
A Peer-to-Peer Tree Based Reliable Multicast Protocol
Min Yang and Yuanyuan Yang

Department of Electrical & Computer Engineering

State University of New York, Stony Brook, NY 11794, USA

Abstract—Reliable multicast is critical to multicast based applications
as it provides reliability over the unreliable network. Although the prima-
ry function of reliable multicast is loss recovery and flow control which are
similar to that of reliable unicast, the inherent property of multicast that
multiple receivers coexist in one multicast session imposes new challenges
such as acknowledge implosion and poor scalability. Among existing reli-
able multicast protocols, tree based reliable multicast protocols can achieve
the reliability in a scalable fashion. They group the receivers into a hierar-
chy called the ACK tree and the ACK/NACK messages and retransmitted
packets are transmitted between adjacent levels. Since current tree based
reliable multicast protocols construct the ACK tree based on the multicast
tree which is constructed by the multicast routing protocol, the protocol
performance greatly depends on the multicast tree. In this paper, we pro-
pose a peer-to-peer (P2P) tree based reliable multicast protocol which con-
structs the ACK tree in a flexible way as the multicast tree is constructed
in a P2P system. In our protocol, any two receivers can be adjacent nodes
in the ACK tree. The ACK tree construction process is based on a heuris-
tic function which is designed to minimize the retransmission delay. The
child node sends ACK/NACK to the parent node and receives retransmit-
ted packets from the parent node. Our protocol uses window based flow
control. The window in the parent node will not advance unless the parent
node receives all the ACKs from its child nodes. We conducted extensive
simulations to evaluate the protocol. The simulation results show that our
protocol achieves good scalability with low retransmission delay and high
throughput.

Keywords: Reliable multicast, group communication, ACK
tree, transport protocol, peer-to-peer.

I. INTRODUCTION AND RELATED WORK

Like its unicast counterpart, Transmission Control Protocol
(TCP), a reliable multicast protocol should possess the function-
s such as packet loss detection and recovery, ordering and flow
control. However, having multiple receivers makes the reliable
multicast vastly different and much more complex than TCP.
First, in unicast, the receiver uses positive acknowledgements
(ACK) or negative acknowledgements (NACK) to inform the
sender its current status. In multicast, many ACK/NACK mes-
sages produced by all the receivers will overwhelm the sender
and congest the links around the sender, which is called “ac-
knowledge implosion” [1]. Second, it is difficult to adapt the
data transmission rate of the sender to the different data recep-
tion rates of the heterogenous receivers. Third, the wide range
of requirements of the multicast applications makes it impos-
sible to design a one-fit-all reliable multicast protocol [2]. On
the other hand, most multicast applications are real-time appli-
cations, such as media streaming and audio/video conferencing,
which have strict requirements on QoS, especially on delay jit-
ter [3], and it is essential to minimize the retransmission delay
when the data is lost in such applications.

There has been a lot of work on reliable multicast in the lit-
erature, see, for example, [4]-[8]. In general, reliable multicast
protocols are classified into sender-initiated, receiver-initiated
and tree based protocols. Both sender-initiated protocols and
receiver-initiated protocols suffer the acknowledge implosion

The research was supported in part by the U.S. National Science Foundation
under grant numbers CCR-0073085 and CCR-0207999.

problem. Tree based protocols arrange all the receivers into a hi-
erarchy called the ACK tree. Each receiver sends ACK/NACKs
to its parent node only, collects the ACK/NACKs from its child
nodes and is responsible for retransmitting lost data packets to
its child nodes. By limiting the degree of the ACK tree, we can
make it possible that no node is overwhelmed by ACK/NACKs.

