of
which are easily satisfied by current wireless communication
technology. First, each robot must be uniquely identifiable by
a communication port so that the messages may be addressed.
Second, we assume that all messages are transmitted directly
from a source robot to a destination robot in a single hop.
Many MRS never spread out more than a few tens of meters;
when one considers that typical 802.11 radios can communi-
cate over distances of 100 meters, the assumption of single-hop
communications is entirely realistic.

RP2P communication in a decentralized MRS is similar to
the gossip algorithms proposed for wireless sensor networks
by Boyd et al. [6]. However, unlike the sensor networks, we do
not propose to use RP2P to compute numerical results directly.
Robots in a decentralized MRS choose their own actions based
on their knowledge of the state of the environment. RP2P, by
allowing the robots in a decentralized MRS to share state more
easily, will allow the robots to choose their actions based on
a common set of beliefs.

B. Why not use Broadcast Communication?

In this paper, we analyze a proposed communication proto-
col to allow system-level coordination of a MRS. An obvious
question might be why we simply do not advocate the use
of broadcast communication. Via broadcast communication,
a single robot can address all of the robots in its system
simultaneously.

In order for broadcast communications to be viable, a very
low noise channel must be present, since individual recipients
cannot request the sender to resend portions of the transmis-
sion. Thus broadcast communication is error prone, range-
limited and, at best, limited to very simple messages. RP2P,
being peer-to-peer, allows any number of error-correction
methods to be employed.

Broadcast communication is inherently limited by the power
of the transmitter and therefore cannot be implemented on
systems bigger than the transmitter’s footprint. Although we
confine our analysis in this paper to single-hop communica-
tions, there is nothing preventing RP2P from being extended
to multi-hop communications. Therefore, RP2P can be scaled
to geographically huge systems.

Finally, RP2P communication is faster than broadcast com-
munication. Consider state-sharing. In this paper, we show that
a system employing RP2P communication can share state in
logarithmic time. A broadcast system can learn the state of
one of its members in constant time, but in order to truly
share state, every robot must take its turn broadcasting over the
channel. Ignoring the range and error issues outlined above,
it would still take a period of time linear with respect to
system population for a MRS to share state via broadcast
communication.

II. THEORETICAL ANALYSIS

In this section, we present a theoretical analysis of RP2P
communication. We will focus on two primary questions. First,
how long will it take for a system to share state? Second,
how many messages should we expect the individual robots
to receive over a given period of time under the worst-
case conditions? We assume that each robot semi-regularly
transmits a message to a randomly chosen teammate and that
over some time interval, we can expect each robot to transmit a
message. We call this time interval a ”communication round.”
It is important to note that the robots need not send their
messages simultaneously; despite being undesirable, such syn-
chronization is unrealistic in a decentralized MRS. The actual
length of a communication round would depend in practice
on the bandwidth of the communication channel available to
a system and the number of robots sharing it.

A. Time Required to Share State in a Decentralized MRS

In order to share state, the individual robots’ knowledge of
their environment must be made common knowledge across
their MRS. Our question can be stated as follows: Given
an n−robot system in which a single robot initially has
information “x” and in every round of communication, every
robot that knows x randomly chooses another robot in the
system and communicates x to it, how many communication
rounds will it take until all n robots know x? Because RP2P
communication is parallel, the time required for one robot to
share its knowledge is the same as the time required for all
robots to share their knowledge and thus for the system to
share state.

61 2 3 4 5

Fig. 1. This state diagram represents a 6-robot system. Each state corresponds
to the number of robots in the system that know some piece of information
x. Every communication round, each robot that knows x tells a randomly
chosen teammate about x. Eventually, every robot will know x.

We model our system as a Markov chain, a 6−robot
example of which is shown in Figure 1, wherein the state
corresponds to the number of robots that know x. The initial
state of the system is state 1. A system’s state can at most
double (if every single robot that knows x contacts a different
robot that does not know x) and at least stay the same (if
every robot that knows x contacts a robot that already knows
x) after each communication round.

