
Reliable Protocol for Robot Communication on Web Services

Masahiko Narita and Makiko Shimamura Makoto Oya
FUJITSU LIMITED Hokkaido University

masahiko.narita@jp.fujitsu.com

Abstract

This paper describes the requirements for the
reliability of robot communication, which is an
important issue for a practical use, especially in a
loosely coupled environment, the wireless network
and WAN, and explains how to resolve these issues
using Web services based protocol “RoboLink
Protocol”. In order to achieve reliability under these
communication conditions, this paper proposes to
solve them by combining two solutions: one for the
transport layer is adopting the standard reliable
messaging technology, and the other for the
application layer implements a transaction behavior,
with a recovery process for fatal failures. And, it
also provides a guideline for developers how to
implement these recovery process easily in their
application. And more, it reports the implementation
strategy and the success of the verification for this
solution using our proof-of-concept implementation
developed as a plug-in handler of the Web server,
and also provides the test cases.

1. Introduction

Robot technologies and industries have been
growing rapidly since 1980’s, and they contribute
greatly to the development of manufacturing.
Nowadays, robots start to appear into our daily life
space such as the office, our home or in our
community. Robot application systems used for
daycare, entertainment and community activity are
expected soon. However, at this moment, most of the
robots have their own interface and communication
protocol. Consequently, what robots can do is
generally limited to simple tasks that can be done by
a single robot. In order to remove this restriction, it
is necessary to provide a common interface and
protocol connecting robots over the network. The
RoboLink Protocol proposed by Narita et al. [1] is
one of the attempt for this, and particularly to enable
loose communication between robots and computers
in an open network environment. The protocol was

released by the RoboLink Consortium as a publicly
available open standard. Currently, a public draft of
version 1.1 is published [2].

Considering the number of technologies and tools
supporting Web services – an emerging IT
technology -, as well as the development costs and
the skill costs associated with it, it is appropriate to
use Web services to achieve the control of loose
robot communication over the Internet environment
[1][3][4]. On the other hand, for a practical use, it is
also necessary to ensure the reliability and the
security of the communication. Indeed, the use of a
wireless network and WAN such as Internet in
loosely coupled environments, causes possible
failures and quality degradation of the
communication.

This paper focuses on the reliability of loose
robot communication. It describes the requirements
for the reliability of the robot communication in a
loosely coupled environment, and explains how to
resolve these issues using RoboLink Protocol. Our
solution combines the adoption of the reliable
messaging standard technology of Web services for
the transport layer, with a guideline for application
recovery transactions. And more, it reports the
implementation strategy and the success of the
verification for this solution using our proof-of-
concept implementation developed as a plug-in
handler of the Web server, and also provides the test
cases.

2. The RoboLink Protocol

The RoboLink Protocol is an open protocol for
robot communication among entertainment or home-
use robots over the network. This protocol is
provided by the RoboLink Consortium composed of
toy makers, robot makers and IT vendors. Currently,
a public draft version 1.1 is published. The main
objective of RoboLink Protocol is sparse
communication among loosely coupled robots. The
RoboLink Protocol has been designed over an
infrastructure based on Web services, which is an
open technology for communication over the

Proceedings of the 2005 International Conference on Cyberworlds (CW’05)
0-7695-2378-1/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on February 26,2010 at 10:40:40 EST from IEEE Xplore. Restrictions apply.

Internet. Because the Web services technology is
mature enough, and already supported by many
middleware products and tools, it is also important
for robots to be able to leverage these tools as they
are.

In order to support various functions for many
kinds of robots, the RoboLink Protocol introduces
the “Profile” concept. The protocol defines some
profiles for basic motions, and functions that are
specific to each robot can also be represented as a
profile.