RMTP (Reliable Multicast Transport Protocol) [7] and TMT-
P (Tree-based Multicast Transport Protocol) [5] are two typical
tree based reliable multicast protocols. In RMTP, receivers are
grouped into a hierarchy of local regions, with a Designated Re-
ceiver (DR) in each local region. Receivers send ACKs to the
DR of its local region, then DRs send ACKs to the DRs in the
upper level. The sender is the DR on the top level. DRs cache
the data and respond to retransmission requests in the local re-
gion. In TMTP, the ACK tree is called control tree. Typically,
in TMTP the receivers in the same subnet belong to a domain
and a single domain manager acts as the parent of the other re-
ceivers in the domain. However, since both protocols build the
ACK tree based on the multicast tree, this causes the following
problems. First, the eligible ACK tree may not exist. In the
ACK tree of RMTP, the parent of a receiver must be the ances-
tor of the receiver in the multicast tree. In an extreme case, all
the receivers have to choose the sender as their parent. Thus, the
protocol degenerates to a receiver-initiated protocol. It is even
worse when there are some constraints, as it may be impossi-
ble to find an eligible ACK tree under the constraints. Second,
since the parent and child in the ACK tree is the ancestor and
descendant in the multicast tree, there must be some correlation
among their data loss probabilities. For example, if the data is
lost before reaching the parent, the child will not receive the da-
ta definitely. If the child sends the NACK to the parent, it will
not receive the retransmitted data because the parent is also re-
questing the data. Third, the superposition of the ACK tree and
the multicast tree increases the traffic on the same links, thereby
increases the probability of congestion.

In this paper, we propose a new reliable multicast protocol
which can minimize the retransmission delay and avoid the
problems discussed above. Our protocol takes advantage of
both the tree based approach and the peer-to-peer (P2P) [10]
technique. In our protocol, any two receivers can be the par-
ent node and child node in the ACK tree. A receiver uses a
heuristic function to choose another receiver as its parent. The
heuristic function is designed to minimize the retransmission
delay. The child node sends ACK/NACK messages to the par-
ent node and receives retransmitted packets from the parent n-
ode. The protocol uses window based flow control. The sender
can only send the data packets whose sequence numbers are in
the window. The receivers can only accept data packets whose
sequence numbers are in the window. The window in the paren-
t node will not advance unless the parent node receives all the
ACKs from its child nodes.

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on February 25,2010 at 09:31:33 EST from IEEE Xplore. Restrictions apply.

II. ASSUMPTIONS AND NOTATIONS

We assume that our reliable multicast protocol is deployed in
the service-centric multicast architecture proposed in [9] along
with the multicast routing protocol SCMP (Service-Centralized
Multicast Protocol). The service-centric multicast architecture
provides flexible and efficient multicast service by processing
most multicast related tasks in a powerful router, which is called
m-router. The m-router collects JOIN requests, builds the multi-
cast tree and distributes the tree information around the network,
while other routers in the network only need to perform mini-
mum functions for routing. One reason for adopting this multi-
cast architecture is that the architecture provides the centralized
service which our protocol can use to construct the ACK tree
with little protocol overhead. Another reason is that the ACK
tree information can be distributed along with the multicast tree
information which saves the network bandwidth. The sender in
our protocol is always the m-router in the architecture. Howev-
er, our reliable multicast protocol is not restricted to the multi-
cast architecture in [9]. It can be used in any network running a
link state unicast routing protocol.

We also assume that each data packet has a sequence number
which represents its order in the data stream. The receivers de-
tect data loss or out of order based on the sequence number of
the received data packets. To simplify the presentation, we use
“packet n” to represent “the data packet whose sequence num-
ber is n” and “packet less than n” to represent “the data packet
whose sequence number is less than n.”

We use parentACK to represent the parent of a receiver in the
ACK tree. Similarly, we use childACK to represent a child of a
receiver in the ACK tree. For any receiver, there is a unique path
on the multicast tree connecting the receiver to the m-router.
We denote this unique path by pathm, the length of the path by
pathlenm, and the delay of the path by delaym.