To compute the expected time to propagate the knowledge
of x across a MRS, we compute the state-transition proba-
bilities of our Markov chain system representation and then
compute the expected number of state transitions required to
reach the system’s absorbing state. First, we calculate the
probability that mε[0, i] of the i robots that know x will contact

399



some of the n− i robots that do not know x. This probability
follows the binomial distribution and is given by Equation 1.

Pcontact(i, m, n) =
(

i

m

) (
n − i

n − 1

)m (
i − 1
n − 1

)i−m

(1)

Equation 1 tells us how many of the knowledgeable robots
we can expect to contact unknowledgeable robots, but not
how many unique unknowledgeable robots will be contacted.
To determine how many unique unknowledgeable robots will
learn of x, we must ask ourselves: Assuming that j robots
each randomly choose one of k robots and send a message
to it, how many ways can the messages be addressed so that
exactly lε[1, min(j, k)] robots will receive a message?

Let us assume that the function f(l, k, j) provides this
result. There are lj ways in which j robots can contact up to
l robots and

(
k
l

)
ways in which the l robots that get contacted

can be chosen. However, the lj ways in which up to l robots
can be contacted includes all of the permutations in which less
than l unique robots are contacted1. We must subtract all of
the permutations in which fewer than l unique robots receive
a message. The number of permutations to be subtracted is
provided by the function f():

∑l−1
a=1

(
l
a

)
f(a, a, j). Finally, we

can see that f(1, k, j) = k by inspection2, which provides
and anchor condition for our recursive definition of f(l, k, j),
which shown in Equation 2.

f(l, k, j) =

{
l > 1:

(k
l

) [
lj −

∑l−1
a=1

(( l
a

)
f(a, a, j)

)]

l = 1: k
(2)

In total, there are kj ways in which j robots can contact
robots from the pool of k robots, so the probability of exactly l
robots receiving a message assuming that j robots each address
a message to a robot randomly chosen from k robots = f(l,k,j)

kj .
Using this result and Equation 1, we can calculate the state
transition probabilities of the Markov chain representation of
our decentralized MRS by Equation 3. The characteristic form
of these transition matrices can be seen in Figure 2.

Ptransition(Si → Si+h) =
i∑

q=h

Pcontact(i, q, n) · f(h, n − i, q)
(n − i)q

(3)
Markov chains of the form illustrated in Figure 1 have

exactly one absorbing state: the state in which all of the robots
know x. The expected number of communication rounds
required for a piece of information to propagate across a
decentralized MRS using RP2P communication is the same as
the expected number of state transitions required to reach the
system’s absorbing state from state 1. This can be calculated
by first decomposing the transition matrix P as shown in
Equation 4.

1For example, one of the lj ways in which j robots can contact up to l
robots includes the case where all j robots send a message to the same robot.

2There are
(

k
1

)
= k ways in which one robot can be chosen from k robots,

and only one way in which j robots can all contact the same robot.
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Fig. 2. This figure depicts the state transition matrix that describes how
a piece of information x spreads from a single robot to the rest of its 32-
robot system via RP2P communication. The elements of the matrix, p(current
state, next state), are the probability of the number of robots that know x will
increase from current state to next state in the next communication round.
The matrix’s narrow ridge of non-zero probability leads to small confidence
intervals in the overall transition time - random robot behaviours lead to highly
predictable system-level behaviour.

P =
[

S T
0 I

]
(4)

The expected number of state transitions is equal to the
sum of the elements in the first row of the matrix Q, which is
computed from the decomposition of P as shown in Equation
5.

Q = (I − S)−1 (5)

Figure 3 plots the expected number of communication
rounds required to spread a piece of information across a MRS
via RP2P versus the robotic population. Note that the trend is
logarithmic: doubling a system’s population increases the time
required for the robots to share their knowledge by a constant
amount (∼ 1.7 communication rounds for every doubling of
population). Furthermore, the absolute variance in the expected
time converges to a constant for system populations above 16
robots.

