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Abstract

Exploiting compile time knowledge to improve memory band-
width can produce noticeable improvements at run-time [13,
1]. Allocating the data structure [13] to separate memories
whenever the data may be accessed in parallel allowed im-
provements in memory access time of 13% to 40%. We are
concerned with dynamic storage schemes for which the com-
piler can predict some of the access patterns of parallelized
programs. A storage scheme provides a mapping from array
addresses into storages. However, finding a conflict-free stor-
age scheme for a set of data patterns is NP-complete. This
problem is reduceable to weighted graph coloring. Optimiz-
ing the address transformation is investigated by using: (1)
constructive heuristics, (2) neural methods, and (3) genetic
algorithms. The details of implementation of these differ-
ent approaches are presented. Using realistic data patterns,
simulation shows that memory utilization of 80% or higher
can be achieved in the case of 20 data patterns over up to
256 unbuffered parallel memories. The neural approach was
relatively very fast in producing reasonably good solutions
even in the case of large problem sizes. Convergence of pro-
posed neural algorithm seems to be only slightly dependent
on problem size. Genetic algorithms outperformed all others
and are recommended for advanced compiler optimization
especially for: (1) large problem sizes, and (2) applications
which are compiled once and run many times over different
data sets.

1 Introduction

There is pressing need for innovative memory architectures
and organization [8, 2] to reduce bandwidth unbalancing
between processor and main memory. One problem is how
to map data structures onto parallel memories so that to
favor a class of access patterns [2].
Interleaving causes significant performance impairment

due to non-uniform memory access in the case of stride and
block accesses. Sohi [14] proposed bit-wise boolean address
transformations for vector processors in order to determine
the memory number where a given array element should be
stored. Buffers at memory inputs and outputs were used
to reduce the effects of transient degradation in pipelined
memories. Single linear and nonlinear data patterns like

diagonal and coils can be accessed without conflicts by using
multiskewing [3] which uses different linear skewing schemes
over different sections of the array.
Improving memory bandwidth in hierarchical memory

systems aims at exploiting compile time knowledge to reduce
unnecessary data transfer between processor and main mem-
ory. Compiler optimization that attempts maximizing tem-
poral and spatial localities and minimizing mapping conflicts
produced encouraging results [12, 9]. Optimized programs
for direct mapped caches resulted in lower miss ratio [12]
than unoptimized programs operating on a set associative
cache of the same size.
To reduce memory conflicts in multiprocessors, compiler

directed compaction-based data partitioning [13] was ap-
plied to a class of synchronous dataflow computations. The
data structure is allocated to separate memories whenever
the compaction algorithm finds that data may be accessed
in parallel. Partial duplication of data was also used. Im-
provements in performance ranging from 13% to 40% were
obtained. Another technique called compiler directed page

coloring [1] uses compiler’s knowledge of the access pattern
of parallel applications to direct run-time virtual memory
page mapping. Here the compiler (Stanford SUIF) explic-
itly attempts predicting the access patterns of compiler par-
allelized applications which gives more that 50% improve-
ment over a standard page mapping policy.
We are concerned with storage schemes for which the

compiler can predict some of the array data patterns that are
accessed at run time. Our objective is to find address trans-
formation, as part of processor address translation, that
minimizes overall access time for arbitrary sets of data ac-
cess patterns. Finding conflict-free storage scheme for ac-
cessing an array by using arbitrary sets of data patterns
is NP-complete. This problem is reduceable to weighted
graph coloring. Optimizing the address transformation is
investigated by using: (1) constructive heuristics, (2) neural
methods, and (3) genetic algorithms.
This paper is organized as follows. Section 2 presents

some background. In section 3, we review the basis for data
patterns and storage schemes. In sections 4 we present three
compiler methods for synthesizing storage schemes. Evalu-
ation of synthesized storages for each method is carried out
in Section 5. Conclusions are presented in Section 6.
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(b)  Loop body: A(i , j)=F( A( i , j - k ), . .)
       Address bits:  j3  j2  j1  j0  i2  i1  i0