III. P2P TREE BASED RELIABLE MULTICAST PROTOCOL

A. Protocol Overview

Under the service-centric multicast architecture, the m-router
has the full knowledge of the network topology and the receiver-
s. Each receiver keeps the IP address of its parentACK . The
physical links of the ACK tree are determined by unicast rout-
ing. Upon receiving a JOIN request from a new receiver, the
m-router will graft it to both the multicast tree and the ACK
tree. An existing receiver on the ACK tree is selected as the
parentACK of the new receiver. The selection is based on a
heuristic function to be described in the next section. To save
bandwidth, the m-router encapsulates the parentACK informa-
tion in the packet used for constructing the multicast tree. After
receiving the parentACK information, the new receiver send-
s ACK JOIN to the parentACK and the parentACK adds the
new receiver as a childACK .

The data packets flow along the multicast tree first. Once a re-
ceiver detects data loss, it will use the ACK tree to recover. The
receiver experiencing data loss sends the NACK which includes
a sequence number n and a bitmap. All the packets less than n
are received correctly up to now. The length of the bitmap is a
variable and the bitmap indicates whether the packets following
packet n are correctly received or not. The parent retransmit-

s the lost packets by unicasting according to the bitmap if the
required packets are in its buffer.

When the physical links are unstable or the sending rate of the
sender exceeds the processing ability of the receiver, our proto-
col uses window based flow control to inform the sender to low-
er its sending rate. Ideally, all the windows should advance at
different but close speeds. When some receiver is experiencing
data loss, its window will stop advancing which triggers the stop
of the window in its parentACK . This chain effect finally stops
the window in the sender and then the sender stops sending data
packets.

B. Constructing the ACK Tree

Before we give the details of the ACK tree construction, we
first introduce a new term. For any two receivers u and v, the
two paths pathm(u) and pathm(v) may have some common
links. We use commonlink(u,v) to represent this number. The
larger the commonlink(u,v), the more correlation between the
data loss probabilities of the receivers u and v.

When a new receiver joins the group, any node on the ACK
tree is a candidate for the parentACK of the receiver. The fol-
lowing is some heuristics for selecting parentACK :

• Rule 1: the delay between the receiver and its parentACK

should be minimized.
• Rule 2: the delaym(parentACK) should be less than

the sum of the delaym (receiver) plus the delay between
parentACK and the receiver.

• Rule 3: the commonlink(parentACK , receiver) should
be minimized.

Rule 1 is intuitive as the delay between the receiver and its
parentACK determines the delay of the ACK/NACK messages
and the retransmitted data packets between them. Minimizing
the delay helps to minimize the retransmission delay. However,
the retransmission delay is affected not only by this delay, but
also by the probability that the parentACK has the required da-
ta packets in its buffer. Rules 2 and 3 are trying to maximize this
probability. Rule 2 guarantees that the data packets will reach
parentACK earlier than the NACK from the receiver. Rule 3
is to minimize the correlation of the data loss probabilities be-
tween the receiver and its parentACK . If such correlation is
strong, that is to say a data packet which is lost before arriving at
the receiver is very likely lost before arriving at its parentACK ,
then it is very likely that parentACK does not have the required
packets when receiving the NACK from the receiver.

It is difficult to find a perfect parentACK satisfying all the
three rules. In fact, these three rules contradict each other in
some cases. Here we give a preference heuristic function which
takes all the three rules into consideration.

P (u,v) =

delay(u,v) ∗ edelaym(v)−delaym(v)−delay(u,v)∗
commonlink(u,v) ∗ (1/pathlenm(u) + 1/pathlenm(v))

if delaym(v) + delay(u,v)− delaym(v) ≥0

MAX if delaym(v) + delay(u,v)− delaym(v) < 0

where u is a candidate for parentACK and v is the new receiv-
er, delay(u, v) is the delay between u and v, and MAX is a
very large number. The m-router calculates the preference val-
ues for each candidate and choose the candidate with the lowest
preference value as the parentACK .

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on February 25,2010 at 09:31:33 EST from IEEE Xplore. Restrictions apply.

C. Loss Recovery and Flow Control

Loss recovery and flow control both strongly depend on a da-
ta structure - window. Suppose data packets consist of a stream
in an ascending order of sequence numbers. A window is a span
of continuous sequence numbers. The length of the window is
window size. The first sequence number determines the posi-
tion of the window.

