
Evaluation of Neural and Genetic Algorithms

For Synthesizing Parallel Storage Schemes

Mayez Al-Mouhamed ∗ and Hussam Abu-Haimed †

Abstract

Exploiting compile time knowledge to improve memory bandwidth can produce no-
ticeable improvements at run-time [30, 6]. Allocating the data structure [30] to sep-
arate memories whenever the data may be accessed in parallel allows improvements
in memory access time of 13% to 40%. We are concerned with synthesizing compiler
storage schemes for minimizing array access conflicts in parallel memories for a set of
compiler predicted data access patterns. The access patterns can be easily found for
many synchronous dataflow computations like multimedia compression/decompression
algorithms, DSP, vision, robotics, etc. A storage scheme is a mapping from array ad-
dresses into storages. Finding a conflict-free storage scheme for a set of data patterns
is NP-complete. This problem is reduceable to weighted graph coloring. Optimizing the
storage scheme is investigated by using: (1) constructive heuristics, (2) neural methods,
and (3) genetic algorithms. The details of implementation of these different approaches
are presented. Using realistic data patterns, simulation shows that memory utilization
of 80% or higher can be achieved in the case of 20 data patterns over up to 256 parallel
memories, i.e. a scalable parallel memory. The neural approach was relatively very fast
in producing reasonably good solutions even in the case of large problem sizes. Con-
vergence of proposed neural algorithm seems to be only slightly dependent on problem
size. Genetic algorithms are recommended for advanced compiler optimization espe-
cially for: (1) large problem sizes, and (2) applications which are compiled once and run
many times over different data sets. The solutions presented are also useful for other
optimization problems.

Keywords: Heuristics, memory organization, parallel memories, performance

evaluation, storage schemes

1 Introduction

There is pressing need for innovative memory architectures and organization [19, 8] to reduce
bandwidth unbalancing between processor and main memory. Current memory latency and
bandwidth are far from yearly recorded reduction in processor clock time and memory cost.
Hierarchical memory systems overcome the latency problem by storing items in the memory
level that is consistent with the frequency of their references. Thus the latency becomes

∗Computer Engineering Department, College of Computer Science and Engineering, King Fahd University,
Dhahran 31261, Saudi Arabia (mayez@ccse.kfupm.edu.sa).

†Department of Computer Science, Stanford University, Stanford, USA. (husam@leland.stanford.edu)

1

slightly slower than that of the fastest memory in the hierarchy. On the other hand, the modest
improvement in memory bandwidth has come not from technology but from improved memory
system design. Therefore, research on how to achieve high memory bandwidth focuses on how
to map data structures onto parallel memories so as to favor a class of access patterns [8].
The aim of these methods is: 1) improving bandwidth in hierarchical memory systems, and
2) mapping of some data structures onto parallel memories.
With increasing processor speed, memory interleaving was used to provide high bandwidth

through simultaneous access of consecutive addresses which fall into distinct memories. A
stride memory access is a sequence of addresses a, a + s, a + 2s, . . . , a + (2n − 1)s, where a
is the origin, s is the stride, and 2n is the number of parallel memories. Interleaving allows
conflict-free access only when the stride associated with successive references is relatively
prime to the number of memories. A study of stride distribution from actual programs
reveals [31] that 80% of references have stride 1, 10% with stride other than 1, and for k ≥ 1
a stride r2k is used in 10×2−k% of the cases. This explains why interleaving causes significant
performance impairment due to non-uniform memory access in the case of stride and block
(set of neighboring array elements) accesses. A prime number of memories [24] increases the
numbers of memories and data patterns that can be accessed without conflict but finding the
address is computationally expensive. Increasing the number of memories beyond the degree
of interleaving (super-interleaving) [7] partially contributed in reducing memory conflicts in
vector processors.
Budnik and Kuck [5] proposed storage schemes based on row-rotation for conflict-free

access to rows, and columns of arrays. Harper [16, 17] proposed a dynamic storage scheme that
optimizes access for one stride and provides increased throughput for other strides compared to
low order interleaving. Buffers at memory inputs and outputs were used to reduce the effects
of transient degradation in pipelined memories. To avoid run-time overhead in the above
schemes, Sohi [32] proposed bit-wise Boolean address transformations for vector processors
in order to determine the memory number where a given array element should be stored.
The scheme can be efficiently used for power of 2 strides. It is also profitable for non power-
of-2 strides. Linear transformations from the processor address to the storage location were
studied in [11]. Norton [27] synthesized a bit-wise transformation matrix that allows conflict-
free access to a number of power-of-2 strides. Single linear and nonlinear data patterns like
diagonal and coils can be accessed without conflicts by using multiskewing [9] which uses
different linear skewing schemes over different sections of the array.
Improving memory bandwidth in hierarchical memory systems aims at exploiting compile

time knowledge to reduce unnecessary data transfer between processor and main memory.
Compile time reordering of the data sequences proved that compiler effort can be rewarded
by noticeable improvements in memory bandwidth at run-time. Compiler optimization that
attempts maximizing temporal and spatial localities and minimizing mapping conflicts pro-
duced encouraging results [26, 20]. Specifically, optimized programs for direct mapped caches
resulted in lower miss ratio [26] than unoptimized programs operating on a set associative
cache of the same size.
To reduce memory conflicts in multiprocessors, compiler directed compaction-based data

partitioning [30] was applied to a class of synchronous dataflow computations. The data
structure is allocated to separate memories whenever the compaction algorithm finds that
data may be accessed in parallel. Partial duplication of data was also used. Improvements
in performance ranging from 13% to 40% were obtained. Another technique called compiler

2

directed page coloring [6] uses compiler’s knowledge of the access pattern of parallel applica-
tions to direct run-time virtual memory page mapping. Here the compiler (Stanford SUIF)
explicitly attempts predicting the access patterns of compiler parallelized applications. It in-
serts requests in the code for automatic prefetching and preferred color for each virtual page
which customizes the application’s page mapping policy at run-time. The SUIF compiler
achieves more that 50% improvement over a standard page mapping policy. Improving scalar
access in parallel memories is studied in [14]. In this case, compile-time scheduling of a very
low number of data transfers demonstrated that a very high percentage of memory access
conflicts can be avoided.
The hierarchical memory system is one approach to address the bandwidth mismatch

problem between the processor and the memory. For the TERA MTA supercomputer [4]
there is no hierarchical memory and the multithreaded execution pipelines can tolerate a 100-
cycle clock latency between the logic units and the memory. It is predicted that processor-
memory latency will be 104-105 cycles in the Petaflops HTMT Computer Project [33] even
with the use of exotic memory/network technology. The multimedia community [22] severely
criticized the hierarchical memory system because it provides only 1-D locality and it is
responsible for the unpredictable memory access time due to cache misses, a feature to be
avoided in dynamic media processing. There is need for new design concepts to the issue of
main-memory organization and predictability of its access time.
This paper proposes a scalable main memory system provided that the data access patterns

can be identified by the compiler, a feasible task for many synchronous dataflow computations
like multimedia compression/decompression algorithms, DSP, Vision, Robotics, etc. Specifi-
cally, we are concerned with storage schemes for which the compiler can predict some of the
array data patterns that are accessed at run time. Our objective is to find compiler predicted
storage schemes that minimize overall access time for arbitrary sets of data access patterns.
These storage schemes make the hardware transparent to the user and avoid reorganizing the
data, but require the address transformation be implemented as part of processor address
translation. A general approach for synthesizing compiler storage schemes is proposed. Given
a set of parallel memories, finding conflict-free storage schemes for accessing an array by using
arbitrary sets of data patterns is NP-complete. Finding the storage scheme that minimizes
overall access time of a given set of data patterns is reduceable to weighted graph coloring.
Optimizing the storage scheme is investigated by using three different coloring approaches
which are: (1) constructive heuristics, (2) neural methods, and (3) genetic algorithms.
This paper is organized as follows. Section 2 presents some background. In section 3,

we review the basis for data patterns and storage schemes associated to multi-pattern access.
Sections 4 summarizes the NP-completeness of the problem. In sections 5 we present synthesis
of storage schemes by using: (1) constructive heuristics, (2) neural methods, and (3) genetic
algorithms. Evaluation of synthesized storages for each case is carried out in Section 6.
Conclusions and future extensions to this work are presented in Section 7.