Transport/Hardware Layer
USB, Wireless LAN, Infrared rays…)

Protocol Layer
(SOAP, HTTP, CORBA, …)

RoboLink
Common
Protocol

Language Binding
Java, C++, …)

Basic
Profile

Motion
Profile

Dance
Profile

Motion
Pattern
Profile

Vendor
Specific
Profile

RoboLink Protocol

Platform
Profile

Fig. 1 RoboLink Protocol

By adopting the RoboLink Protocol, several
robots can communicate with each other over the
network, and can be operated using the same
commands. For example, several robots supporting
the protocol can be moved one meter forward using
a single command. Therefore, robot services, such as
home security task and information inquiring, can
more easily be supported by using the protocol. A
significant initiative for realizing such a network
business application with robots is RSi (Robot
Services Initiative) [5], which was established in
2004. RSi has done several proof experiments which
assume actual use of the services in order to promote
the use of such robot services. [6]

3.Reliability Problems And
Requirements

In order to control robots in a loosely coupled
environment, the reliability of the communication is
very important. Because the wireless network and
WAN such as Internet are used, some serious trouble
may be caused by quality degradation of the
communication. According to our findings,
confirmed in the previously mentioned
demonstration events, four factors stand out
regarding failures and quality degradation of the

communication. The first one comes from problems
caused by the wireless network. In wireless
environments used in the broad range, such as
wireless LAN and Bluetooth, we observe problems
caused by competing access on the same channel,
interferences from adjacent access points,
interferences caused by microwave ovens or other
wireless devices, and decrease in electric field
strength with the electric wave interception. The
second type of issues is caused by the Internet
environment. In an Internet environment such as
WAN, problems like the decrease of transmission
speed due to rival access, the decrease in processing
performance such as relay servers and quality of the
line, may occur. The third class of problems is
caused by moving robots. A decrease in quality of
the wireless line may be caused by a changing
distance between robots and the access point and/or
by changing the position between robots and the
electric wave interception, a consequence of robots
moving to different places. The last class of
problems comes from robots and/or hosts. Because
of some troubles originating in robots or in the
systems being used, robots and systems may not be
able to communicate with each other. The troubles
usually come from the hardware and/or the software.

In order to achieve reliability under the above
operating conditions, the following features and
functions are required:

(1) Reliability of the transport layer
The reliable transport layer should guarantee

message delivery from the sender to the receiver. If
the sender and/or the receiver are temporarily down,
the reliable transport layer should resend messages
automatically. If the same message is received more
than once – for example as a consequence of
guaranteeing the message delivery -, a reliable
transport layer should ignore the duplicated
messages. Also, in a sequence of messages, the
order of this sequence may have significant meaning.
Therefore, a reliable transport layer should guarantee
the ordering of the messages.

(2) Detection and recovery of problems caused by
moving robots

Because robots are moving, the distance between
robots and the access point is likely to vary, and the
position between robots and the electric wave
interception will also change. This may affect the
quality of the wireless line. In such cases, the robot
can solve these problems by itself. For example, if a
robot notices that the electric wave situation worsens,
the robot can move to find a place where the electric
wave can be received more easily.

Proceedings of the 2005 International Conference on Cyberworlds (CW’05)
0-7695-2378-1/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on February 26,2010 at 10:40:40 EST from IEEE Xplore. Restrictions apply.

(3) Application recovery process
Both the sender and the receiver can

independently detect an interruption of the
communication. If some trouble occurs during the
sending of a message, the transport layer should
handle the recovery of the communication. It is not
appropriate for the application to take care of
resending the message. On the other hand, some
troubles may occur, which cannot be handled by the
reliability functions of the transport layer alone. For
example, a receiver may fail to receive a message in
spite of multiple resending attempts from the sender.
In this case, one approach is for the sender to give up
resending the message. Another is for the sender to
send the message again after some time. It is then the
role of the application to decide how to resolve this
kind of trouble. For the first case, even if a reliable
transport layer is used, it is very difficult for
application developers to handle this kind of
recovery process in their application. We propose a
guideline for developers on how to implement such
processes in the next chapter.

4. A Solution For Achieving Reliability

The functions of the reliable transport are not
peculiar to the robot communication. They are
similar to those completed in another field after
careful design and significant efforts. They are
“Reliable Messaging” functions used to
communicate between servers in the IT area.
Recently, the reliable messaging function has been
standardizing. However, it is difficult to solve the
problems in the previous section only with the
reliable specification, because the recover processing
still remains as programmer’s responsibility.
Therefore, we solved them by combining two
solutions: one for the transport layer is adopting the
reliable messaging method, and the other for the
application layer implements a transactional
behavior and proposed a programmers guideline.