A receiver uses both ACK and NACK to inform its
parentACK its current status. Each ACK includes a sequence
number current seqno, which indicates that all the packets less
than current seqno are received correctly and the receiver is
waiting for the packet current seqno. Each NACK includes a
sequence number current seqno and a bitmap. The sequence
number has the same meaning as in ACK. The bitmap is stored
in the window and indicates whether the packets after packet
current seqno are correctly received or not. The parentACK

retransmits the lost data packets according to the bitmap.
All the windows advance at their own speeds until they reach

the end of the data stream. A window will not advance until
some conditions are satisfied. Based on these conditions, we di-
vide the nodes into three types: sender which is the root node of
the ACK tree, i-receiver which is the inner node of the ACK tree
and l-receiver which is the leaf node of the ACK tree. Each type
of nodes take different actions when receiving ACK/NACKs.
We describe each of them next.

C.1 Operation of the Sender

The window in the sender is shown in Fig.1. The packet-
s colored in red are sent already. current seqno is the se-
quence number of the packet the sender is about to send nex-
t. last acked is the least sequence number among all the
ACK/NACKs collected from the childACK of the sender. After

window

last_acked current_seqno

Fig. 1. The window in the sender.

the sender sends a data packet, it increases the current seqno
by 1. The sender will keep sending data packets until the win-
dow is full, and at this time, last acked + window size =
current seqno. When the sender receives ACK/NACKs from
a childACK , it will update the last acked if necessary. The in-
crease of the last acked results in the advance of the window.
When the window is full, the sender will stop sending data pack-
ets. It checks the window periodically and resumes to send data
packets after the window advances.

C.2 Operation of the I-Receiver

The i-receivers are the most complicated nodes among the
three types of nodes because they have to do three things simul-
taneously: receiving the multicast data through the multicast
tree, sending ACK/NACKs to their parentACK and collecting
the ACK/NACKs from their childACK . To simplify the presen-
tation, we use a state transition diagram to describe the opera-
tion of the i-receiver. We use four states to represent the status
of an i-receiver. Each i-receiver must be in one of the states.

• S1: the i-receiver does not detect any packet loss or out of
order, and the window is not full.

• S2: the i-receiver detects packet loss or out of order, and
the window is not full.

• S3: the i-receiver does not detect any packet loss or out of
order, and the window is full.

• S4: the i-receiver detects packet loss or out of order, and
the window is full.

The state transition diagram is shown in Fig.2.

S1 S2

2

S3 S4

65

8

3

9

10

7

4

1

3. receive a packet larger than current_seqno but within the window

5. last_acked increased and largest_seqno is within the window

1. last_acked increased

4. all lost packets are received

6, 8 & 9. receive a packet beyond the window
7. all lost packets are received and current_seqno>last_acked
10. all lost packets are received and current_seqno<=last_acked

2. expected packets are received and the window is full

Fig. 2. State transition diagram of i-receiver.

window

last_acked current_seqno
largest_seqno

Fig. 3. The window of i-receiver in state S1 when last acked is less than
current seqno.

Ideally, if there is no packet loss or out of order, all the re-
ceivers will stay in S1. The window is as shown in Fig.3,
where last acked is the same as in the sender, current seqno
is the sequence number of the packet that the i-receiver is ex-
pecting to receive, the packets colored in red are received cor-
rectly already, and largest seqno is the largest sequence num-
ber of the received packets. When the i-receiver receives pack-
et current seqno, both current seqno and largest seqno in-
crease by 1. The window advances when the last acked in-
creases after receiving ACK/NACK from a childACK .

In Section III-B, we used rule 2 to ensure that the da-
ta packets reach the parentACK before the NACK from a
childACK . But when the parentACK is experiencing a much
heavier congestion than the childACK , the window in the
parentACK will lag behind the window in the childACK . As
a result, the last acked in parentACK will become larger than
current seqno. This case is shown in Fig.4.

current_seqno
largest_seqno

window
possible last_acked

Fig. 4. The window of i-receiver in state S1 when last acked is equal to or
greater than current seqno.