(c)   Loop body: A(i , j)=F( A( i -2k, j), . .) .
        Address bits:  j3  j2  j1  j0  i2  i1  i0

(d)  Loop body: A(i , j)=F(A(i - k , 2 j), . .) .
       Address bits:  j3  j2  j1  j0  i2  i1  i0

i
j Dependence direction Dependence direction

Dependence direction Dependence direction

(a)  Loop body: A(i , j)=F( A( i - k , j ), . .)
      Address bits:  j3  j2  j1  j0  i2  i1  i0

Different instancesBASIS BASIS

BASISBASIS

Instance origin

Figure 1: Patterns: (a) rows, (b) columns, (c) 2 × 4 block,
and (c) row with stride 2

2 Background

Figure 1 shows an 8×16 array that is partitioned into a set of
8-elements row pattern (a), column pattern (b), 2× 4 block
pattern (c), and row with stride-2 pattern (d). The patterns
shown are accessed during execution of given loops which
have loop-carried dependencies. The accessed patterns are
dictated by the data dependence and compiler restructuring.
Consider the parallel access to 8 memories for the ar-

ray elements a(i, j) shown in Figure 1-(a) and notice that
components (j2, j1, j0) take all possible combinations for the
8 array elements of each pattern instance. In Figure 1-
(a), the accessed pattern (T1) consists of a sub-row of 8
successive elements of array A. T1 is associated a basis
B(T1) = {g2, g1, g0}, where g2, g1, and g0 are canonical vec-
tors. Note that (j2, j1, j0) are the components of (i, j) over
the basis B(T1), i.e. projection of (i, j) over B(T1). Note
that when accessing any instance of the same pattern the
address bits (of its elements) other than those defined over
its basis are constant. These bits are used as the pattern
origin. For example, (j3, i2, i1, i0) represent the pattern ori-
gin of T1 and used to select one given instance. By changing
the origin we can access different pattern instances.
Pattern T2 shown on Figure 1-(b) allows accessing sub-

columns of 8 successive elements. The basis of T2 is B(T2) =
{f2, f1, f0}. Finally, patterns T3 and T4 shown in Figures 1-
(c) and (d) have basis of B(T3) = {g1, g0, f0} and B(T4) =
{g3, g2, g1}, respectively.
Finding a storage scheme that allows conflict-free access

to one of the above patterns does not pose any problem.
During pattern access, one may take the components of ac-
cessed elements over the pattern basis as storage numbers.
We are interested in finding efficient storage schemes that
allow minimum access time for an arbitrary set of data pat-
terns.

3 Analysis of storage schemes

Consider a storage matrix M for the data patterns T1, T2,
T3, and T4 that is formed by a 3 × 7 matrix which can be
selected as:

M.x
b

=

(

f2 f1 f0 g3 g2 g1 g0

1 0 1 0 1 0 0
0 1 0 0 0 1 0
0 0 1 1 0 0 1

)

.











i2
i1
i0
j3
j2
j1
j0











(1)

where addition and multiplication are modulo 2. The pat-
tern sub-matrixMTk is formed by the m columns ofM that
are the images by M of all canonical vectors of basis B(Tk).
For example MT1

and MT2
are:

MT1
=

(

g2 g1 g0

1 0 0
0 1 0
0 0 1

)

MT2
=

(

f2 f1 f0

1 0 1
0 1 0
0 0 1

)

For this consider the parallel access to some instance of
pattern T3 for which the origin is (i2, i1, 0, j3, j2, 0, 0) and
B(T3) = {f0, g1, g0}. Let x

b be the projection of (i, j) over
B = ∪1≤k≤4B(Tk) so that the accessed elements of T3 are
defined by {xb} = {(i2, i1, i0, j3, j2, j1, j0)} = (0, 0,−, 1, 1,−,
−), where i0, j1, j0 take all possible combinations of bits. In
this case, the element a(i, j) is stored into memory:

M.xb =

(

f2 f1 f0 g3 g2 g1 g0

1 0 1 0 1 0 0
0 1 0 0 0 1 0
0 0 1 1 0 0 1

)

.
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The product Mxb can be decomposed into the following
sum:

M.xb =

(

f2 f1 g3 g2

1 0 0 1
0 1 0 0
0 0 1 0

)

.