2 Background

It is desirable to store array data that should be simultaneously accessed into different mem-
ories so that parallel access can be achieved. For loop-carried-dependency, the order of access
to the array elements is generally constrained by the dependencies which occurs across the

3

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

(b) Loop body: A(i , j)=F(A(i , j - k), . .)
 Address bits: j3 j2 j1 j0 i2 i1 i0

(c) Loop body: A(i , j)=F(A(i -2k, j), . .) .
 Address bits: j3 j2 j1 j0 i2 i1 i0

(d) Loop body: A(i , j)=F(A(i - k , 2 j), . .) .
 Address bits: j3 j2 j1 j0 i2 i1 i0

i
j Dependence direction Dependence direction

Dependence direction Dependence direction

(a) Loop body: A(i , j)=F(A(i - k , j), . .)
 Address bits: j3 j2 j1 j0 i2 i1 i0

Different instancesBASIS BASIS

BASISBASIS

Instance origin

Figure 1: Example of patterns: sub-row pattern (a), sub-column pattern (b), 2 × 4 block
pattern (c), and sub-row with stride-2 pattern (d)

iterations. A pattern is defined as a collection of array elements that are related to each other
by some neighborhood relationship. Figure 1 shows an 8 × 16 array that is partitioned into
sets of 8-element patterns like the row pattern (a), column pattern (b), 2×4 block pattern (c),
and row with stride-2 pattern (d). To promote parallelism, the compiler restructures the loops
such that at run time the data fetched from the memory allows execution of parallel threads.
Thus the accessed patterns are dictated by the data dependence and compiler restructuring
which are generally intended to expose inherent parallelism and to promote data locality.
Figure 1 shows some access patterns that are adequate for given loop data dependencies.
The origin of a pattern instance is the coordinate of its upper leftmost element as shown

in Figure 1. Changing the origin allows access to different instances of the pattern. The array
can be seen as a collection of pattern instances. All pattern instances have the same number
of elements which is also the number of parallel memories. A perfect storage scheme must
allow fetching any instance of a given pattern in parallel which allows achieving linear speed
up in accessing parallel memories. For example, a conflict-free storage scheme for the row and
the column allows fetching any row or any column in one memory cycle. We are interested
in access patterns of arbitrary dimension but having power-of-2 elements.
Consider a parallel memory that consists of N = 2n modules. Without loss of generality,

the memory is considered as a two dimensional array of size 2d × 2d such that the element
in the ith row and the jth column is denoted by (i, j). We define a vector space F =
Zd

2 for row position. Integer i is a vector defined over F = Zd
2 which is represented by

id−1 . . . i1i0. Let B(F) = {fd−1, . . . , f0} be the canonical basis of F . A row i is expressed
as id−1fd−1 ⊕ . . . ⊕ i1f1 ⊕ i0f0. We similarly define vector spaces G for column positions
with canonical bases B(G) = {gd−1, . . . g1, g0}. Since we use 2

n memories, we are interested
in storage schemes that use n address bits out of 22d to determine a storage. For this, we
define H as a vector space for memory unit numbers and its basis B(H) = {hn−1, . . . h1, h0}.

4

Addition and multiplication are modulo 2.
The cartesian product of the vector spaces F and G is another vector space F × G with

basis B(F × G) = {fd−1, . . . , f1, f0, gd−1, . . . , g1, g0}. Vector space F × G is isomorphic to
Z2d

2 . Any location (i, j) ∈ F ×G in memory is uniquely associated with a linear combination
id−1fd−1 ⊕ . . . i0f0 ⊕ jd−1gd−1 ⊕ . . .⊕ j0g0 of the basis vectors of B(F ×G).
Consider the parallel access to 8 memories for the array elements a(i, j) shown in Figure 1-

(a) and notice that components (j2, j1, j0) take all possible combinations for the 8 array
elements of each pattern instance. In Figure 1-(a), the accessed pattern (T1) consists of a
sub-row of 8 successive elements of array A. T1 is associated a basis B(T1) = {g2, g1, g0}. The
components of all elements that fall into the same pattern instance cover all possible binary
combinations. Note that (j2, j1, j0) are the components of (i, j) over the basis B(T1), i.e.
projection of (i, j) over B(T1). Note that when accessing any instance of a given pattern the
address bits other than those over its basis are constant. These bits are used as the pattern
origin. For example, (j3, i2, i1, i0) represent the pattern origin of T1 and used to select one
given instance. By changing the origin we can access different pattern instances.
Pattern T2 shown in Figure 1-(b) allows accessing sub-columns of 8 successive elements.

The basis of T2 is B(T2) = {f2, f1, f0}. Finally, patterns T3 and T4 shown in Figures 1-(c)
and (d) have basis of B(T3) = {g1, g0, f0} and B(T4) = {g3, g2, g1}, respectively.
Finding a storage scheme that allows conflict-free access to one of the above patterns

does not pose any problem. During pattern access, one may take the components of accessed
elements over the pattern basis as storage numbers. We are interested in finding efficient
storage schemes that allow minimum access time for an arbitrary set of data patterns.

3 Analysis of storage schemes

In a system with 2n memories only n address bits are needed to find the memory in which an
array element is stored and other address bits are used to generate the offset. Each location
(i, j) ∈ F ×G has 2d components over the basis B(F ×G). Denote by V a subspace of F ×G
whose basis B(V) is formed by n vectors out of the 2d canonical vectors of B(F ×G), where
n ≤ 2d. Denote by x is the part of (i, j) that is used in finding the memory number where
element (i, j) is stored. From now on we consider vector x (also y) as the projection of some
(i, j) over V .
We are interested in finding a Boolean matrix M that causes an array to be distributed

over the memories for a given set of data patterns. Each array element a(i, j) will be stored
into memory module Mx and M will be called storage scheme. A necessary and sufficient
condition to cause the elements of an array be distributed over the memories so that to allow
parallel access to a given data pattern is that the storage schemeM is non-singular [28, 25, 1].
Consider a set Γ = {T1, . . . , Tq} of data patterns so that each pattern consists of 2

n elements.
The basis of each pattern Tk is denoted by B(Tk) = {tk,n−1, . . . , tk,0}, where tk,n−1, . . . , tk,0

are some canonical vectors chosen from B(F ×G). Each tk,u ∈ B(F ×G) for 0 ≤ u ≤ n− 1
and 1 ≤ k ≤ q and B(Tk) ⊂ B(F × G). Since each pattern instance has 2n elements, our
objective is to define a storage scheme for the array a(i, j) so that any pattern instance can
be accessed in one memory cycle. In other words, 2n elements of any pattern instance should
be distributed over the 2n memories [1]. Now, we define the basis for a set of data patterns
in order to define a combined storage scheme.

5

Definition 1 The basis B of a set T1, . . . , Tq of data patterns is the set of all distinct canonical

vectors of the bases of all patterns T1, . . . , Tq: B = ∪1≤k≤qB(Tk) = {tm−1, . . . , t0}.

The number of distinct vectors m in the union of all pattern bases always satisfies n ≤
m ≤ 2d. Consider the previously defined set of patterns {T1, T2, T3, T4} for which B =
∪1≤k≤4B(Tk) = {f2, f1, f0, g3, g2, g1, g0}. The address bits over the basis vectors of a pattern
must be extracted and used to select the storages that contains the pattern elements. For
this, we formally define these address bits that will be used to select a unique storage for each
pattern.

Definition 2 The projection of vector (i, j) ∈ F ×G over the basis B(Tk) is defined by vector
xb(Tk) = xn−1tk,n−1⊕. . .⊕x0tk,0 that is formed by the components of (i, j) over the basis B(Tk).

It is important to note that each data pattern has power of 2 elements and all instances of
a given data pattern are non-overlapping. Therefore, the projection of vector (i, j) over B(Tk)
gives the location of element (i, j) within pattern Tk and the other components of (i, j) remain
constant when accessing an instance of Tk. The constant components specify the origin of the
pattern instance. For example instances of T1 can be numbered by the components of their
elements (constant) over {f2, f1, f0, g3} which are the vectors of B − B(T1). Notice that the
offset of each element of a given instance of T1 is formed by the components over B −B(T1).
Moreover, the projection of all elements of an instance over the canonical basis of its pattern
take all possible binary combinations. Similarly, the projection of vector x over B consists
of all the address bits that contribute in the selection of the storage elements because these
address bits are the only changing bits in the address when a pattern instance is accessed.

Definition 3 The projection of vector (i, j) ∈ F × G over the basis B of is the vector xb =
xm−1tm−1 ⊕ . . .⊕ x0t0 that is formed by the components of (i, j) over the canonical vectors of
B.

Each vector (i, j) admits a projection xb over the basis B of all data patterns. For example,
vector (i, j) = fd−1id−1⊕ . . . f0i0⊕ gd−1jd−1⊕ . . . g0j0 has a projection xb = f2i2⊕ . . .⊕ f0i0⊕
g3j3 ⊕ . . . ⊕ g0j0 over the basis B = ∪1≤k≤4B(Tk). In the following we define the combined
storage matrix M that is used to evaluate the memory module number where array element
a(i, j) must be stored.

Definition 4 The combined storage associated to all data patterns {Tk : 0 ≤ k ≤ q} is a

Boolean matrix M of dimension n × m such that each array element a(i, j) is stored into

memory location Mxb.

The combined storage matrix M is a collection of columns vectors M = [Cm−1, . . . , C0],
where Cu is an n × 1 column vector. There is one-to-one correspondence between each
canonical vector tu ∈ B and column Cu of M . The column vector Cu is the image by M of
tu for 0 ≤ u ≤ n. As B(Tk) ⊂ B, then each column vector Cu of M is the image by M of
some canonical vector tk,u ∈ B(Tk). For example, the combined storage matrix M for the
data patterns T1, T2, T3, and T4 is a 3× 7 matrix which can be arbitrarily selected as:

6

M.xb =

f2 f1 f0 g3 g2 g1 g0

1 0 1 0 1 0 0
0 1 0 0 0 1 0
0 0 1 1 0 0 1

.

i2
i1
i0
j3
j2
j1
j0

(1)

Definition 5 The restricted matrix MTk of M to pattern Tk is defined by the m columns of

M that are the images by M of all canonical vectors of basis B(Tk).