In this case, the window is empty. The only condition
that the window will advance is the i-receiver receives pack-
et current seqno. After current seqno catches up with
last acked, the last acked will dominate the window advance-
ment again.

If one receiver receives a packet whose sequence number is
larger than current seqno, two cases are possible.

Case 1: If the sequence number of the packet is within the
window, the receiver’s state transits from S1 to S2. The win-
dow is as shown in Fig.5. largest seqno is updated to the
sequence number of the received packet. The bitmap is a bit
string with length largest seqno − current seqno + 1, and

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on February 25,2010 at 09:31:33 EST from IEEE Xplore. Restrictions apply.

it indicates whether the packets between current seqno and
largest seqno are received correctly or not, where “1” mean-
s the packet is received correctly and “0” means the packet
is lost or damaged. The i-receiver sends NACK containing
current seqno and the bitmap to its parentACK .

last_acked current_seqno largest_seqno

window
bitmap

Fig. 5. The window of i-receiver in state S2 when last acked is less than
current seqno.

Similarly, if last acked is larger than current seqno, the
window is as shown in Fig.6.

bitmap

window

current_seqno largest_seqno

possible last_acked

Fig. 6. The window of i-receiver in state S2 when last acked is equal to or
greater than current seqno.

Case 2: If the sequence number of the packet is beyond the
window, the receiver’s state transits from S1 to S4. The window
of S4 is shown in Fig.7. largest seqno is still updated to the se-
quence number of the received packet. But this time the bitmap
only includes the packets between current seqno and the right
end of the window due to the limitation of the window size. If
the window advances m packets after updating last acked, the
length of the bitmap increases by m and the values of the new
m bits are set to 0.

bitmap
window

possible largest_seqno
last_acked current_seqno

Fig. 7. The window of i-receiver in state S4 when last acked is less than
current seqno.

Similarly, when last acked is larger than current seqno,
the window is as shown in Fig.8.

window

bitmap

current_seqno possible largest_seqno

possible last_acked

Fig. 8. The window of i-receiver in state S4 when last acked is equal to or
greater than current seqno.

If there is no data loss or out of order, but the last acked is
not updated in time because a childACK is experiencing data
loss, the window in the parentACK will become full shortly
and the state will transit from S1 to S3. The window in S3

is shown in Fig.9. In this case, the i-receiver will stop increas-
ing current seqno even it receives packet current seqno. But
largest seqno will be updated similarly as other three states.

When the i-receiver is in S2, there are two situations resulting
in a state transition: if the i-receiver receives a data packet be-
yond the window, the i-receiver transits from S2 to S4; or if the
i-receiver receives all the lost packets recorded in the bitmap,
the i-receiver transits from S2 to S1. When the i-receiver is in
S3, it transits to S1 if last acked is increased due to receiv-
ing ACK/NACK, or to S4 if it receives a data packet beyond

window

last_acked current_seqno
largest_seqno

Fig. 9. The window of i-receiver in state S3.

the window. When the i-receiver is in S4, its largest seqno
may be much larger beyond the window. The i-receiver tran-
sits to S2 only if the last acked is increased and the window
advances further enough that largest seqno lies in the window
again. If largest seqno is equal to last acked+window size
(it should be that largest seqno is equal to current seqno +
window size − 1 in the case that last acked is no less than
current seqno) and all the lost packets recorded in the bitmap
are received correctly, the i-receiver transits from S4 to S3

(it should be S1 in the case that last acked is no less than
current seqno).

C.3 Operation of the L-Receiver

The l-receivers are similar to the i-receivers except that the
l-receivers have no childACK . As they do not need to collect
ACK/NACKs, last acked is always equal to current seqno−
1. There are only three states for an l-receiver: S1, S2 and S4.
The state transition diagram is shown in Fig.10.