(

0
0
1
1

)

⊕

(

f0 g1 g0

1 0 0
0 1 0
1 0 1

)

.

(

i0
j1
j0

)

=

(

1
0
1

)

⊕MT3
.

(

i1
j1
j0

)

(2)

The parallel access to instances of T3 only requires that
MT3

be non-singular. Summing a constant to MT3
xb(T3)

changes the naming of the storages but maintain one-to-one
mapping between the elements of the accessed pattern and
the memories. It can be easily proved thatM allows parallel
access to patterns T = {T1, . . . , Tq} if and only if each sub-
matrix MTk

is non-singular.
Figure 2 shows the mapping of each array address (i, j)

into the memory module number M(i, j) where array ele-
ment a(i, j) is stored, i.e. M(i, j) = Mx and x is being
the projection of (i, j) over B. Here all four patterns can be
accessed without conflicts because all corresponding pattern
matrices are non-singular. SinceMT1

has full rank, the offset
can be taken as (i2, i1, i0, j3) because B(T1) = {j2, j1, j0}.
It can be easily shown that all array elements which are
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Figure 2: Mapping of array element (i, j) to memoryM(i, j)
for 8 memories

Pattern T1

Pattern T3

Pattern T2

 M0       M1      M2      M3      M4       M5      M6      M7
 0,0       0,1      0,2      0,3      0,4       0,5      0,6      0,7
 0,9       0,8     0,11    0,10    0,13     0,12    0,15   0,14
 1,5       1,4      1,7      1,6      1,1       1,0      1,3     1,2
1,12     1,13    1,14    1,15     1,8       1,9     1,10   1,11
 2,2       2,3       2,0      2,1      2,6       2,7      2,4     2,5
1,11      2,10     2,9      2,8     2,15    2,14    2,13   2,12
 3,7        3,6      3,5      3,4      3,3       3,2      3,1     3,0
3,14      3,15    3,12   3,13     3,10    3,11      3,8     3,9
 4,4        4,5      4,6      4,7      4,0       4,1      4,2     4,3
4,13      4,12    4,15   4,14      4,9       4,8     4,11   4,10
 5,1        5,0      5,3      5,2      5,5       5,4      5,7     5,6
 5,8        5,9     5,10    5,11    5,12    5,13     5,14   5,15
 6,6        6,7      6,4      6,5      6,2       6,3      6,0     6,1
6,15      6,14    6,13    6,12    6,11    6,10      6,9     6,8
 7,3        7,2      7,1      7,0      7,7       7,6      7,5     7,4
7,10      7,11     7,8      7,9     7,14    7,15     7,12   7,13

Pattern T4

Offset
within
each
memory
(i2i1i0j3)

Instance of

Instance of

Instance of

Instance of

Figure 3: Storage of elements (i, j) into memories and offset

mapped to the same memory fall into distinct offsets if
and only if the sub-matrix MT1

is non-singular. Figure 3
shows the storage of array elements (i, j) into the eight
memories. Each array element a(i, j) is stored into mem-
ory M(i, j) =Mx at offset (i2, i1, i0, j3).
Now we study the NP-completeness. Suppose we are

given a vector space Zm
2 , set of variables B = {tm−1, . . . , t0},

and a set Γ = {T1, T2, . . . , Tq} such that B(Tk) is any set of
n vectors of B. Each vector tu ∈ B must appear in some
B(Tk). The problem is to assign each tu ∈ B a vector in
Zm

2 , such that for all Tk, the vectors assigned to all tu in
Tk are linearly independent. We call this problem linear

independence satisfiability (LIS). Consider the case where
m = 2 and |B(Tk)| = 2 for all Tk ∈ T . We call this problem
2-LIS. The vectors in Z2

2 are:

z0 =

(

0
0

)

z1 =

(

1
0

)

z2 =

(

0
1

)

z3 =

(

1
1

)