B. Message Traffic in an n-Robot System

Based on the analysis of the previous section, RP2P com-
munication allows robots in a decentralized MRS to pool
their knowledge very quickly. We now turn our attention
to the load that RP2P communication would place on the
individual robots. If we do not consider how messages are
generated, a communication protocol can load its participants
via either transmission or reception. In RP2P, robots transmit
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Fig. 3. Here we plot the time required for a decentralized MRS to share their
knowledge with each other versus system population. Notice the logarithmic
relationship and that the magnitudes of the 95% confidence bounds converge
to a constant.

one message per communication round. Thus the transmission
load per robot is fixed and well behaved with respect to
system population. On the other hand, a robot conceivably
could receive from zero to n − 1 messages in a single
communication round. For RP2P to be practical, we must
calculate the probability of a robot receiving various numbers
of messages per round and how this result will scale with
system population. Our analysis begins with Equation 6, which
describes the probability of a robot receiving i messages over
a single communication round in an n-robot system.

P (receive i messages) =
(

n − 1
i

) (
1

n − 1

)i (
n − 2
n − 1

)n−i−1

(6)
Equation 6 can be expanded and then factored into a more

useful form, given by Equation 7.

P (receive k messages) =
1
k!

(∏k
i=3(n − i)

(n − 1)(k−2)

) (
n − 2
n − 1

)n−k

(7)
Of the three terms of Equation 7, only two are significant.

The middle term takes the form of Equation 8 which converges
to unity as n increases, removing it from the equation.

nk−2 + ak−3nk−3 + ak−4nk−4 + . . . + a1n + a0

nk−2 + bk−3nk−3 + bk−4nk−4 + . . . + b1n + b0
(8)

This leaves the first term - a scaling constant - and the third
term. Upon closer inspection, we can see that the third term
is a variation on the limit definition of the root of the natural
logarithm, e, given by Equation 9.

lim
n→∞

(
n

n − 1

)n

= e (9)

Thus we can approximate Equation 6 with Equation 10. We
can see that this equation is valid by inspection, as the infinite
sum of the reciprocals of the factorials = e, and multiplying
this by 1

e yields unity as the sum of the probabilities of
receiving 0 to n messages per communication round.

lim
n→∞

P (receive i messages) =
1
i!e

(10)

Figure 4 plots Equation 6 for the i = [0 : 3] against
system population for up to n = 32 robots. The graph clearly
illustrates the rapid convergence of the probabilities to their
predicted limits. Given the rate at which 1

i!e decreases, we
should not expect individual robots to receive large numbers
of messages regardless of their system’s population. Thus we
conclude that the load placed on individual robots by RP2P
communication is minimal and independent of the robotic
population of a decentralized MRS.
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Fig. 4. This graph plots the probability of a robot receiving 0, 1, 2 or 3
messages in a single communication round versus system population. The
probability of receiving i messages quickly converges to its theoretical limit
of 1

i!e , which is independent of system population.

III. EXPERIMENTAL VERIFICATION

Having conducted a theoretical analysis of the behaviour of
the RP2P communication protocol, we now present the results
of simulations that were carried out in order to validate our
theory. We present our experimental verification in the same
order as the theory was developed in Section II.

A. Time Required to Disperse Information

In order to measure the actual time required for a piece of
information to spread to every robot in a decentralized MRS
using RP2P communication, numerical simulations of n robots
were carried out in which initially only one robot knew some
piece of information. In every round of communication, each
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robot that knew the piece of information randomly chose a
teammate and sent it a message containing the information.
10, 000 trials were conducted for each system population. The
results of these simulations are plotted in Figure 5.
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Fig. 5. This figure plots the actual time required for a robot to distribute its
knowledge to the rest of its system as measured from a simulation of robots
exchanging messages with each other. Our measured data is almost identical
to the theoretical predictions presented in Figure 3.

This figure and its theoretical counterpart, Figure 3, are in
complete agreement. In Figure 6, we plot the magnitudes of
the 95% confidence intervals of the experimentally determined
information distribution times against system population. Their
convergence to a constant (∼ 2.6 communication rounds)
clearly is evident.
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Fig. 6. In this graph, we plot the magnitudes of the 95% confidence intervals
of the data from Figure 5 for systems up to 32 robots. Despite the increase
in system population, the absolute confidence in the absorption time remains
constant for MRS with populations greater than n = 16 robots.