S1

S4

S2

1
2

3

1. all lost packets are received
4

5
6

2. receive a packet beyond the window
3-6. same as i-receiver

Fig. 10. State transition diagram of l-receiver.

D. Timers

Our protocol uses different timers to improve robustness and
performance. There are three types of timers: poll timer, NACK
timer and status timer.

Poll timer is scheduled in the sender when the window is full.
When the timer is timeout, the sender checks whether the win-
dow advances. If the window advances, the sender resets the
timer and resumes sending data packets. If the window is still
full, the sender reschedules the timer.

When a receiver detects data loss, it sends an NACK to it-
s parentACK immediately. Although this helps to decrease
the retransmission delay, it may waste a lot of bandwidth. For
example, the “lost” packet is not really lost, it simply experi-
ences a longer delay than the packet after it. In this case, the
NACK is redundant and unnecessary. We use the NACK timer
to avoid such situation. Every time the receiver detects data loss,
it schedules an NACK timer. If the packet is still missing when
the timer is timeout, the receiver then sends out the NACK.

Status timer is used by a childACK to periodically send status
information to its parentACK . When the timer is timeout, the
receiver will send an ACK or NACK based on its current status.
If the receiver is in states S1 or S3, it will send an ACK; if it is
in states S2 or S4, it will send an NACK.

IV. PERFORMANCE EVALUATION

We have implemented our protocol on the NS2 simulator and
evaluated the performance through simulations. For compari-

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on February 25,2010 at 09:31:33 EST from IEEE Xplore. Restrictions apply.

son purpose, we also implemented another protocol, which can
be considered as a simplified version of our protocol. In this
variation protocol, all the receivers send ACK/NACKs directly
to the sender. Compared to the original protocol, the variation
protocol does not have a hierarchical structure for loss recovery
and flow control, and the height of the ACK tree in the variation
protocol is always 2. We focus on two metrics: average retrans-
mission delay and throughput. The retransmission delay is the
time experienced by a receiver from it sends out an NACK pack-
et until it receives all the required data packets. The throughput
is defined as the number of packets the sender has sent before
the simulation completes, which is equal to the current seqno
of the sender.

The network topologies are generated by GT-ITM [11]. N-
odes are picked randomly to join a multicast group. The sender
sends data packets at a constant rate as long as the window is
not full. The simulation time is 50 seconds. There are two tun-
able parameters: packet drop probability p and the window size
window size. Each link drops the data packets randomly with
probability p.

5 10 15 20 25

0.8

1.0

1.2

1.4

1.6

1.8

A
ve

ra
ge

 R
et

ra
ns

m
is

si
on

 D
el

ay

Group Size

 Our protocol
 Variation protocol

5 10 15 20 25

35

40

45

50

55

60

T
hr

ou
gh

pu
t

Group Size

 Our protocol
 Variation protocol

(a) (b)

5 10 15 20 25 30
10

20

30

40

50

60

T
hr

ou
gh

pu
t

Window Size

 Group Size=10
 Group Size=20
 Group Size=30

0.0 0.2 0.4 0.6 0.8 1.0

10

20

30

40

50

60

70

T
hr

ou
gh

pu
t

Data Drop Probability

 Gruop Size=10
 Gruop Size=20
 Gruop Size=30

(c) (d)

Fig. 11. Simulation results. (a) Average retransmission delay vs. group size;
(b) Throughput vs. group size; (c) Throughput vs. window size; (d) Throughput
vs. packet drop probabilities.

Fig.11(a) shows the average retransmission delay under dif-
ferent group sizes. We can see that the average retransmission
delay of our protocol is much shorter than that of the variation
protocol no matter what the group size is. The average retrans-
mission delay of the variation protocol increases slightly as the
group size increases. On the other hand, as the increase of the
group size, the average retransmission delay of our protocol de-
creases. This is because that when the group size increases,
the number of the parentACK candidates increases too. It is
more likely to find an eligible parentACK close to the receiv-
er. When the group size becomes large enough, the average
retransmission delay almost remains constant.