(1) Solution for the Transport Layer
When a failing communication can recover

quickly, which is the case for troubles caused by a
temporary accident or by a probabilistic factor, a
retry mechanism is sufficient. However, if the
communication cannot recover after a long time, the
trouble cannot be solved by mere retry. In this case,
the communication should be cut, and efforts should
focus on the removal of the cause of the trouble, as
well as on recovery from the interruption point.

An acknowledgement protocol, such as receiving
an acknowledgement message (ACK) after sending

data, will guarantee that data was sent and received
properly. When no ACK is received, the retry for
sending data is done at constant intervals, repeatedly
until an ACK is received within a specified time. If
data reception cannot be confirmed even after many
retries, it is assumed that a timeout error will occur.
It is necessary to identify data items being sent, so
that ACK can refer to the right data item. This
identification is also used to detect duplicated data,
as when the same data item is received many times
due to the resending mechanism. In order to
guarantee message ordering, a range or length for the
message sequence subject to ordering should be
specified, and every data item within the sequence be
assigned an order number. When retrying the
sending of a message, it is also important to
minimize the impact on performance, which could
degrade due to frequent resending and/or operating
ACKs. If the timeout error occurs during the sending
of data, this sending and related operations should be
stopped. If the communication is up again, it should
resume the sending of data, so that a previously
failed unit of data is sent again.

If the other party system is down, the application
only knows that a timeout error occurred for the
receiver of the message. If the application’s system
is down, the application may learn about the trouble
at that time, and may try to recover. However,
usually, the application learns about the trouble after
the system is up again. On the other hand, if the
session is interrupted by serious troubles, it may not
be recovered. In this case, the application learns
about the session trouble after a new session is
started. Therefore, both the sender and the receiver
should keep a copy of a sent/received message, of
the message in waiting to be sent, and other message
status information. After the system is rebooted, it
should handle the sending/receiving of interrupted
messages appropriately: either re-send the message,
or continue the reception of the message, or cancel
the sending/receiving of the message. The retry
based function such as of TCP/IP protocol is not
enough to make this recovery process.

(2) Solution for the Application layer:
In this section, we address problems caused by

serious troubles in the transport layer, and propose a
guideline for application programmers so that the
development of a recovery process is made easier.
To simplify the situation, we assign a server role to a
robot and a client role to a controller, and classify
the communication between a robot and a controller
into the following two typical conversation models
(Fig2):

Proceedings of the 2005 International Conference on Cyberworlds (CW’05)
0-7695-2378-1/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on February 26,2010 at 10:40:40 EST from IEEE Xplore. Restrictions apply.

a. A client sends a command message to a server
(robot). The server executes it and sends a result
message to the client. The client waits for this
result message before processing further.

b. A client sends a command message to a server
(robot), and does not wait for a result message
from the server. The client receives a result
message from the server when the server
completes the execution, or the client regularly
polls the status of the server’s execution.

a (Complete in a shot time)

Client Server

b (Complete in a long time)

Instruct
“Forward”

Process
“Forward”

CompleteReceive a
result

Client Server

Instruct
“Catch a ball”

Start to
catch a ball

Accept the
instruction

Receive a
notification

CompleteReceive a
result

Fig. 2 Conversation Model

Based on the above conditions, if an application
needs to recover from a serious error while
sending/receiving a message, the application should
resolve the following three issues: (i) Ignore all non-
processed past messages of the same conversation as
the one related to the error message, because they are
not current anymore, (ii) Close the executing
conversation so that no new message is received for
it, (iii) Open a new conversation for the next new
messages. For resolving these issues, the application
needs to associate messages with conversations.
Therefore, we proposed to introduce a unique ID,
called ConversationId, which is allocated to every
conversation related to an application. The
ConversationId should be added to every sending
message in both sides and will distinguish a series of
operations. Using ConversationId, both a server and
a client can recognize messages of a current session,
and can detect if they receive messages of a past
session. This solution is effective for application to
recover, even if a serious error is caused by an
interruption of the session, or caused by the problem
of client/server.

5. Best Practices

As a proof of concept, we developed a prototype
robot application over reliable RoboLink protocol
using an implementation of WS-Reliability.