Note that z0 cannot be assigned to any variable. Let Z
∗ =

{z1, z2, z3}. Any two distinct members of Z
∗ are linearly

independent. Therefore, for each B(Tk) = {tx, ty} we must
assign to tx and ty distinct members of Z

∗. We call (B,Γ)
the conflict graph of T . Each vertex in the graph is a variable
tx, and there is an edge between tx and ty if and only if
{tx, ty} is in some Tk. We can solve 2-LIS if and only if the
conflict graph is 3-colorable.
2-LIS is obviously in NP. To prove that 2-LIS is NP-

complete, consider an arbitrary undirected graph. For all

the vertices of degree greater than zero, we create a variable.
For each edge (tx, ty), we create a Tk = {tx, ty}. We use the
algorithm for 2-LIS to assign each tx a value in Z∗. We use
this assignment to color the non-zero degree vertices of the
conflict graph. We then color the degree-zero vertices with
some fixed color. This clearly show that LIS is NP-complete.
Note that finding a general storage scheme for 4 memory

units is NP-complete, Also note that we can build conflict
graphs only for m = 2. We need to find a model of stor-
age schemes for m > 2, from which good heuristics can be
derived.

4 Synthesis of heuristic storage schemes

The access frequency f(Tk) of pattern Tk is the number of
times a pattern is accessed. Given bases vectors t and t′,
the weight of edge (t, t′) is ω(t, t′) =

∑

t,t′∈B(Tk)
f(Tk). The

weight of t is ω(t) =
∑

t′∈B
ω(t, t′).

The number of access cycles C(M) for a combined stor-
age scheme M is the sum of the access cycles of all of
its q patterns T1, . . . , Tq. The least number of cycles to
access all the patterns is F (M) =

∑q

i=1
f(Ti). If each

pattern T is accessed f(T ) times, then we need C(M) =
∑q

i=1
f(Ti)2

n−rank(MTi
) cycles if scheme M is used. The

performance function is U(M) = F (M)/C(M) that is a
lower bound on parallel memory utilization for the storage
scheme M .
We present the details of three compiler optimization

methods for finding the storage scheme which are: (1) con-
structive coloring, (2) neural methods, and (3) genetic algo-
rithms.

4.1 Weighted coloring with node splitting

Weighted coloring with node splitting (WCNS) operates on
weighted conflict graphs and perform node splitting when it
fails in coloring a node. WCNS repeats until all the nodes
are colored while always choosing an uncolored node v with
the highest weight. Node v is colored with the smallest
available color that is not used by its neighbors. In the case,
all the available colors have been assigned to the neighbors of
the current node v, then v is split into two nodes v′ and v′′.
The splitting operation must divide the pattern bases that
contain v into two groups which nearly have equal weights.
Whenever a node is split, WCNS re-evaluate the weights for
all uncolored neighboring nodes and restart again.
A node u that is present in only in one pattern basis has

necessarily n − 1 neighbors. Such a node u can always be
colored without splitting. A node v that is split is necessarily
present in more than one pattern basis because it has at least
n neighbors that are all assigned the n colors. Splitting
node v into v′ and v′′ means that some of the pattern bases
that contain v will be represented by v′ and the other bases
will be represented by v′′. Node splitting has the effect of
reducing the degree of conflicts with other vectors at the
cost of duplicating the encoding of vectors (1s) in the storage
matrix.
It can be easily shown that the time complexity of WCNS

is O(m3 −m2n), where m is the number of nodes, n is the
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Figure 4: Neural network NN-1

number of colors, and 2n is the number of memories.