The storage matrix M is m× n and there are m columns in MTk
, then MTk

is an m×m
matrix. For example, the restricted matrices MT1

, MT2
, MT3

, and MT4
are the following:

MT1
=

g2 g1 g0

1 0 0
0 1 0
0 0 1

 MT2
=

f2 f1 f0

1 0 1
0 1 0
0 0 1

 MT3
=

g1 g0 f0

0 0 1
1 0 0
0 1 1

 MT4
=

g3 g2 g1

0 1 0
0 0 1
1 0 0

Now we need to present a Lemma on M in order to cause all patterns of T be accessible in
parallel.

Lemma 1 The storage scheme M allows parallel access to a set T = {T1, . . . , Tq} of data

patterns if and only if the restricted matrix MTk
to each pattern Tk ∈ T is non-singular.

Proof Consider all the 2n elements of some pattern Tk = {(i, j)} that should all be simul-
taneously accessed when a given instance of Tk is to be accessed in parallel. The projection of
each element (i, j) over the basis B(Tk) is defined by xb(Tk) = xn−1tk,n−1 ⊕ . . .⊕ x0tk,0. When
Tk is accessed in parallel, the components xn−1 . . . x0 take all possible combinations (2

n) and
all the remaining components of (i, j) over B remain constant. Therefore, the projection of
(i, j) over the basis B, which is xb, of all the patterns can be divided into two groups as
follows.

• The projection of (i, j) over the basis B(Tk) of the currently accessed pattern Tk. These
components take all the 2n combinations when considering all accessed elements of Tk.

• The projection of (i, j) over the remaining canonical vectors of B (B − B(Tk)) which
are constant when Tk is accessed in parallel.

Hence the product Mxb can be decomposed into two terms: 1) the projection of x over
B(Tk) which is x

B(Tk), and 2) the projection of x over the remaining canonical vectors of B,
which we denote by xr. Mxb can then be written as:

Mxb =Mr.x
r ⊕MTk

.xb(Tk) (2)

The product Mr.x
r yields a constant vector because xr is the same for all the elements of Tk

that are accessed in parallel. Therefore, pattern Tk can be accessed in parallel if and only if
the restricted matrix MTk

is non-singular.

7

Pattern T2Pattern T3

Pattern T1

Pattern T4

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 1 2 3 4 5 6 7 1 0 3 2 5 4 7 6
1 5 4 7 6 1 0 3 2 4 5 6 7 0 1 2 3
2 2 3 0 1 6 7 4 5 3 2 1 0 7 6 5 4
3 7 6 5 4 3 2 1 0 6 7 4 5 2 3 0 1
4 4 5 6 7 0 1 2 3 5 4 7 6 1 0 3 2
5 1 0 3 2 5 4 7 6 0 1 2 3 4 5 6 7
6 6 7 4 5 2 3 0 1 7 6 5 4 3 2 1 0
7 3 2 1 0 7 6 5 4 2 3 0 1 6 7 4 5

Column j

R
o
w

 i

M(i,j)

Instance of

Instance of

Instance ofInstance of

Figure 2: Mapping of array element (i, j) to memory M(i, j) for 8 memories

Consider the parallel access to some instance of pattern T3 for which the origin is (i2, i1, 0,
j3, j2, 0, 0) and B(T3) = {f0, g1, g0}. The origin can be arbitrarily chosen. Let xb be the
projection of (i, j) over B = ∪1≤k≤4B(Tk) so that the accessed elements of T3 are defined
by {xb} = {(i2, i1, i0, j3, j2, j1, j0)} = (0, 0,−, 1, 1,−,−), where i0, j1, j0 take all possible com-
binations of bits when accessing pattern T3. In this case, the element a(i, j) is stored into
memory:

M.xb =

f2 f1 f0 g3 g2 g1 g0

1 0 1 0 1 0 0
0 1 0 0 0 1 0
0 0 1 1 0 0 1

.

0
0
i0
1
1
j1
j0

The product Mxb can be decomposed into the following sum:

M.xb =

f2 f1 g3 g2

1 0 0 1
0 1 0 0
0 0 1 0

.

0
0
1
1

⊕

f0 g1 g0

1 0 0
0 1 0
1 0 1

.

i0
j1
j0

 =

1
0
1

⊕MT3
.

i1
j1
j0

 (3)

The parallel access to instances of T3 only requires that MT3
be non-singular. Summing

a constant vector to MT3
xb(T3) changes the naming of the storages but maintain one-to-one

mapping between the elements of the accessed pattern and the memories.
Figure 2 shows the mapping of each array address (i, j) into the memory module number

M(i, j) where array element a(i, j) is stored, i.e. M(i, j) = Mx and x being the projection
of (i, j) over B. The mapping is obtained from Equation 1. Here all four patterns can be
accessed without conflicts because all corresponding pattern matrices are non-singular. The
elements of each instance of any pattern are uniformly distributed over all memories with
some skew. Four frames are shown in Figure 2, each corresponds to one pattern instance and
each frame contains eight distinct memory numbers. The mapping from the array address
space into memories is completely defined by the map shown in Figure 2 which identifies the
array elements that fall within each memory. Hence we need additional address bits to specify
the offset address where to find each array element within a memory.
In this example the address space is formed by 7 bits which are the components over B.

One may decide to order the element of each memory according to a specific data pattern

8

Pattern T1

Pattern T3

Pattern T2

 M0 M1 M2 M3 M4 M5 M6 M7
 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7
 0,9 0,8 0,11 0,10 0,13 0,12 0,15 0,14
 1,5 1,4 1,7 1,6 1,1 1,0 1,3 1,2
1,12 1,13 1,14 1,15 1,8 1,9 1,10 1,11
 2,2 2,3 2,0 2,1 2,6 2,7 2,4 2,5
1,11 2,10 2,9 2,8 2,15 2,14 2,13 2,12
 3,7 3,6 3,5 3,4 3,3 3,2 3,1 3,0
3,14 3,15 3,12 3,13 3,10 3,11 3,8 3,9
 4,4 4,5 4,6 4,7 4,0 4,1 4,2 4,3
4,13 4,12 4,15 4,14 4,9 4,8 4,11 4,10
 5,1 5,0 5,3 5,2 5,5 5,4 5,7 5,6
 5,8 5,9 5,10 5,11 5,12 5,13 5,14 5,15
 6,6 6,7 6,4 6,5 6,2 6,3 6,0 6,1
6,15 6,14 6,13 6,12 6,11 6,10 6,9 6,8
 7,3 7,2 7,1 7,0 7,7 7,6 7,5 7,4
7,10 7,11 7,8 7,9 7,14 7,15 7,12 7,13

Pattern T4

Offset
within
each
memory
(i2i1i0j3)

Instance of

Instance of

Instance of

Instance of

Figure 3: Storage of elements (i, j) into memories and offset

M0
M1

M63

L
O
A
D

S
T
O
R
E

L
O
G
I
C

U
N
I
T

 ADDRESS
TRANSLATION
 UNIT
 (ATU)

 PARALLEL
 MEMORY
 ADDRESS
 GENERATION

STORAGE SCHEME
 REGISTER

PREFECTCHING
 UNIT
(SHort code for
pattern instance
address and ID)

 PARALLEL
MEMORIES

ADDRESS
 PATH

 DATA
ALIGNMENT
 AND
 BUFFERING
 (DAB)

DATA L/S
 PATH

(MU)

Figure 4: Model of the parallel memory system

distribution, such as T1. If T1 is optimally implemented (MT1
has full rank) by the storage

matrix M , then all array elements that belong to any instance of T1 will be accessed with
the same offset from all memories. The reason is that the offset does not include any of the
bits that change (take all possible combinations) during an access to an arbitrary instance of
T1. In this case, T1 is called reference pattern for offset. The offset is formed by all address
bits except those that are in the basis of T1. Therefore, the offset is (i2, i1, i0, j3) because
B(T1) = {j2, j1, j0}. Note that other choices are also possible. It can be easily shown that
all array elements mapped to the same memory fall into distinct offsets if and only if the
sub-matrix of reference pattern is non-singular.
Figure 3 shows the storage of array elements (i, j) into the eight memories. Each array

element a(i, j) is stored into memory M(i, j) =Mx at offset (i2, i1, i0, j3).
The performance of a storage scheme M depends on the rank of each of its sub-matrices

that are restricted to each pattern. The rank of the restricted matrix (rank(MT)) to pattern
T gives the number of clocks needed to access each instance of T . If MT has full rank
(rank(MT) = n), then only one cycle is required for each access to any pattern instance. On
the other hand, if rank(MT) = k < n, then 2n−k cycles will be required for accessing each
pattern instance.
The parallel memory model is shown on Figure 4. The prefetching unit generates requests

9

for accessing pattern instances using a pattern identifier and pattern instance offset. A few
registers are used to hold the storage schemes for the currently accessed arrays. The address
translation unit (ATU) uses the storage scheme and pattern instance offset in generating the
parallel memory requests. Each request consists of a vector of memory numbers (M), R/W,
and offsets. In general, accessing a pattern instance takes 2n−k memory cycles if the rank
of the corresponding pattern submatrix is k ≤ n, i.e. some memories contain up to 2n−k

elements of each instance of the currently accessed pattern. The ATU buffers the requests
that are destined to each memory. Head-of-line requests are submitted to the memory unit
(MU), an access occurs, and the output data is buffered to assemble the whole data of the
accessed pattern instance. Next the data elements are alignment and delivered to the logic
unit. The parallel memory organization is intended to provide fine-grain data parallelism at
the level of the main memory system.