5.1 Advantage of Using a Reliable Messaging
Standard

In the area of Web services, OASIS – one of the
main standard body for this area -, recently released
the “Web Service Reliability” specification as a
Standard [7]. There are many advantages in adopting
this specification for our purpose. By adopting this
specification, robot applications do not need to
implement advanced reliable functions such as
complex delivery processing, management of
resending policies, guaranteed ordering, etc.
Developers can concentrate exclusively on functions
specific to the robot application. In addition, multiple
implementations of the specification are available to
choose from, such as the one provided by the joint
project of Fujitsu, Hitachi and NEC [8], The
University of Hong Kong [9], Easy WS-Reliability
[10], etc..

5.2 What is WS-Reliability?

The mainly function of WS-Reliability is to
guarantee message delivery without duplicates
(“once and only one”) and message ordering. If any
trouble occurs during the sending of a message, the
message will be resent automatically. Fig.3 shows
the recovery mechanism when troubles occur during
the sending a message.

Application A WS-RMessage Service Handler Application B

Application Data

Application Data

WS-R Message
(Application Data)

WS-RMessage
(Acknowledgment)

Persistent
Storage

Persistent
Storage

WS-RMessage Service Handler

WS-RMessage Resend
(Application Data)

1. Message dose not reach,
because of any troubles.

1. Message dose not reach,
because of any troubles.

Sender Receiver

2. Message is sent again, if the
acknowledgement is not
received after the interval of
re-sending time is passed.

2. Message is sent again, if the
acknowledgement is not
received after the interval of
re-sending time is passed.

Interval of re-sending

Fig. 3 Recovery Mechanism of WS-Reliability

WS-Reliability has three message reply patterns
for returning ACKs or faults: “Response” RM-Reply
Pattern, “Callback” RM-Reply Pattern, and “Poll”

Proceedings of the 2005 International Conference on Cyberworlds (CW’05)
0-7695-2378-1/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on February 26,2010 at 10:40:40 EST from IEEE Xplore. Restrictions apply.

RM-Reply Pattern. These patterns can accommodate
very diverse communication constraints.

5.3 WS-Reliability and the RoboLink
Protocol

In order to use reliable messaging functions, we
plugged a WS-Reliability implementation in the
lower layer of the RoboLink Service on the SOAP
protocol. Our implementation, called OASIS-RM, is
developed as a plug-in handler of the Web server,
and the way it is operating is conforming with the
“Jetty” Java HTTP Server [11], However, the
implementation also supports the handler interface,
so that other Web servers can be used. We needed to
adopt “Response” RM-Reply Pattern as the message
reply pattern, because the call from JAX-RPC [12]
was the block model.

We can use JAX-RPC as the programming
interface. In that case, we had to modify JAX-RPC
module to block until sending completion or
appearing the serious failure. As a result, the serious
operating failures appear as Java exceptions through
the JAX-RPC handler and/or as fatal messages from
the WS-Reliability implementation, which will be
sent to the configured Web server. Below is an
explanation on how WS-Reliability processes the
fatal errors from the transport layer and switches the
transport sessions. WS-Reliability allocates an
unique ID, called GroupId, to each session when a
new session is opened. If a serious error occurs
during the sending of a message, WS-Reliability
closes the current session, and opens a new session.
During this time, the GroupID used by both sender
and receiver is automatically changed.

Messages are identified by their MessageId, and
the uniqueness of MessageId is guaranteed by the
combination of GroupId and a sequence number,
SequenceNum. SequenceNum is assigned by the
WS-Reliability implementation, when the message is
sent. The receiver must return an ACK to the sender,
referring to the MessageId of the sending message. If
the sender receives an ACK with an old GroupId, the
sender ignores it. When the sender recovers from a
sending timeout failure, the sender assigns a new
GroupId to a newly-opened session, and generates a
MessageId that include the new GroupId for the next
message to be sent.

If a message with a new GroupId is received, it
means that some serious error occurred on the other
side. In this case, the sender aborts the message
sending, and updates the current GroupId. If
necessary, the sender checks the status of the
sending queue, and may delete some data in the
queue. Then, the sender recovers the data being sent,

because of the possibility of a failure to reach the
receiver.

It must be noted that GroupId described here and
ConversationId described in the previous chapter
may look similar, but play a different role. The
former is used by the transport layer for sequences of
messages going from a same sending party to a same
receiving party, and has reliability semantics. The
latter is assigned for each conversation - including
messages flowing both ways between parties -, and
has application semantics.