4.2 A neural approach

An artificial Neural network (NN) [11] is a collection of
interconnected neurons each has a number of input synapses,
a body, and output synapse. Let vi be the output of neuron
ni and wj,i be the weight of synapse sj,i that is connecting
the output of neuron nj to input of ni. The output of neuron

ni is a non-linear unit step function vi = F (
∑N

j=1
wj,ivj −

θi), where N is the number of neurons and θ is a threshold.
The NN architecture most commonly used in combina-

torial optimization problems [11] is the feedback network

(FN) [7]. The feedback causes the network to iteratively
produce transient solutions before reaching a stable state.
In FN the energy function (E = − 1

2

∑

i

∑

j
wi,jvivj) will

be in a local optima when the network converges [7, 10].
Therefore, the designer has to: 1) define how a network
output should be decoded into a solution, and 2) map the
objective function into the energy function. This mainly
consists of setting the synaptic weights.
Finding correlated non-singular matrices is complex. We

use more flexible conditions that are likely to produce non-
singular matrices which are: 1) all columns and non-zero,
2) all rows are non-zero, and 3) promotion of dissimilar as-
signment of values to neighboring components of distinct
vectors. Two NNs are presented to promote generation of
vectors that are linearly independent which are denoted by
(NN-1) and (NN-2).
In NN-1, the net consists of three blocks of neurons which

are A(n,m), B(n, q), and C(.,m) as shown on Figure 4-a.
Every neuron in block A represents one bit in the storage
matrix which means that A will be the solution. There
are 2n memories and m distinct vectors in the union of all
pattern bases. All neurons in A have a threshold of zero.
Each column of neurons of B represents one pattern. Basis
vector ek is associated column k of C which has one neuron
for each pattern basis (at most q) to which ek belongs to.
In other words, columns of C have different sizes and the
maximum size of C is q ×m. All neurons in B and C have
a threshold of −0.5.

m columns

   n
 rows

Each neurons corresponds to
one bit of the storage matrix

a -  NN-II is a direct image of storage
      matrix, each column correponds
      to a basis vector.

-wtp

-wtp

Neural network II Block of neighboring vectors

-wcp

-wcp

b - A neuron U of column X is connected to each neuron
     is the same column and to each neuron V of column Y
     if X and Y are in the basis of at least one pattern.

U

XY

V

Figure 5: Neural network NN-2

All synaptic connections are inter-block as shown in Fig-
ure 4-b. The output of one neuron of B, which corresponds
to a pattern T , has connections to only row neurons of A
that corresponds to the restricted matrix MT . The weight
of each of these connections w(T ). The output of one neu-
ron of C, corresponding to a pattern T , and all neurons of
A in the same column have w(T ) as weight.
All connections departing from A have weight of −1.

Each neuron in A is connected to all neurons of C in the
same column. Also each neuron in A, corresponding to a
basis vector ej , is connected to all neurons of C correspond-
ing to any pattern whose basis contains ej . The connections
between A and C guarantee that all columns of A are non-

zero. At the ith iteration, the output vi(t+1) of a neuron of
C is 1 as long as its inputs are all zeros (threshold is −0.5):

vi(t+ 1) =

{

1 if Si > θi

vi(t) if Si = θi

0 if Si < θi

where, Si =
∑N

j=1
wj,ivj . This causes one of the neu-

rons of A in the same column to output a 1, which in turn
forces the outputs of all neurons in the same column to out-
put zeros. Similarly, connections between blocks A and B
guarantee that all rows of A are non-zero.
When the output of a neuron of A is 1, the chances of

another neuron getting 1 in same row of the restricted block
(matrix) are reduced. At least one of the neurons in that
row of B will go off and hence the input sum of these vectors
gets reduced. This guarantees that neighboring components
of vectors of A get dissimilar assignments of values.
The update approach consists of selecting the neuron ni

whose |Si− θi| is the largest. The neuron output is updated
if needed (different) in which case we must propagate the
updated values wherever necessary prior to restarting the
next iteration. If an update is not required (same value),
then the neurons are visited in decreasing order of |Si − θi|
until an update is found or the algorithm terminates.
The time complexity of NN-1 is O(N2+kN), where N =

nm+q(n+m) is the number of neurons and k is the number
of iterations. From our experience k is very close to m+ n.
NN-2 is based on the idea of force directed optimization

(FDO) with the aim of producing dissimilar assignments of
vectors in sub-matrices associated to patterns. Figure 5-a
shows NN-2. In NN-1 similar action was generated, but with
external forces. In NN-2 there is only one block which cor-

4



a - Encoding

Chromosome

Rnadom cut

Parent 1 (X) Parent 2 (Y)