Fig.11(b) shows the throughput under different group sizes.
As can be seen, the throughput of our protocol is always greater
than that of the variation protocol. The throughput of both pro-

tocols decreases as the group size increases. But the throughput
of our protocol decreases at a much lower pace. When the group
size becomes large enough, the decrease of the throughput is
slim. From these observations, we can see that our protocol
scales well when the group size increases.

Fig.11(c) shows the throughput under different window sizes.
We can observe that as the increase of the window size, the
throughput increases as well. The throughput when the group
size is 10 is better than that when the group size is 20 or 30.
The two curves of group size is 20 and 30 interweave with the
increase of the window size. It means that the group size has
little impact on throughput when it is large enough.

Fig.11(d) shows the throughput under different packet drop
probabilities. We can see that as the increase of the packet
drop probability, the throughput decreases. Still, the through-
put when the group size is smaller is better than that when the
group size is larger. However, this advantage diminishes when
the packet drop probability is high enough.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a P2P tree based reliable
multicast protocol. Compared to existing reliable multicast pro-
tocols, our protocol can avoid the acknowledge implosion and
minimize the retransmission delay. Constructing the ACK tree
in a P2P fashion makes our protocol transparent to routers and
easy to deploy. In the proposed window based loss recovery and
flow control scheme, the window in the child node can advance
faster than the window in the parent node, which can greatly
increase the throughput. Our simulation results show that the
new protocol can achieve good scalability. Its average retrans-
mission delay and throughput are much better than the variation
reliable multicast protocol. In the new protocol, the throughput
increases when the window size increases or the drop probabil-
ity decreases, and the throughput differences between different
group sizes are marginal. Our future work will focus on how to
increase the throughput by using multiple parentACK and how
to adjust the ACK tree dynamically.

REFERENCES

[1] B. Rajagopalan, “Reliability and Scaling issues in Multicast Communica-
tion,” ACM SIGCOMM ’92, 1992, pp. 188-198.

[2] S. Floyd, et al., “A Reliable Multicast Framework for Light-weight Ses-
sions and Application Level Framing,” IEEE/ACM Trans. Networking,
vol.5, no.6, 1997, pp. 784-803.

[3] X. Li, M.H. Ammar and S. Paul, “Video Multicast over the Internet,” IEEE
Network Magazine, April 1999. pp. 46-60.

[4] J.W Atwood, “A Classification of Reliable Multicast Protocols,” IEEE
Network, vol.13, no.3, 2004, pp. 24-34.

[5] R. Yavatkar, J. Griffioen and M. Sudan, “A reliable dissemination protocol
for interactive collaborative applications,” Proc. ACM Multimedia, San
Francisco, CA, 1995, pp. 333-344.

[6] B.N. Levine and J.J. Garcia-Luna-Aceves, “A Comparison of Reliable
Multicast Protocols,” Multimedia System, vol.6, no.5, 1998, pp. 334-348.

[7] J. Lin and S. Paul, “RMTP: A reliable multicast transport protocol,” IEEE
INFOCOM ’96 , 1996, pp. 1414-1424.

[8] P. Radoslavov et al., “A Comparison of Application-level and Router-
assisted Hierarchical Schemes for Reliable Multicast,” IEEE/ACM Trans.
Networking, vol.12, no.3, 2004, pp. 469-482.

[9] Y. Yang, J. Wang and M. Yang, “A Service-Centric Multicast Architecture
and Routing Protocol,” Proc. Int’l Conf. Parallel Processing(ICPP ’06).

[10] E-K Lua, J. Crowcroft, M. Pias, R. Sharma and S. Lim, “A Survey and
Comparison of Peer-to-Peer Overlay Network Schemes,” IEEE Commu-
nications, Mar. 2004.

[11] http://www.cc.gatech.edu/projects/gtitm/.

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

Authorized licensed use limited to: King Fahd University of Petroleum and Minerals. Downloaded on February 25,2010 at 09:31:33 EST from IEEE Xplore. Restrictions apply.