5.4 Implementation of application recovery
transaction

We verified our recovery strategy using the
previous model where a remote controller sends a
message to a robot of the server side. For this
purpose, the robot-side application was implemented
as a service of the Axis Web services stack. The
controller-side application was developed as a client
application using Axis JAX-RPC client library with
the block mode.

Fig.4 shows an implementation design that
supports the conversation described in Section 4 (b).
The client sends a request, and the server returns the
acknowledgment. Then, the server sends the
completion notice to the mail box, which is a process
distinct from the client. The client polls the mail box
directly, and receives the notification from the mail
box. In our implementation, the retry function of
WS-Reliability was developed as a handler.
However, it is out of scope of the AXIS handler to
add/delete the SOAP header. Therefore, we modified
Apache AXIS.

JAX-RPC

Jetty

Robolink Controller RoboLink
Motion Profile

AXIS

OASIS-RM OASIS-RM

Jetty

Execute
“Forward”

Completion
Notification

Mailbox
for response

Forward

Completion
Notification

Serious
Troubles

Forward

Fig. 4 An sample implementation of the
conversation model

5.5 Application Scenario

Proceedings of the 2005 International Conference on Cyberworlds (CW’05)
0-7695-2378-1/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on February 26,2010 at 10:40:40 EST from IEEE Xplore. Restrictions apply.

We developed our applications in the type shown in
Section 4 (2) b, and implement the recovery process
according to the scenario described in Section 4 (2).

5.5.1 Client Application
The client application has the following sequence

to communicate with the server application, shown
in Fig.5.

Allocate a new ConversationId
for a new conversation

Send a request messages
with the ConversationId

Wait a message from the Server

[Receive no message]

[Receive a message]

Assume Server’s
“Timeout Error”

Check the message

[A message with the
past ConversationId]Ignore the message

[A message with the
current ConversationId]

Get the message

Close the current session

[Continue the current conversation]

[Complete the current conversation]

Assume
“Sending Timeout Error”

[Success in sending message]

[Fail in sending message]

Open a new session

Register the current ConversationId
as the past conversation

[A message with the
new ConversationId] Assume Server’s Error

Fig.5: Client application’s Action

(i) Allocate a new ConversationId for a new
conversation, in order to start a new
conversation.

(ii) Send a request messages with the
ConversationId to the server application.
If the client application cannot send the message,
it assumes that the sending timeout occurred.
Then, go to (vi).

(iii) Wait a reply message from the server
application.

(iv) Check a reply message from the server
application.
If a message has the current ConversationId, get
the message. If a message has other
ConversationId, ignore the message. Then,
return to (iii). If the client application receives
the “timeout error”, it assumes that the server’s
timeout error occurred. Then, go to (vi).

(v) Determine whether to continue the current
conversation.
If the client application wants to continue the

current conversation, return to (iii). If the client
application wants to finish the current
conversation, close the current conversation.

(vi) Register the current ConversationId as the past
conversation. Then, returns to (i).

Please note that the client may need to confirm
the status of the Server, if the previous session was
closed with some error.

5.5.2 Server Application
The sever application has the following sequence

to communicate with the client application, shown in
Fig.6.

(i) Wait a request message from the client
application, in order to start a new conversation.

(ii) Check the message from the client application.
If the message has the past ConversationId, get
and ignore it. Then, return to (i).

(iii) Wait a request message from the client
application for processing request message.
If the server application receives the “timeout
error”, it assumes that the client’s timeout error
occurred. Then, go to (vi).

(iv) Check the message from the client application.
If the message has the current ConversationId,
get and process it. If the message has the past
ConversationId, get and ignore it. Then, return
to (iii). If the message has a new ConversationId,
go to (vi) to close the current session.

(v) Determine whether to continue the current
conversation.
If the server application wants to continue the
current conversation, send the reply message to
the client message. Then, return to (iii).
However, if the server application cannot send
the reply message, it assumes that the sending
timeout occurred. And, go to (vi) to close the
current conversation. If the server application
completes the current conversation, send the
result to the client message. And, if the client
application cannot send the result, it assumes
that the sending timeout occurred.