Offspring 1 Offspring 2

1  0  0  0  1  1  0  1
1  0  1  1  0  0  0  1
0  1  1  0  1  1  0  0

6  1  3  2  5  5  1  6

Storage matrix

Chromosome

b - 1-cut crossover

Chromosome

Rnadom cut

Parent 1 Parent 2

Offspring 1 Offspring 2

c - 2-cut crossover d - mutation

Chromosome

6  1  3  2  5  5  1  6

   Randomly
selected gene

Random number in
      {0,...,7} - {5}

6  1  3  2  5  2  1  6

x1 x2 y1 y2

x1 y1 x2y2

Figure 6: GA: encoding of solution (a), 1-cut crossover (b),
and 2-cut crossover (c)

responds to A in NN-1. In the FDO technique, the neurons
corresponding to each basis vector directly enforce neurons
of neighboring vectors to have distinct assignments. Two
basis vectors are neighbors if they belong to the basis of at
least one data pattern.
The outputs of a neuron in the ith row of kth column are

connected to all neurons in kth column and to all neurons of
the ith row which correspond to neighboring vectors. This
means that row connections are intra-block with respect to
each data pattern. The weight of a row synapse that is
linking neurons ni,j to ni,k is proportional to the sum of
access frequencies of all the patterns to which both basis
vectors ej and ek belong to. The weight is negative to cause
an inhibitory action on the receivers. The setting of row
synapses is meant to prevent neurons in the same row of
having similar values.
The weight of a column synapse is proportional to the

access frequency of all patterns (wtp) the generating neuron
(also basis vector) belongs to. Here also the weight is nega-
tive. Column synapses prevent assigning ones to more than
one row in a column. Using coloring heuristics, the least
weighted vector is generally split when no color is available.
Having two 1s or more for a basis column vector is equiva-
lent to splitting that vector. Since the synaptic links have
−wtp as weights, highly weighted neurons in a column are
unlikely to have more than one 1. This means that the cor-
responding basis vector is unlikely to be split. The synapses
of NN-2 are shown on Figure 5-b.
The thresholds are set in the neurons of NN-2 to −wtp to

give priority of output update to neurons in highly weighted
vectors. Hence at the beginning when all neuron outputs
are zero, Si = wtpi and the highest weighted vector (highest
wtpi) will be updated first which corresponds to updating
the coloring of the highest weighted node first.

4.3 A genetic approach

Genetic evolution [4, 6] is based on: (1) selection of the
fittest gene, and (2) reproduction or crossover that consists
of recombining segments of parents’ chromosomes to gener-
ate offsprings’ chromosomes. The fitness of new generation
is expected to improve because only fit individuals partici-
pate in the reproduction. Hence the fitness of a given solu-
tion should be connected to the objective function.
The encoding scheme [5] takes a solution or chromosome

and encodes it as a string of integers or genes. Here, a solu-

Crossover Mutation Termination Population
probability probability condition size

Pc Pn MaxGen Psize

Typ. 0.5 to 1.0 0.01 to 0.09 prob. size prob. size
Sui. 0.65 0.05 n+q n+q+10

Table 1: Typical and suitable control parameters

tion is an n ×m Boolean storage matrix M . Each column
of M is encoded by its integer. In this way a solution M is
a chromosome of m integers each falls in the range between
0 to 2n − 1 (Figure 6-a). MT is a subset of n integers out
of m (m ≥ n). The high fitness of solution M can easily
be attributed to the high fitness of some sub-matrices MT .
Therefore, the fitness of the solution M can be attributed
to the fitness of some sub-matrices MT and the fitness of a
subset of its column vectors which are its genes. The fitness
of a solution should measure its goodness. The fitness func-
tion is the parallel memory utilization U(M) which increases
with increasing goodness.
The initial population must generally satisfy: (1) all pos-

sible genes are in the population chromosomes, and (2) the
chromosomes are of various and diverse combination of genes.
A large enough initial population was randomly generated
and each gene was selected as a random integer from 0 to
2n − 1.
The selection is based on survival for the fittest which