B. Message Traffic in an n−Robot System

In order to measure the communication load on the individ-
ual robots in terms of the number of messages that each should
expect to receive per communication round, n simulated
robots randomly passed messages amongst themselves. From
their communication logs, we computed the probabilities of
receiving 0, 1, 2 or 3 messages per round. This data is plotted
against system population in Figure 7.
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Fig. 7. Here we plot the probability of a robot receiving 0 to 3 messages
per communication round as measured from our simulations of MRS. These
measurements are nearly identical to our analytical predictions presented in
Figure 4

Again, our experimental results (Figure 7) agree with our
theoretical predictions (Figure 4).

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented and analyzed, both ana-
lytically and empirically, a communication protocol for de-
centralized MRS that we have called random peer-to-peer,
or RP2P. Through our analysis, we have demonstrated that
RP2P represents a powerful coordination mechanism despite
the protocol’s inherent simplicity. Via RP2P, we have shown
that information can be shared amongst the robots of a
decentralized MRS in logarithmic time. Additionally, the com-
munication load placed on the individual robots is independent
of the number of robots that compose a system. Thus RP2P
will scale well to large systems.

Many papers have advocated the use of decentralized MRS
due to their apparent robustness, yet most decentralized MRS
to date have been single-purpose systems tuned to specific
environments due to the difficulties encountered in deploying
explicit inter-robot communication in them. Our work has
shown that explicit communication can be used effectively in
decentralized MRS and we have provided a protocol for its
implementation.
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Our next tasks are threefold. We currently are developing
physical MRS that will use RP2P to coordinate the indi-
vidual behaviours of the member robots. In particular, we
will employ RP2P to enable state sharing and emergency
notification. Second, we will combine the results of this paper
along with those of our earlier decision-making work [7] to
solve the collective relocation task in a physical environment.
Finally, in this work, we have concentrated on single-hop
communications. In order to make RP2P practical for a larger
variety of MRS, we intend to investigate the use of multi-hop
message routing to deliver the peer-to-peer messages. Multi-
hop communications will increase the communication load on
the individual robots, as they will have to accommodate the
messages intended not only for themselves, but also those that
they would be expected to relay on to their teammates, but it
will decrease the load on the communication channel, as robots
could reduce the range of their transmissions. How much these
factors will increase the load on the individual robots and
affect the overall performance of our communication scheme
needs to be investigated further.

REFERENCES

[1] G. Dudek, M. Jenkin, and E. Milios, Robot Teams. A K Peters, Ltd.,
2002, ch. A Taxonomy of Multiple Robot Systems, pp. 3–22.

[2] J. L. Deneubourg, S. Goss, N. R. Franks, A. Sendova-Franks, C. Detrain,
and L. Chrétien, “The dynamics of collective sorting: Robot-like ants
and ant-like robots,” in Proceedings of First International Conference on
Simulation of Adaptive Behavior, 1990, pp. 356–365.

[3] O. Holland and C. Melhuish, “Stigmergy, self-organisation, and sorting
in collective robotics,” Journal of Adaptive Behaviour, vol. 5, no. 2, pp.
173–202, 1999.

[4] C. R. Kube and H. Zhang, “The use of perceptual cues in multi-robot
box pushing,” in Proceedings of the 1996 IEEE International Conference
on Robotics and Automation, 1996, pp. 2085–2090.

[5] A. J. Ijspeert, A. Martinoli, and A. Billard, “Collaboration through the
exploitation of local interactions in autonomous collective robotics: The
stick pulling experiment,” Autonomous Robots, vol. 11, no. 2, pp. 149–
171, 2001.

[6] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Gossip algorithms:
Design, analysis and applications,” in Proceedings of IEEE Infocom 2005,
vol. 3, March 2005, pp. 1653–1664.

[7] C. A. C. Parker and H. Zhang, “Biologically inspired decision making
for collective robotic systems,” in Proceedings of the 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2004),
September 2004, pp. 375–380.

403