(vi) Close the current conversation. Then, return to
(i).
If the sever application recognizes the current
ConversationId, register the current
ConversationId as the past session. And, if the
message has a new ConversationId, register the
new ConversationId as the current session.

Proceedings of the 2005 International Conference on Cyberworlds (CW’05)
0-7695-2378-1/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on February 26,2010 at 10:40:40 EST from IEEE Xplore. Restrictions apply.

Wait & Check a request message

Register the new ConversationId
as the current session

Get & Ignore the message
[A message with the past ConversationId]

Get the message

[A message with
the new
ConversationId]

Assume open a new session

Operate the message

[Complete the
current
conversation]

Send the result to the client

Register the current ConversationIdas the past session

[Continue the current
conversation]

Wait a message

[A message with the
current ConversationId]

Get & Ignore
the message

[A message
with the past
ConversationId]

[Receive
no message]Assume

“Timeout Error”
[Receive a message]

Check the message

[A message with a
new ConversationId]

[Success in
sending the
message]

[Fail in
sending the
message]Assume

“Sending Timeout Error”

Assume Client has some troubles

Close the current session

Fig.6. Server Application’s Action

8. Verification and Test Cases

We verified the following recovery mechanism
using our implementation:

If communication recovers from a transport
trouble before the timeout error occurs,
applications can keep sending/receiving
messages as if nothing happened.
After the fetal error occurs, current
application sessions are closed, and a new
application session is invoked to process a
new message. No old message is processed
any more.

Our test case is as follows:

No.1: The client sends a request messages to the
server, and the server sends the result to the client
successfully.

No.2: When the client sends a request message to the
server, the server is down. After sending the
message again several times, the server is up.
Then, the client succeeds, and the server sends the
result to the client successfully.

No.3: When the client sends a request message to the
server, the server is down. Even if the client sends
the message again several times, it fails. The
client gives up because of the retry error. ver
sends the result to the client successfully.

No.4: When the client sends a request message and
the server replies the ACK to the client, some
troubles occur. After the client sends the request
message again several times, the server succeeds
to reply the ACK. Then, the server sends the
result the client successfully.

No.5: When the client sends a request message and
the server replies the ACK to the client, some
troubles occur. Even if the client sends the request
message again several times, the server fails to
reply the ACK. The client gives up the current
message because of the retry error. And, the
server execute the request, however, it fails to
send the result. Then, the client sends the next
request message to the server, and the server
sends the result to the client successfully.

No.6: When the client sends a request message to the
server, some trouble occurs. After sending the
message again several times, the client succeeds.
Then, the server sends the result to the client
successfully.

No.7: When the client sends a request message to the
server, some trouble occurs. Even if the client
sends the message again several times, it fails.
The client gives up the current message because
of the retry error. Then, the client sends the next
request message to the server, and the server
sends the result to the client successfully.

No.8: The client sends a request message to the
server, and the server sends the result successfully.
The client sends the next request message to the
server, the server is down. While the client sends
the message again several times, the server is up,
and a new session is opened. Then, the clients
sends the message again, and the server sends the
result successfully.

No.9: The client sends a request message to the
server, and the server sends the result successfully.
After that, the client sends the request message to
the server, the server is down. Even if the client
sends the message again several times, it fails.
The client gives up the current message because
of the retry error. Then, the client sends the next
request message to the server, and the server
sends the result to the client successfully.

No.10: After the client sends a request message to
the server, some troubles occur when the server
sends the result to the client. After sending the
result again several times, the server succeeds.

No.11: After the client sends a request message to
the server, some troubles occur when the server
sends the result to the client. Even if the server
sends the result again several times, it fails. The
server gives up to send the result because of the
retry error. And, the client also gives up the

Proceedings of the 2005 International Conference on Cyberworlds (CW’05)
0-7695-2378-1/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on February 26,2010 at 10:40:40 EST from IEEE Xplore. Restrictions apply.

current message because of the timeout error.
Then, the client sends the next request message to
the server, and the server sends the result to the
client successfully.

No.12: When the server sends the result to the client,
the client is down. Even if the server sends the
result again several times, it fails. The server
gives up to send the result because of the retry
error. Then, the client is up. The client opens a
new session and sends the next request message
to the server . The server sends the result
successfully.