consists of keeping good genes for latter recombination by
using the crossover operator. We used a roulette wheel selec-
tion method in which every solution is allocated a pie slice
proportional to its normalized fitness. Clearly, this method
guarantees that selecting a solution for reproduction is pro-
portional to its fitness.
The crossover operator interchanges randomly selected

substrings of parents’ chromosomes to form chromosomes of
offsprings. We used two methods for crossover which we call
1-cut and 2-cut. In 1-cut crossover a random cut point is
selected as shown in Figure 6-b. In 2-cut crossover two ran-
dom cut points are selected as shown in Figure 6-c. Notice
that crossover is applied here with probability (pc). The mu-
tation operator consists of replacing the selected gene with
a random gene corresponding to an integer between 0 and
2n−1. This is shown in Figure 6-d for n = 3. This mutation
operator was applied with probability (pn).
Table 1 shows the typical and used (suitable) control

parameters in our implementation. The initial population
size Psize was experimentally set to n + q + 10. It was ob-
served that the termination condition largely depends on
the problem size. We experimentally set an upper bound
on the number of iterations MaxGen of our GA. The GA
terminates if MaxGen = m+ q iterations completed, or an
optimum solution is found, or the objective function did not
improve by at least 5% in the past 4 consecutive iterations.

5 Evaluation

The evaluation is based on: 1) generating realistic sets of
data patterns, 2) synthesizing storage matrices by using
each of the proposed methods, and 3) evaluating the par-
allel memory utilization U for each method.
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Figure 7: Utilization of parallel memories using WCNS
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Figure 8: Utilization of parallel memories using NN-1

A problem instance is represented by tuple (n, q) which
corresponds to arrays that are accessed by q data patterns
in a system of 2n memories. We study the case of 16, 64,
and 256 memories and for each case we vary the number
of patterns q between 3 and 20. For each instance of (n, q)
we generate 50 sets of access patterns. To generate real-
istic access patterns we use a correlated selection function
for the basis vectors of each data pattern which employs a
normal distribution of basis vectors over a set of size 3n.
This promotes generation of neighboring vectors which has
the effect of generating combination of patterns like rows,
columns, rectangular blocks of different shapes, and power-
of-2 strides. This largely covers the case of arrays referenced
in loop-carried dependencies of many scientific programs.
Figures 7, 8, 9, and 10 show the parallel memory utiliza-

tion for different instances of the number of patterns and
number of memories. In the next subsections we evaluate
the proposed synthesis methods in the case of: (1) power-
of-2 access patterns, and (2) integer stride access.
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Figure 9: Utilization of parallel memories using NN-2
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Figure 10: Utilization of parallel memories using GA 2-Cut

5.1 Evaluation of constructive heuristics

Near optimum memory utilization U (Figure 7) was ob-
tained when the number of data patterns was below 8 re-
gardless of the number of memories. U smoothly decreases
with increasing the number of data patterns which seems to
dominate compared to variation in the number of memories.
It may seem surprising, however, in our problem splitting a
node increases the cost only if it causes two or more vec-
tors in the storage matrix be linearly dependent. Splitting a
node may not increase the cost but at the contrary it is likely
to cause the resulting vector be linearly independent with
respect to its neighbors. Assume vector w is member of two
pattern bases which are (u1 = (1, 0, 0) and u2 = (0, 1, 0))
and (v1 = (0, 1, 0) and v2 = (0, 0, 1)). WCNS splits w and
assigns it (0, 0, 1) and (1, 0, 0), respectively. Thus the over-
all assignment of w is (1, 0, 1) which is linearly independent
with respect to (u1, u2) and (v1, v2).
The above Figures show that memory utilization higher

than 80% can be achieved by WCNS in the case of un-
buffered parallel memories with an arbitrary but given set
of up to 20 data patterns.