4 NP-completeness

Suppose we are given a vector space Zm
2 , a set of variables B = {tm−1, . . . , t0}, and a set

Γ = {T1, T2, . . . , Tq} such that B(Tk) is any set of n vectors of B. Each vector tu ∈ B must
appear in some B(Tk).
The problem is to assign each tu ∈ B a vector in Zm

2 , such that for all Tk, the vectors
assigned to all tu in Tk are linearly independent. We call this problem linear independence

satisfiability (LIS).

Lemma 2 Linear independence satisfiability is NP-complete.

Proof Consider the case where m = 2 and |B(Tk)| = 2 for all Tk ∈ T . We call this problem
2-LIS. The vectors in Z2

2 are:

z0 =

(

0
0

)

z1 =

(

1
0

)

z2 =

(

0
1

)

z3 =

(

1
1

)

Note that z0 cannot be assigned to any variable. Let Z∗ = {z1, z2, z3}. Any two distinct
members of Z∗ are linearly independent. Therefore, for each B(Tk) = {tx, ty} we must assign
to tx and ty distinct members of Z

∗. We call (B,Γ) the conflict graph of T in which each
basis vector is a vertex and an edge between two vertices is created if the corresponding basis
vectors are in at least one pattern basis. Here each vertex in the graph is a variable tx, and
there is an edge between tx and ty if and only if {tx, ty} is in some Tk. We can solve 2-LIS if
and only if the conflict graph is 3-colorable.
2-LIS is obviously in NP. To prove that 2-LIS is NP-complete, consider an arbitrary undi-

rected graph. We would like to know if this graph is 3-colorable. For all the vertices of degree
greater than zero, we create a variable. For each edge (tx, ty), we create a Tk = {tx, ty}. We
use the algorithm for 2-LIS to assign each tx a value in Z∗. We use this assignment to color
the non-zero degree vertices of the conflict graph. We then color the degree-zero vertices with
some fixed color.

We clarify the idea of the conflict graph with an example. Let B = {t0 . . . t5} and T
be as defined in Figure 5-a. The conflict graph of T is shown in Figure 5-b. This graph is
3-colorable; one coloring is shown. Thus we can make a satisfying assignment to all tx.

10

0 1 1
1 0 1

t1 t0 t5

t2 t3 t4

1 1 1
1 0 1

 t0 t1 t2 t3 t4 t5
T1 x x

T2 x x

T3 x x

T4 x x

T5 x x

T6 x x

T7 x x

(a) (b)

Figure 5: Conflict graph for the set of patterns

1

5

4 3

2
147

13

7
11

4

13

12
9

34

22

4440

36

(a)

Patterns T1 T2 T3 T4 T5 T6

Freq.

 Basis
Vectors

3

1
4
5

10

1
3
5

4

1
3
4

7

2
3
4

2

3
4
5

4

2
4
5

(a)

Figure 6: Set of pattern bases and their conflict graph

Note that finding a general storage scheme for 4 memory units is NP-complete, Also note
that we can build conflict graphs only for m = 2. We need to find a model of storage schemes
for m > 2, from which good heuristics can be derived.

5 Synthesis of heuristic storage schemes

To synthesize storage schemes we present three different approaches to weighted graph coloring
which are: (1) constructive heuristics, (2) neural methods, and (3) genetic algorithms. We
start by defining the weights and objective function.
The access frequency f(Tk) of pattern Tk is the number of times a pattern is accessed

during the running of the program. We extend the weight function to the edges and vertices
of the conflict graph, where each vertex corresponds to a basis vector. We define the weight
of an edge:

ω(t, t′) =
∑

t,t′∈B(Tk)

f(Tk)

Each vector is associated a weight that is the sum of edge weights which link this vector to
all the others:

ω(t) =
∑

t′∈B

ω(t, t′)

These definitions should be intuitive. The weight of an edge is proportional to the number
of extra CPU cycles that will be spent if the vertices of that edge are identically colored by

11

assuming that all other edge constraints are met.
Consider the set of patterns {T1, . . . , T5} that are defined using their basis vectors B(T)

which are denoted here by 1, . . . , 5 and their access frequency ω(T) as shown in Figure 6-a.
The conflict graph for the above set of patterns is shown on Figure 6-b with the weights

ω(t, t′) and ω(t). The union of the vectors of all the pattern bases is B = {1, 2, 3, 4, 5}.
The performance of a storage schemeM depends on the rank of each of its sub-matrices as

explained in Section 3. The rank of the restricted matrix (rank(MT)) to pattern T gives the
number of clocks needed to access each instance of T . In general, if rank(MT) = k ≤ n, then
2n−kf(T) cycles will be required for f(T) accesses to distinct instances of MT . The number
of access cycles C(M) for a combined storage scheme M is the sum of the access cycles of all
of its q patterns T1, . . . , Tq. If each pattern T is accessed f(T) times, then C(M) is:

C(M) =
q
∑

i=1

f(Ti)2
n−rank(MTi

) (4)

The function F (M) =
∑q

i=1 f(Ti) represents a lower bound on the number of cycles to
access all the combined patterns defined for a given storage M . Accessing an instance of
a pattern requires on the average C(M)/F (M) cycles which are needed to access 2n array
elements. When accessing F (M) pattern instances there are F (M)2n busy memory time
slots, each corresponds to one accessed array element. However, scheme M can access these
F (M)2n array elements by using C(M)2n time slots. There is no guarantee that F (M)2n

array elements can be accessed by an optimum storage scheme through only F (M) cycles.
We always have F (M) ≤ C(M). The performance function is U(M) = F (M)/C(M) which
is a lower bound on the Parallel Memory Utilization for the storage scheme M which requires
on the average C(M)/F (M) cycles to access each pattern instance.

5.1 Constructive approaches

In the following we use weighted graph coloring for allocating values (colors) to the basis
vectors. See [14, 3, 34] for more details on coloring heuristics of undirected conflict graphs

(UCGs). Here, the basis vectors are associated an UCG in which a node u represents a basis
vector and assigned the weight ω(u). An edge (u, v) is given the weight ω(u, v) that is the
extra number of memory cycles over the optimum that will be needed if u and v are given
the same color. The number of nodes in the graph is m which is also the number of basis
vectors in the union of all pattern bases. The number of colors is n which is also the number
of vectors each pattern basis.
The degree of dependence of the pattern bases is arbitrary which indicates that the conflict

graph may be formed by a collection of non-connected sub-graphs. In the following we present
two constructive coloring heuristics for synthesizing storage schemes.

5.1.1 Weighted coloring with node splitting

A first coloring heuristic called weighted coloring with node splitting (WCNS) operates on
weighted conflict graphs and performs node splitting when it fails in coloring a node.
WCNS repeats until all the nodes are colored while always choosing an uncolored node v

with the highest weight. Node v is colored with the smallest available color that is not used by
its neighbors. In the case, all the available colors have been assigned to the neighbors of the

12

5/3

4/2 3/1

2 22

44

40

36

1
14

1’
20

44

40

36

1
14

1’/2
20

2 14

2’ 8

4440

36
2/3 14

2’/1 8

20

1/1
6

1’’/3

8

3 10

11

10

13

9
12

4

7
4

7

13

13

9

9

3 7

4

10 10
7

7

4

4

12

3

3 4 410 10

7
7 4

4

a - Phase 2 : split 1 into 1 and 1’ b- Phase 3 : split 2 into 2 and 2’’ and color node 1’

c- Phase 4 : split 1 into 1 and 1’’ and
 color (2, 1’’, 2’, and 1)

3/14/2

5/3

4/2 3/1

5/3

1’/2

 1 2 3 4 5
 1 1 1 0 0
 M= 1 0 0 1 0
 1 1 0 0 1

Color 1

Color 2

Color 3

d - Final storage matrix

Figure 7: WCNS phases (a,b, and c) and resulting storage matrix

current node v, then v is split into two nodes v′ and v′′. The splitting operation must divide
the pattern bases that contain v into two groups which nearly have equal weights. Whenever
a node is split, WCNS re-evaluate the weights for all uncolored neighboring nodes and restart
again.
A node u that is present only in one pattern basis has necessarily n− 1 neighbors. Such a

node u can always be colored without splitting. A node v that is split is necessarily present
in more than on pattern basis because it has at least n neighbors that are all assigned the n
colors. Splitting node v into v′ and v′′ means that some of the pattern bases that contain v
will be represented by v′ and the other bases will be represented by v′′. Node splitting has
the effect of reducing the degree of conflicts with other vectors at the cost of duplicating the
encoding of vectors (1s) in the storage matrix.
Figure 7 shows the coloring by WCNS of the set of patterns displayed in Figure 6. In

Phase 1, the heuristic colors nodes 3, 4, and 5 in order of decreasing weights. In phase 2, it
splits node 1 into 1 and 1′ because the neighbors of 1 have all available colors (Figure 7-a). In
phase 3, it splits node 2 into 2 and 2′ for the same reason and color 1′ (Figure 7-b). Finally, in
phase 4 (Figure 7-c) the heuristic splits 1 again into 1 and 1′′ which makes all the remaining
nodes colorable. The resulting storage matrix is shown in Figure 7-d.
We analyse the time complexity of WCNS. In the worst case we have a fully connected

graph with m nodes and each has m− 1 edges, where m is the number of distinct vectors in
the basis of all patterns. An upper bound on the number of splits of a node with m− 1 edges
is m− n, where n is number of colors. Each split requires updating of the graph with a cost
of O(m). Therefore, the time complexity of WCNS is O(m3 −m2n).