No.13: The client sends a request message to the
server. It takes longer time for the server to
execute the request message, the client’s timeout
error occurs. Then, the client sends the next
request message to the server. The server execute
the second message, after the execution of the
first message is completed. The server sends the
result of the second message to the client
successfully.

No.14: The client sends a request message to the
server. It takes longer time for the server to
execute the request message, the client’s timeout
error occurs. Then, the client sends the next
request message to the server. However, the
server doesn’t complete the execution of the first
message. Since the client cannot receive the result,
the timeout error occurs again. Then, the client
sends the next request message to the server again,
and the server sends the result to the client
successfully.

9. Conclusions

We described the importance of the reliability of
the robot communication in a loosely coupled
environment using Web services. And, we proposed
the solution that combines the adoption of the
standardized reliable messaging technology “WS-
Reliability” and the transaction behavior for the
application layer implementation. And more, we also
proposed the guideline for application recovery
transaction. Our implementation worked according
to the recovery mechanism that we expected, and the
solution was verified through analyzing WS-
Reliability and testing our proof-of-concept
implementation.

The reliability of robot communication was
identified as the very important issue for a practical
use in a loosely coupled environment. And, we
proposed the solution to achieve reliable
communication by combining standardized Web
services technology and application recovery
transactions. Web services are mature technology,

supported by many middleware and tools. It is
important for future robots to be able to use these as
they are. In order to verify this solution, we
developed the sample implementation.

The loosely coupled protocol described here is
suitable for applications involving autonomous
robots. Moreover, when reliable communication is
realized as described in this paper, it is easy to
provide an interface to the upper-layer application of
the robot that is based on Web services. We expect
that various robot services based on Web services
will be provided for future business and industrial
application of robots.

10. Acknowledgment

Authors of this article would like to thank
Akiyoshi Katsumata of Fujitsu and Jacques Durand
of Fujitsu Software Corporation for his contribution
to produce this document.

11. References

[1] M. Narita, K. Naruse and M. Oya, “RoboLink: A
Robot Collaboration Protocol based on Web Services”,
ICAM’04, JSME/No.05-204, ISSN1348-8961, pp.442-448,
2004.
[2] M. Narita and etc, “RoboLink Protocol Specification
Public Draft v1.1”,
http://www.osl.fujitsu.com/osl/contents/RoboLink/RoboLi
nkProtocol11.pdf (in Japanese)
[3] M. Oya, K. Naruse, M. Narita, T. Okuno, M. Kinoshita,
and Y. Kakazu, ”Loose Robot Communication over the
Internet”, Journal of Robotics and Mechatronics, Vol.16,
No.6, pp. 626-634, 2004
[4] M. Oya, K. Naruse, M. Narita, T. Okuno, K. Moni, M.
Kinoshita, and Y. Kakazu, “Loose Robot Collaboration in
the Public Internet Environment”, ICAM’04,
JSME/No.348-8961, ISSN1348-8961, pp.454-461, 2004.
[5] Robot Service Initiative (RSi),
http://www.robotservices.org/
[6] M. Narita and M. Shimamura, “A Report on RSi
(Robot Services Initiative) Activities, ARSO ’05, 0-7803-
8948-4/05/$20.00, 2005
[7] OASIS Web Services Reliability (WS-Reliability
V1.1), http://docs.oasis-open.org/wsrm/2004/06/WS-
Reliability-CD1.086.pdf
[8] RM4GS (Reliable Messaging for Grid Services),
Information-technology Promotion Agency, Japan,
http://businessgrid.ipa.go.jp/rm4gs/index-en.html
[9] Web Services Reliability Messaging Server, Center for
E-Commerce Infrastructure Development (CECID),
http://www.cs.hku.hk/%7Efyp001/index.html
[10] Project: Easy WS-Reliability,
http://sourceforge.net/projects/easywsrm/
[11] Jetty, http://jetty.mortbay.org/jetty/index.html
[12] Java API for XML-based RPC (JAX-RPC1.1)
http://java.sun.com/xml/downloads/jaxrpc.html

Proceedings of the 2005 International Conference on Cyberworlds (CW’05)
0-7695-2378-1/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on February 26,2010 at 10:40:40 EST from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