6



We also studied the case of integer strides. Sohi [14]
proposes a storage scheme that consists of a manually syn-
thesized 3×12 Boolean matrix which is intended to improve
performance of stride access in the case of 8 memories. The
use of buffers at input and output of memories smooths out
the transient behavior of memories and gives near optimum
memory utilization. For the case of integer stride access, we
evaluated the average number of cycles for Sohi’s scheme (8
memories) which is 2.43 cycles when accessing strides rang-
ing from 1 to 64 with random starting address. The number
of cycles is an indicator of the degree of parallel memory
conflicts. The average number of cycles we obtained for
WCNS was 2.57 cycles. Sohi’s scheme has better memory
utilization.

5.2 Evaluation of neural methods

The neural approach could not find storage schemes with
competitive memory utilization as shown in Figures 8 and 9.
NN-1 was not stable in the case of small number of patterns
which is due to poor feedback and lack of data constraints
(few patterns) flowing from blocks B and C to A. In this
situation, NN-1 became loose and randomly behaved. The
utilization generated from NN-2 was smooth from the begin-
ning which means that the coupling among the neurons in
NN-2 was sufficient to direct the network to more refined so-
lutions. Comparing the obtained memory utilization, NN-2
outperformed NN-1 for relatively small number of patterns
but the opposite was happening for relatively large number
of patterns. The crossover is nearly for 10 patterns.
The performance of NN-1 and its execution time were not

very sensitive to increase in the number of patterns which
suggests that NN-1 could be a good approach for obtaining
fast solutions in the case of large problems. NN-2 requires
much more time than NN-1 because of its larger number of
connections that must be considered in the update proce-
dure. Moreover, NN-1 update procedure could be greatly
simplified and accelerated by using logical operators instead
of arithmetic operators. This can be done by Oring the out-
puts of neurons in one column and feeding the result to the
corresponding neurons in block C. Similar approach can be
used in the horizontal direction.

5.3 Evaluation of the genetic approaches

Figure 10 memory utilization for GA 2-Cut which slightly
outperforms GA 1-Cut (not shown). GA 2-Cut was expected
to do better because it adds more disruption and variety to
population’s chromosomes which is an important require-
ment [4] for small populations. Note that for all methods
U was more sensitive to the number of patterns than to
the number of memories. For large number of patterns and
memories, GA 2-Cut gave the best memory utilization with
smaller variance compared to all other studied methods.
For the case of stride access, the lowest average num-

ber of cycles we obtained was 2.273 cycles which was gener-
ated by using GA 2-Cut and the others were 2.342 from GA

1-Cut, 2.57 from WCNS, and 2.67 from NN-1 and NN-2.
Sohi’s 3× 12 Boolean matrix which is manually synthesized

requires on the average 2.43 cycles. GAs may generate solu-
tions that outperform manually optimized schemes even for
small problems. This indicates that GAs can be very useful
for synthesizing storage schemes for large problem instances
especially in the case of programs that are compiled once
and run many times over different data sets.
Both GA 1-Cut and GA 2-Cut have similar execution

time which is nearly 4 times that of NN-2 and 50 times that
of WCNS and NN-1.

6 Conclusion

The aim of this work is to exploit compile time knowl-
edge (access patterns) of parallelized programs to improve
bandwidth of parallel memory systems at run-time. Find-
ing a conflict-free storage for a set of data patterns is NP-
complete. This problem is reduceable to weighted graph col-
oring. The aim is to find a method for the design of efficient
storage scheme that can be implemented as part of pro-
cessor address translation. We investigated three methods
of allocating array data to memories which are: (1) con-
structive heuristic, (2) neural methods, and (3) genetic al-

gorithms. Simulation shows that memory utilization higher
than 80% for unbuffered parallel memories can be achieved
for arbitrary sets of up to 20 data patterns. Using the above
array organization with buffering [14] at input and output
of parallel memories may produce near optimum memory
utilization. Constructive coloring heuristics are generally
preferable during program development. Because of their
execution time, genetic algorithms are recommended for ad-
vanced compiler optimization for synthesizing efficient stor-
age schemes for programs that are compiled once and run
many times over different data sets. One neural approach
was relatively very fast in producing a reasonably good so-
lution especially in the case of large problem sizes where
genetic algorithms require excessive running time. Speed-
ing up the convergence of the neural network can be further
accelerated by using logical operators instead of arithmetic.
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