13

5.1.2 A clustering-based heuristic

The clustering (CA) heuristic considers each pattern basis and uniformly distributes its vectors
over a set of clusters, where each cluster is associated to a color. The distribution is uniform
because distinct pattern basis vectors are assigned to distinct clusters. To minimize the
conflicts, a vector is mapped to the cluster whose conflict with the vector is the least among
all clusters. The conflict between a vector and a cluster depends on the vectors which are
already assigned to the cluster. In the following we present this heuristic in more detail.
Initially, for each color j (0 ≤ j ≤ n − 1) we create an empty cluster Cj. The pattern

bases are sorted in the decreasing order of their weights and the pattern basis BT with the
highest weight is taken first.
Let’s BT = {v0, . . . , vn−1} be the current pattern basis. The algorithm evaluates the

conflict array conf(i, j) for each vi ∈ BT and each cluster Cj, where conf(., .) is an n × n
array. The value of the array conflict conf(i, j) is the sum of conflicts between vector vi and
all the vectors {ej,0, ej,1, . . .} that are members of cluster Cj:

conf(i, j) =
∑

ej,k∈Cj

ω(vi, ej,k)

Since the clusters are initially empty, we set ω(vi, ∅) = 0 and ω(vi, vi) = 0. Now, the basis
vectors {v0, . . . , vn−1} are taken in the decreasing order of their weights and the vector vi that
has the highest weight is taken first. Vector vi is copied into cluster Cj if conf(i, j) is the
least among all the n clusters. Next, cluster Cj is locked to ensure that no other vector from
the same pattern basis will be copied into Cj. Each cluster receives at most one vector of
each pattern basis. The above process is repeated for all the vectors of the current pattern
basis which leads to distribute its vectors over the clusters. The algorithm terminates when
all the pattern bases have been visited.
As a result of this heuristic each cluster contains the basis vectors that have the least

degree of conflict. The heuristic is useful to achieve two objectives: 1) minimizing the intra-
cluster conflicts which is likely to cluster independent vectors, and 2) reducing duplication of
copies of the same vector in distinct clusters to increase linear independence.
Each cluster ci should map to one row of the storage matrixM . Since each column j of the

above matrix corresponds to one vector e of the union of all the pattern bases because such a
column is the image byM of e (j =Me). The storage matrixM is formed by examining each
cluster so that the ith row of M is formed by 1 in each column j such that tj ∈ ci, otherwise
the row is completed with zeros.
As an example consider the previous set of 6 patterns shown in Figure 6. There is one

step for each pattern as shown in Figure 8. The clusters are initialized with the pattern basis
that is the most frequently accessed which is T ′5 and the clusters become c0 = {1}, c1 = {3},
and c2 = {5}. Next, in each step a pattern is considered, the corresponding conflict table
is evaluated, and the basis vectors are clustered. In Figure 8 we circled the cost of retained
mappings of vectors to clusters.
The final clusters are {1, 4}, {3, 5} and {1, 2, 5} which shows that 1 and 5 are duplicated

in the solution which is equivalent to node splitting. Vectors of each cluster will receive the
cluster color. As vector may appear in more than one cluster, the final coloring of such
vector is the sum (exclusive-or) of all its cluster colors. Clusters {1, 4}, {3, 5} and {1, 2, 5}
are assigned the coloring (1, 0, 0), (0, 1, 0), (0, 0, 1), respectively. Since vector 1 is in the first

14

CLUS
{1}
{3}
{5}

T3 / 7

4/40
 7
 13
 9

3/44
 14
 0
 12

2/22
 0
 7
 4

CLUS

{1,4}
{3}

{2,5}

T2 / 4

1/34
 7
 14
 13

3/44
 27
 0
 19

4/40
 7
 13
 20

CLUS

T6 / 4

{1,4}
{3}

{1,2,5}

2/22
 11
 7
 4

4/40
 7
 13
 27

5/36
 22
 12
 17

CLUS

T4 / 2

{1,4}

{1,2,5}
{3,5}

3/44
 14
 12
 34

4/40
 7
 22
 27

5/36
 22
 12
 17

CLUS

T1 / 3

{1,4}
{3,5}

{1,2,5}

1/34
 7
 27
 13

5/36
 22
 12
 17

4/40
 7
 22
 27

 1 2 3 4 5
 1 0 0 1 0
 M = 0 0 1 0 1
 1 1 0 0 1

f - Final Storage matrix

(a) (b) (c)

(d) (e)

Figure 8: Clustering phases (a, b, c, d, and e) and resulting storage matrix

and last clusters which causes vector 1 to be colored as (1, 0, 1). Similarly, vector 5 is colored
(0, 1, 1). Figure 8-f shows the corresponding storage matrix M which is non-singular for all
the patterns.
We analyse the time complexity. Building the weight matrix for q patterns takes O(m2nq)

and that of the conflict table is O(n2mq). Mapping qn vectors to clusters takes O(n2q).
Therefore, the time complexity of clustering is O(m2nq + n2mq).

5.2 A neural approach

A neuron consists of a cell body and two tree-like links called dendrites and axon [23]. A
neuron receives signals from other neurons through its dendrites. Axon is a long link that
terminates into strands. To deliver the signal from one neuron to another, strands meet with
dendrites. The junction is called synapse which can be excitatory or inhibitory with respect
to the output of connected neuron.
An artificial Neural Network (NN) is a collection of interconnected neurons; each has a

number of input synapses, a body, and output synapse. A weight is assigned to each input
synapse. The neuron body performs a summation operation of the weighted input synapses,
filter the sum using a non-linear function (F), and outputs the result. Mainly, the non-linear
function is a unit step function with threshold (θ). Formally, let vi be the output of neuron
ni and wj,i be the weight of synapse sj,i that is connecting the output of neuron nj to input
of ni. The output of ni is vi = F (

∑N
j=1 wj,ivj − θi), where N is the number of neurons.

The NN architecture most commonly used in combinatorial optimization problems [23] is
the feedback network which is used with Hopfield network model [18]. In the above model,
the feedback causes the network to iteratively produce transient solutions before reaching a
stable state.
Hopfield showed that a network energy function (E = − 1

2

∑

i

∑

j wi,jvivj) will be in a local
optima when the network converges [18, 21]. Therefore, the designer has to: 1) define how
a network output should be decoded into a solution, and 2) map the objective function into
the energy function. This mainly consists of setting the synaptic weights.
Designing a NN which ensures the restricted matrices are all non-singular is very complex.

We use more flexible conditions but likely to produce non-singular matrices which are: 1) all
columns and non-zero, 2) all rows are non-zero, and 3) promotion of dissimilar assignment of

15

Synaptic
 links

Synaptic
 links

m columns

 n
 rows

Neurons corresponding
 to matrix bits

Neurons corresponding
 to data patterns

q columns

m columns

A B

C

a - A is the image of storage matrix, each column in B is
 for one pattern, each neuron in column i of C is for
 membership of basis vector i of some pattern basis.

v is member
 of BT

wp

-1

wp-1

Restricted matrix to pattern T

AT

Neurons of
 pattern T

vBasis
vector i

C

B

b - Synaptic links for Architecture I

 n
 rows

Figure 9: Neural network NN-1

values to neighboring components of distinct vectors. The idea is to promote generation of
vectors that are linearly independent. In the following we present two implementations of the
NN which are called neural network 1 (NN-1) and neural network 2 (NN-2).
In NN-1, the net consists of three blocks of neurons which are A(n,m), B(n, q), and C(.,m)

as shown in figure 9-a. Every neuron in block A represents one bit in the storage matrix which
means that A will be the solution. There are 2n memories and m distinct vectors in the union
of all pattern bases. All neurons in A have a threshold of zero. Each column of neurons of
B represents one pattern. Basis vector ek is associated column k of C which has one neuron
for each pattern basis (at most q) to which ek belongs. In other words, columns of C have
different sizes and the maximum size of C is q×m. All neurons in B and C have a threshold
of −0.5.
All synaptic connections are inter-block as shown in Figure 9-b. The output of one neuron

of B, which corresponds to a pattern T , has connections to only row neurons of A that
corresponds to the restricted matrix MT . The weight of each of these connections is the
pattern access frequency w(T). The output of one neuron of C, corresponding to a pattern
T , and all neurons of A in the same column have w(T) as weight.
All connections departing from A have weight of −1. Each neuron in A is connected to

all neurons of C in the same column. Also each neuron in A, corresponding to a basis vector
ej, is connected to all neurons of C corresponding to any pattern whose basis contains ej.
The connections between A and C guarantee that all columns of A are non-zero. At the

ith iteration, the output vi(t + 1) of a neuron of C is 1 as long as its inputs are all zeros
(threshold is −0.5):

vi(t+ 1) =

1 if Si > θi

vi(t) if Si = θi

0 if Si < θi

where, Si =
∑N

j=1 wj,ivj. This causes one of the neurons of A in the same column to
output a 1, which in turn forces the outputs of all neurons in the same column to output

16

m columns

 n
 rows

Each neurons corresponds to
one bit of the storage matrix

a - NN-II is a direct image of storage
 matrix, each column correponds
 to a basis vector.

-wtp

-wtp

Neural network II Block of neighboring vectors

-wcp

-wcp

b - A neuron U of column X is connected to each neuron
 is the same column and to each neuron V of column Y
 if X and Y are in the basis of at least one pattern.

U

XY

V

Figure 10: Neural network NN-2

zeros. Similarly, connections between blocks A and B guarantee that all rows of A are non-

zero.
When the output of a neuron of A is 1, the chances of another neuron getting 1 in same

row of the restricted block (matrix) are reduced. At least one of the neurons in that row of
B will go off and hence the input sum of these vectors gets reduced. This guarantees that
neighboring components of vectors of A get dissimilar assignments of values.
The update approach consists of selecting the neuron ni whose |Si−θi| is the largest. The

neuron output is updated if needed (different) in which case we must propagate the updated
values wherever necessary prior to restarting the next iteration. If an update is not required
(same value), then the neurons are visited in decreasing order of |Si − θi| until an update is
found or the algorithm terminates.
The time complexity of NN-1 is O(N 2 + kN), where N = nm + q(n +m) is the number

of neurons and k is the number of iterations. Term N 2 is the cost of the loop and term kN
is the cost of searching next neuron. From our experience k is very close to m+ n.
NN-2 is based on the idea of force directed optimization (FDO) with the aim of producing

dissimilar assignments of vectors in sub-matrices associated to patterns. Figure 10-a shows
NN-2. In NN-1 similar action was generated, but with external forces. In NN-2 there is
only one block which corresponds to A in NN-1. In the FDO technique, the neurons corre-
sponding to each basis vector directly enforce neurons of neighboring vectors to have distinct
assignments. Two basis vectors are neighbors if they belong to the basis of at least one data
pattern.
The outputs of a neuron in the ith row of kth column are connected to all neurons in kth

column and to all neurons of the ith row which correspond to neighboring vectors. This means
that row connections are intra-block with respect to each data pattern. The weight of a row
synapse that is linking neurons ni,j to ni,k is proportional to the sum of access frequencies of
all the patterns to which both basis vectors ej and ek belong to. The weight is negative to
cause an inhibitory action on the receivers. The setting of row synapses is meant to prevent
neurons in the same row of having similar values.
The weight of a column synapse is proportional to the access frequency of all patterns

(wtp) the generating neuron (also basis vector) belongs to. Here also the weight is negative.
Column synapses prevent assigning ones to more than one row in a column. Using coloring
heuristics, the least weighted vector is generally split when no color are available. Having

17

a - Encoding

Chromosome

Rnadom cut

Parent 1 (X) Parent 2 (Y)

Offspring 1 Offspring 2

1 0 0 0 1 1 0 1
1 0 1 1 0 0 0 1
0 1 1 0 1 1 0 0

6 1 3 2 5 5 1 6

Storage matrix

Chromosome

b - 1-cut crossover

Chromosome

Rnadom cut

Parent 1 Parent 2

Offspring 1 Offspring 2

c - 2-cut crossover d - mutation

Chromosome

6 1 3 2 5 5 1 6

 Randomly
selected gene

Random number in
 {0,...,7} - {5}

6 1 3 2 5 2 1 6

x1 x2 y1 y2

x1 y1 x2y2

Figure 11: GA: encoding of solution (a), 1-cut crossover (b), and 2-cut crossover (c)

two 1s or more for a basis column vector is equivalent to splitting that vector. Since the
synaptic links have −wtp as weights, highly weighted neurons in a column are unlikely to have
more than one 1. This means that the corresponding basis vector is unlikely to be split. The
synapses of NN-2 are shown on Figure 10-b.
The thresholds are set in the neurons of NN-2 to −wtp to give priority of output update

to neurons in highly weighted vectors. Hence at the beginning when all neuron outputs are
zero, Si = wtpi and the highest weighted vector (highest wtpi) will be updated first which
corresponds to updating the coloring of the highest weighted node first.

5.3 A genetic approach

Genetic algorithms (GAs) [10] are directed random search strategies used in solving optimiza-
tion problems. Fit individuals survive and produce next generation while weak individuals
extinct. Hence, good genes of fit individuals survive and genetic evolution takes place. GA
operates on sample solutions from diverse areas of the search space and then gradually inten-
sifies the search in promising areas. A GA is based on (1) random search to explore different
areas of the solution space, and (2) directing and narrowing the search through the use of
probabilistic selection of intermediate solutions. GAs use the crossover operator as the main
search and mutation as secondary operator.

Genetic evolution [13] is based on (1) selection of the fittest gene, and (2) reproduction
or crossover that consists of recombining segments of parents’ chromosomes to generate off-
springs’ chromosomes. The fitness of new generation is expected to improve because only fit
individuals participate in the reproduction. Hence the fitness of a given solution should be
connected to the objective function.
A GA requires encoding of the solution as chromosomes to allow application of genetic

operators like crossover and mutation. The steps of one iteration of GA are: (1) random
selection of an initial set of solutions and evaluation of their fitness, (2) probabilisetic selection
of a subset of solutions, each with a probability equal to its fitness, and (3) production of new
offsprings through application of crossover and mutation operators over initial solutions. In
mutation, a randomly selected gene of the offsprings chromosome is inverted. This process
continues in a loop until some conditions are met. GAs employ the following operators: 1) the

18

Crossover Mutation Termination Population
probability probability condition size

Pc Pn MaxGen Psize

Typical 0.5 to 1.0 0.01 to 0.09 prob. size prob. size
Suitable 0.65 0.05 n+q n+q+10

Table 1: Typical and suitable control parameters

encoding scheme, 2) the fitness function, 3) the initial population, 4) the selection mechanism,
5) the crossover operator, 6) the mutation, and 7) control and termination conditions.
To be successful an encoding scheme must be clearly manifested in the solution genes [12].

A solution or chromosome is encoded as a string of integers or genes. It is highly preferable
if we can attribute the fitness of a given solution to a subset of its genes with some high
probability. Here, a solution is an n ×m Boolean storage matrix M with 2n and 2m being
the number of memories and number of distinct basis vectors for all patterns, respectively.
Each column of M is encoded by its integer. In this way a solution M is a chromosome of m
integers each falls in the range between 0 to 2n−1. This is shown in Figure 11-a. A restricted
sub-matrix MT of M is a subset of n integers out of m (m ≥ n). The high fitness of solution
M can easily be attributed to the high fitness of some sub-matrices MT where T represents
one of the patterns having relatively high access frequencies. Moreover, the high fitness of
MT is due to the value of its rank which means that a large number of its vectors are linearly
independent. Therefore, the fitness of the solution M can be attributed to the fitness of some
sub-matrices MT and the fitness of a subset of its column vectors which are its genes.
The fitness of a solution should measure its goodness. Recall the performance function of

storage scheme M that is the memory utilization defined by U(M) = F (M)/C(M), where
ratio C(M)/F (M) is the average number of cycles needed to access each pattern instance.
The fitness function is the parallel memory utilization U(M) which increases with increasing
goodness.
The initial population must generally satisfy: (1) all possible genes are in the population

chromosomes, and (2) the chromosomes are of various and diverse combination of genes. The
initial population was randomly generated and each gene was selected as a random integer
from 0 to 2n−1. Since the initial population is influenced by the random number generator, we
generated large enough initial population to cover all possible genes and enough chromosome
combinations of the genes.
The selection is based on survival for the fittest which consists of keeping good genes for

latter recombination by using the crossover operator. Having large number of offsprings in
the new population which are taken from a good solution is likely to increase the chances of
getting the right combination of an optimum solution in one of these offsprings. Therefore,
the number of offsprings taken from a parent solution is proportional to its fitness. For this
we used a roulette wheel selection method in which every solution is allocated a pie slice
proportional to its normalized fitness. The roulette is spin, rotate for a random angle, and
stops at one solution slice. Clearly, this method guarantees that selecting a solution for
reproduction is proportional to its fitness.
The crossover operator interchanges randomly selected substrings of parents’ chromosomes

to form chromosomes of offsprings. Selecting large number of offsprings increases the chance
of taking the substring most responsible for the high fitness of a solution. We used two
methods for crossover which we call 1-cut and 2-cut.

19

In 1-cut crossover a random cut point is selected between 0 and m − 1, where m is the
length of each chromosome. This divides (see Figure 11-b) two chromosomes X = (X1, X2)
and Y = (Y1, Y2), where X1 and Y1 have same number of genes. Crossover generates two
offsprings O1 = (X1, Y2) and O2 = (Y1, X2). Each of O1 and O2 has m genes. In 2-cut

crossover two random cut points are selected as shown in Figure 11-c. Notice that crossover
is applied here with probability (pc) which means that two parents can be included in the
new generation without being modified.
Since the crossover operator does not create new chromosomes but only recombines exist-

ing chromosomes, the mutation operator creates new genes to avoid that unique gene be lost
for ever. Generally, the mutation of a randomly selected gene consists of complementing its
binary and creating an inverted gene. To add more diversity in the search process, we used
another mutation operator that consists of replacing the selected gene with a random gene
corresponding to an integer between 0 and 2n − 1. This is shown in Figure 11-d for n = 3.
This mutation operator was applied with probability (pn). It gave better results than the
inversion.
Table 1 shows the typical and used (suitable) control parameters in our implementation.

The population size should be set so that enough randomness and diversity in chromosomes
and genes is present. For large n there is large number of possible genes that should exist in
the population. Also large values of q cause large variation in fitness of different combination
of genes which requires large population to cover these combinations. This explains why
the initial population size Psize was experimentally set to n + q + 10 for the class of studied
problems. It was observed that the termination condition largely depends on the problem
size. We experimentally set an upper bound on the number of iterations MaxGen of our
GA. The GA terminates if MaxGen = m + q iterations completed, or an optimum solution
is found, or the objective function did not improve by at least 5% in the past 4 consecutive
iterations.

6 Evaluation

The evaluation is based on: (1) generating realistic sets of data patterns, (2) synthesizing
storage matrices by using each of the proposed methods, (3) evaluating the parallel memory
utilization U (see Section 5) for each method by simulating the parallel memory depicted on
Figure 4, and (4) comparing to other results. The latencies of the simulated parallel memory
are: (1) 2 clocks for the ATU, (2) 20 clocks for the MU, and (3) 1 clock for the DAB.
A problem instance is represented by tuple (n, q) which corresponds to arrays that are

accessed by q data patterns in a system of 2n memories. We study the case of 16, 64, and
256 memories and for each case we vary the number of patterns q between 3 and 20. For
each instance of (n, q) we generate 50 sets of access patterns. To generate realistic access
patterns we use a correlated selection function for the basis vectors of each data pattern
which employs a discrete normal distribution over a set of 3n basis vectors. This promotes
generation of neighboring basis vectors which causes the generated patterns to be among rows,
columns, rectangular blocks of different shapes, and power-of-2 strides in each direction. For
example, the 12 patterns shown on Figure 12 for 16 memories. These are used in bitonic
sorting (patterns (a)-(e)), LU and matrix (patterns (a) and (l)), and vision and multimedia
neighborhood operators (patterns (f)-(l)) like the linear-shift invariant and weighted median

20

(l) Column

(f) 2x8 block

(g) 4x4 square

(h) 4x4 square
and row stride 2

(i) 8x2 block

(j) 2x8 block
and col. stride 2

(b) 1-row with stride 2 (box) and its conjugate (x)

(a) Row

(k) 4x4 square
 row-col stride 2

(c) 2-row with stride 2

(d) 4-row with stride 4

(e) 8-row with stride 8

x x x x x x x x x x x x x x x x

Figure 12: Some access patterns used in sorting, LU, matrix, and multimedia

[15, 29, 22]. For example the bitonic sorting operators [29] require partial sorting of: (1)
groups of 2 adjacent elements (pattern (b) and its conjugate denoted by x), (2) groups of 4
adjacent elements (pattern (c) and its conjugate), (3) groups of 8 adjacent elements (pattern
(d) and its conjugate), etc. Figure 12 assumes 16 memories and 16 logic units.
The pattern shown in Figure 12-(b) is used for load/store of the data in sorting groups of

2 adjacent elements. Each group consists of a left element (marked by a square frame) and a
right element (marked by a neighboring x). All left elements can then be accessed in parallel
in one cycle and all right elements are accessed in the next cycle. Thus two cycles are needed
to load all the logic units, each with two neighboring elements. After sorting the logic units
store the data by using the same access pattern. Bitonic sorting may efficiently use the access
patterns shown on Figure 12 (a)-(e). The generated linear access patterns largely cover the
case of arrays referenced in loop-carried dependencies of many scientific programs as well as
mainstream vision and multimedia parallel algorithms.
The use of correlated basis vectors for each pattern introduces correlation among the

patterns which makes the problem of finding conflict-free storage harder and exposes the
synthesis methods to realistic situations.
Figures 13, 14, 15, 16, 17, and 18 show the parallel memory utilization for different

instances of the number of patterns and number of memories. In the next subsections we
evaluate the proposed synthesis methods in the case of: (1) power-of-2 access patterns, and
(2) integer stride access.

6.1 Evaluation of constructive heuristics

Figures 13 and 14 show the memory utilization U for WCNS and CA versus the number of
patterns. Near optimum results were obtained when the number of data patterns was below
8 regardless of the number of memories. U smoothly decreases with increasing the number of
data patterns which seems to dominate compared to variation in the number of memories.
WCNS outperforms CA in all cases of power-of-2 access patterns. It may seem surprising,

however, in our problem splitting a node increases the cost only if it causes two or more
vectors in the storage matrix be linearly dependent. Neighboring vectors which appear at
least in one pattern basis are not given the same color by WCNS and one of these vectors will
be split if no color is available. Splitting a node may not increase the cost but at the contrary
it is likely to cause the resulting vector be linearly independent with respect to its neighbors.

21

0.75

0.8

0.85

0.9

0.95

1

4 6 8 10 12 14 16 18 20

M
em

or
y

U
til

iz
at

io
n

Number of patterns

Memories = 16
Memories = 64
Memories=256

Figure 13: Utilization of the parallel memory system using weighted coloring with node
splitting

Assume vector w is member of two pattern bases which are (u1 = (1, 0, 0) and u2 = (0, 1, 0))
and (v1 = (0, 1, 0) and v2 = (0, 0, 1)). WCNS splits w and assigns it (0, 0, 1) and (1, 0, 0),
respectively. Thus the overall assignment of w is (1, 0, 1) which is linearly independent with
respect to (u1, u2) and (v1, v2).
However, WCNS increases the graph size and execution time after each split. CA has

the least execution time because of its directed approach which is also responsible for its
relatively low memory utilization. Memory utilization of CA is comparable to the semiperfect
storage [2] but WCNS improves memory utilization by up to 17% compared to the above two
schemes. The semiperfect scheme is a two step simple coloring which was proposed to show
potential performance improvement of pattern-oriented storage schemes compared to that of
interleaved memories and row-column static storage. The above Figures show that memory
utilization higher than 80% can be achieved by WCNS in the case of parallel memories with
an arbitrary but given set of up to 20 data patterns.
We also studied the case of integer strides. Sohi [32] proposes a storage scheme that consists

of a manually synthesized 3 × 12 Boolean matrix which is intended to improve performance
of stride access in the case of 8 memories. The use of buffers at input and output of memories
smooths out the transient behavior of memories and gives near optimum memory utilization.
For the case of integer stride access, we evaluated the average number of cycles for Sohi’s
scheme (8 memories) which is 2.43 cycles when accessing strides ranging from 1 to 64 with
random starting address. The number of cycles is an indicator of the degree of parallel memory
conflicts. We also used CA and WCNS to synthesize storage matrices for the same problem.
The average number of cycles we obtained for CA and WCNS were 2.561 and 2.57 cycles,
respectively. Sohi’s scheme has better memory utilization.

22

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

4 6 8 10 12 14 16 18 20

M
em

or
y

U
til

iz
at

io
n

Number of patterns

Memories = 16
Memories = 64
Memories=256

Figure 14: Utilization of the parallel memory system using clustering

6.2 Evaluation of neural methods

The neural approach could not find storage schemes with competitive memory utilization as
shown in Figures 15 and 16. NN-1 was not stable in the case of small number of patterns which
is due to poor feedback and lack of data constraints (few patterns) flowing from blocksB and C
to A. In this situation, NN-1 became loose and randomly behaved. The utilization generated
from NN-2 was smooth from the beginning which means that the coupling among the neurons
in NN-2 was sufficient to direct the network to more refined solutions. Comparing the obtained
memory utilization, NN-2 outperformed NN-1 for relatively small number of patterns but the
opposite was happening for relatively large number of patterns. The crossover is nearly for
10 patterns.
The performance of NN-1 and its execution time were not very sensitive to increase in the

number of patterns which suggests that NN-1 could be a good approach for obtaining fast
solutions in the case of large problems. NN-2 requires much more time than NN-1 because of
its larger number of connections that must be considered in the update procedure. Moreover,
NN-1 update procedure could be greatly simplified and accelerated by using logical operators
instead of arithmetic operators. This can be done by ORing the outputs of neurons in one
column and feeding the result to the corresponding neurons in block C. Similar approach can
be used in the horizontal direction.
The memory utilization obtained by using NN-1 can be made more acceptable especially

in the number of patterns is large enough to tighten the convergence. The clear advantage of
NN-1 is its fast convergence. Though NN was not successful in finding competitive solutions
compared to the other studied approaches, it is still attractive in the sense that it is a totally
different approach, it has fast convergence, and can be designed by using only logic operators.

23

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

4 6 8 10 12 14 16 18 20

M
em

or
y

U
til

iz
at

io
n

Number of patterns

Memories = 16
Memories = 64
Memories=256

Figure 15: Utilization of the parallel memory system using neural network 1

6.3 Evaluation of the genetic approaches

The memory utilization for the storage schemes that are synthesized by using GAs are shown
in Figures 17 and 18. GA 2-Cut slightly outperforms GA 1-Cut. GA 2-Cut was expected
to do better because it adds more disruption and variety to population’s chromosomes which
is an important requirement [10] for small populations. Note that for all studied algorithms
(WCNS, CA, NN, and GA) the memory utilization of synthetic pattern access was more
sensitive to increase in the number of patterns than increase in number of parallel memories.
As shown in the previous plots WCNS performs slightly better than GAs for relatively small
number of patterns and nearly the same as GAs for the other case. For large number of pat-
tern and memories, GA 2-Cut gave higher average memory utilization with smaller variance
compared to all other studied methods.
For the case of stride access, the lowest average number of cycles we obtained was 2.273

cycles which was generated by using GA 2-Cut and the others were 2.342 from GA 1-Cut,
2.561 from CA, 2.57 from WCNS, and 2.67 from NN-1 and NN-2. Sohi’s 3 × 12 Boolean
matrix which is manually synthesized requires on the average 2.43 cycles when accessing
strides between 1 and 64 with random origin. Sohi showed that due to buffering at input
and output of parallel memories the efficiency of his scheme is very close to 1. GAs may
generate solutions that outperform manually optimized schemes even for small problems.
This indicates that GAs can be very useful for synthesizing storage schemes for large problem
instances especially in the case of static schemes which are intended to be used many times.
Both GA 1-Cut and GA 2-Cut have similar execution time (see Figure 19) which is nearly

4 times that of NN-2 and 50 times that of CA, WCNS, or NN-1.
The GA gave the highest memory utilization in both cases of pattern access and stride

access for relatively large number of patterns and memories. Due to its relatively high execu-
tion time, GA may be adequate as an advanced compiler optimization option for synthesizing
efficient storage schemes. This is particularly useful for programs that are compiled once and
run many times over different data sets.

24

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 6 8 10 12 14 16 18 20

M
em

or
y

U
til

iz
at

io
n

Number of patterns

Memories = 16
Memories = 64
Memories=256

Figure 16: Utilization of the parallel memory system using neural network 2

7 Conclusion

This paper proposes a scalable memory system provided that the data access patterns can be
identified by the compiler. Static access patterns can be easily found for many synchronous
dataflow computations like multimedia compression/decompression algorithms (motion es-
timation DCT, FFT, Entropy scan, and interpolation) as well as many other applications
in DSP, Vision, Robotics, etc. The aim of this work is to exploit compile time knowledge
of parallelized programs to improve the bandwidth of parallel memory systems at run-time.
Finding a conflict-free storage scheme for a set of data patterns is NP-complete. This prob-
lem is reduceable to weighted graph coloring. We investigated three methods of allocating
array data to memories to reduce parallel memory access time of a set of access patterns
that can be predicted at compile time. We used three different coloring approaches based
on: (1) constructive heuristics, (2) neural methods, and (3) genetic algorithms. Simulation
shows that parallel memory utilization higher than 80% can be achieved for arbitrary sets
of up to 20 data patterns. Constructive coloring heuristics are generally preferable during
program development. Because of their execution time, genetic algorithms are recommended
for advanced compiler optimization for synthesizing the most efficient storage schemes espe-
cially for large problem sizes. Programs that are compiled once and run many times over
different data sets benefit the most from highly optimized storages. The convergence time of
proposed neural algorithm seems to be only slightly dependent on problem size. One neural
approach was relatively very fast in producing a reasonably good solution especially in the
case of large problem sizes where genetic algorithms require excessive running time. Speeding
up the convergence of the neural network can be further accelerated by using logical operators
instead of arithmetic operators which may greatly simplify its architecture.

25

0.7

0.75

0.8

0.85

0.9

0.95

1

4 6 8 10 12 14 16 18 20

M
em

or
y

U
til

iz
at

io
n

Number of patterns

Memories = 16
Memories = 64
Memories=256

Figure 17: Utilization of the parallel memory system using genetic algorithm 1-Cut

8 Acknowledgment

Thanks to the College of Computer Science and Engineering, King Fahd University of Petroleum
and Minerals, Dhahran, Saudi Arabia, for its computing facilities and its support for confer-
ence attendence.

References

[1] M. Al-Mouhamed and S. Seiden. Minimization of memory and network contention for ac-
cessing arbitrary data patterns in SIMD systems. IEEE Trans. on Computers, 45:6:757–
762, Jun 1996.

[2] M. Al-Mouhamed and S. Seiden. A heuristic storage for minimizing access time of
arbitrary data patterns. IEEE Trans. on Parallel and Distrituted Systems, Vol 8, No.
4:441–447, Apr 1997.

[3] A. Blum. New approximation algorithms for graph-coloring. Journal of the ACM, Vol
41, No 3:470–516, 1994.

[4] P. Briggs and J. Feo. The Tera Programming Workshop. Inter. Conference on Parallel

Architectures and Compilation Techniques,, Paris, France, October 1998.

[5] P. Budnik and D. Kuck. The organization and use of parallel memories. IEEE Transac-

tions on Computers, C-20(12):1566–1569, Dec 1971.

[6] E. Bugnion, J. Anderson, T. Mowry, M. Rosenblum, and M. Lam. Compiler directed
page coloring for multiprocessors. Inter. Conf. on ASPLOS, pages 244–255, 1996.

[7] T. Cheung and J.E. Smith. A simulation study of the CRAY X-MP memory system.
IEEE Trans. on Computers, C-35, No 7:613–622, Jul 1986.

26

0.75

0.8

0.85

0.9

0.95

1

4 6 8 10 12 14 16 18 20

M
em

or
y

U
til

iz
at

io
n

Number of patterns

Memories = 16
Memories = 64
Memories=256

Figure 18: Utilization of the parallel memory system using genetic algorithm 2-Cut

[8] H. G. Cragon. Memory systems and pipelined processors. Jones and Bartlett Pub., 1996.

[9] A. Deb. Multiskewing-A novel technique for optimal parallel memory access. IEEE

Trans. on Parallel and Distributed Systems, Vol 7, No 6:595–604, Jun 1996.

[10] J.L. Filho, P.C. Treleaven, and C. Alippi. Genetic-algorithm programming environments.
IEEE Computer, 27, No 6:27–43, Jun 1994.

[11] J. M. Jalby W. Frailong and J. Lenfant. XOR-schemes: A flexible data organization in
parallel memories. In Proceedings of the International Conference on Parallel Processing,
pages 276–283, 1985.

[12] D.E. Goldberg. Genetic algorithms in search, optimization and machine learning.
Addition-Wesley, Reading, Mass., 1989.

[13] J.J. Grefenstette. Genesis: a system for using genetic search procedures. in Proc. of

Conf. Intelligent Systems and Machines, pages 161–165, 1984.

[14] R. Gupta and M. L. Soffa. Compile-time techniques for improving scalar access perfor-
mance in parallel memories. IEEE Transactions on Parallel and Distributed Systems,
2(2):138–148, Apr 1991.

[15] R. M. Haralick and L. G. Shapiro. Computer and robot vision. Addison Wesley, 1992.

[16] D. T. Harper III. Block, multistride vector, and FFT accesses in parallel memory systems.
IEEE Transactions on Parallel and Distributed Systems, 2(1):43–51, Jan 1991.

[17] D. T. Harper III. Increased memory performance during vector accesses through the use
of linear address transformations. IEEE Transactions on Computers, 41(2):227–230, Feb
1992.

27

0

2

4

6

8

10

12

4 6 8 10 12 14 16 18 20

E
xe

cu
tio

n
tim

e

Number of patterns

WCNS
CA

Neural NN-1
Neural NN-2

Genetic 1-Cut
Genetic 2-Cut

Figure 19: Execution time of WCNS, CA, NN-1, NN-2, GA 1-Cut, and GA 2-Cut for 256
memories

[18] J.J. Hopfield. Neural networks and physical systems with emergent collective computa-
tional abilities. in Proceedings of National Academy of Sciences, USA 79, pages 2,554–
2,558, 1982.

[19] K. Hwang and F. A. Briggs. Computer architecture and parallel processing. McGraw-Hill

Pub., 1987.

[20] Chang. P.P. Hwu, W.W. Achieving very high cache performance with an optimized
compiler. Proc. of the 16th Ann. Inter. Symp. on Computer Architecture, pages 242–251,
1989.

[21] A.K. Jain, J. Mao, and K.M. Mohiuddin. Artificial neural networks: a tutorial. IEEE
Computer, 29, No 8:31–44, Mar 1996.

[22] C. E. Kozyrakis and D. A. Patterson. A new direction for computer architecture research.
IEEE Computer, Nov. 1998.

[23] S.Y. Kung. Digital neural networks. Prentice Hall, 1993.

[24] D. Lawrie. Access and alignment of data in an array processor. IEEE Transactions on

Computers, C-24(12):1145–1155, Dec 1975.

[25] K.Y. Lee. On the rearrangeability of a (2logN -1) stage permutation network. IEEE

Trans. on Computers, Vol 34, May 1985.

[26] S. McFarling. Program optimization for instruction caches. Third Inter. Conf. on Ar-

chitectural Support for Programming Languages and Operating Systems, pages 183–191,
1989.

28

[27] A. Norton and E. Melton. A class of boolean linear transformations for conflict-free
power-of-two stride access. In Proceedings of the International Conference on Parallel

Processing, pages 247–254, 1987.

[28] M. C. Pease. The indirect binary-cube microprocessor array. IEEE Trans. on Computers,
C-26, No 5:458–473, May 1977.

[29] M. Quinn. Designing efficient algorithms for parallel computers. McGraw-Hill Inter.,

Second Edition, 1988.

[30] M. Saghir, P. Chow, and C. Lee. Exploiting dual data-memory banks in digital signal
processors. Inter. Conf. on ASPLOS, pages 234–243, 1996.

[31] A. Seznec and J. Lenfant. Interleaved parallel schemes. IEEE Trans. on Parallel and

Distrituted Systems, Vol 5, No. 12:1329–1334, Dec 1994.

[32] G. S. Sohi. High-bandwidth interleaved memories for vector processors–A simulation
study. IEEE Transactions on Computers, 42(1):34–44, Jan 1993.

[33] T. Sterling. A hybrid technology multithreaded computer architecture for petaflops
computing. MS 159-79, J.P.L., California Institute of Technology, January 1997.

[34] X. Zhou, S.-I. Nakano, and T. Nishizeki. Edge-coloring partial k-trees. IEEE Trans. on

Parallel and Distributed Systems, Vol 21, No 3:598–617, Nov 1996.

29

