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Abstract

Scheduling computations with communications is the theoretical basis for achiev-
ing efficient parallelism on distributed memory systems. We generalize Graham’s
task-level in a manner to incorporate the effects of computation and communication.
A new scheduling is proposed by combining task priority with efficient management
of processor idle time. We also propose an optimization called Iterative Refinement
Scheduling (IRS) that iteratively schedules the forward and backward computation
graph. The task-level used in some scheduling iteration is obtained from the sched-
ule generated in the previous iteration. Each iteration produces a new schedule
and new task-levels. This approach enables searching and optimizing solutions as
the result of using more refined task-level in each scheduling iteration. Evaluation
and analysis of the results are carried out for different instances of communication

granularities and problem parallelism. It is shown that solutions obtained out of
few iterations statistically outperforms those generated by other recently proposed
scheduling. IRS allows exploring a space of solutions whose size grows with the
amount of parallelism and communication granularity. IRS enables optimizing the
solution specially for critical instances such as fine-grain computations and large
parallelism.

Keywords: Distributed memories, heuristics, message-passing, perfor-
mance, scheduling

1 Introduction

Automatically extracting parallelism out of large scale scientific computations is especially
useful when the programs are repeatedly executed over different data sets. Determinis-
tic scheduling can be profitable when the execution behavior is predictable at compile-
time [13] such as the class of static dataflow computations. In this case, the compiler
is capable of predicting the the precedence relationships and volume of transferred data
between the various computation modules.
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We study scheduling precedence-constrained computations on an arbitrary number of
processors that are regularly or irregularly interconnected. To incorporate the effects of
communication, a model of communication latency is used to evaluate the cost of trans-
ferring data between processors. Generally, the scheduling problem is NP-complete [4]
except for trees. Lower bounds [2] and worst case analysis [7, 2] have been proposed for
scheduling precedence computations with and without communication costs. The objec-
tive is to find efficient non-preemptive scheduling approaches that combine knowledge on
the computation structure and multiprocessor in order to minimize overall finish time.
Different approaches have been used for scheduling computations with communication
costs which can be classified into the following categories: 1) Searching, 2) Clustering, 3)
Task-Duplication, and 4) Priority-Based Scheduling.

Search-based scheduling methods using branch-and-bound [16] and simulated anneal-
ing [18] have been used as heuristics for mapping and partitioning computations. These
approaches either minimize objective functions other than the computation finish time
or lack global evaluation because only partial scheduling problems are addressed [8, 17].
Recently, genetic algorithms [5] were also applied to scheduling without communication
times.

Linear clustering [8] has been applied for iteratively merging tasks along the most
communicating chains in an attempt to minimize the computation time. After multiple
refinements the resulting graph is mapped onto the target multiprocessor using graph
theoretic approach. Clustering over bounded number processors [17] consists of 1) parti-
tioning the set of tasks into clusters of sequential tasks, and 2) reducing the number of
clusters by merging operations until matching the number of processors. The Dominant
Sequence Clustering (DSC) [22] was proposed to enhance the work reported by Sarkar
and Hennessy [17]. DSC is a low complexity clustering that accepts merging task T to a
cluster if the distance from some entry node to T decreases as well as the current length
of the dominant chain to which T belongs. The time complexities compare as O(e(e+n))
[17] and O(log n(e+n)) [22], where n and e are the numbers of tasks and communication
edges, respectively.

Another scheduling for unbounded number processors is Dynamic Critical Path (DCP)
that was proposed by Kwok and Ahmad [11]. The DCP is a chain of immediate tasks
having zero mobility. The mobility is found by using an absolute earliest starting time
and an absolute latest starting time for each task. The selected DCP task T is one that
has all its DCP predecessors already assigned. Only processors holding the predecessors
of T are examined. For each such a processor, the algorithm searches a vacant slot to fit
T with the possibility of starting earlier or delaying previously assigned tasks whithin the
limit of their mobilities. Processor selection is based on looking for the potential start
times of remaining tasks on each processor. This condition guarantees some processor
reservation for the most critical successor. Finally, all the tasks pulled at their earliest
times values. The complexity of DCP scheduling is O(n3).

Wu and Gajsky [21] proposed two algorithms that are the modified critical path (MCP)
and mobility directed (MD). These algorithms use the as-soon-as-possible starting time
(ts(T )) that is the length of the longest path including computation and communication
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from entry node to T . The as-late-as-possible completion time (tl(T )) is the difference
between the longest path in the graph and the length of the longest path from T to some
to exit node. MCP selects the free task with the largest (tl(T )) and assigns it to the
processor that can start it at the earliest among all processors. MD selects the free task T
with least relative mobility (rm(T ) = (tl(T )− ts(T ))/µ(T )) and assigns it to a processor
that does not increase the current critical path, i.e. none of the scheduled tasks is delayed
beyond its latest time. MD uses an unbounded number of processors and its complexity
is O(pn(n + e)).

By assuming that delays in communication are mainly due to channel latency, schedul-
ing based on Task Duplication (TD) over idle processors was proposed [10] to reduce the
communication. Beside the time complexity of this method (O(n4)) [10] the management
of duplicated data messages is another drawback. The impacts of task and processor
selection as well as the profitability of task duplication were experimentally studied by
Pase [15] which used Hu’s task-priority [6] for these selections. The degree of task dupli-
cation can also be adjusted [12] depending on the number of available processors or their
difference in speeds.

Priority-based scheduling over bounded number of processors basically uses a criterion
for task and processor selection as the main strategy to minimize overall finish time.
The basis for task selection is Graham’s task-level l(T ) that measures the remaining
computation beyond this task to finish overall computation. The task-level depends only
on the task graph in the case of zero communications, i.e. longest path from a task to exit
node. For non-zero communication costs the task-level depends on the mapping of tasks
to processors and the implied communication cost. The way highly communicating tasks
are assigned to processors may significantly affect the length of paths. In other words, the
knowledge of the computation graph is not sufficient to distinguish between critical and
non-critical tasks. Discarding the communication and network latency in evaluating the
task-level [10, 15], or pessimistically accounting for all of them [21] leads to excessively
inaccurate evaluations. To avoid these problems, only local scheduling heuristics have
been proposed such as earliest-task-first (ETF) [7], Largest-Communication-First (LCF)
[3], Dynamic Level Scheduling (DLS) [20], bounded number of processors.

In ETF task and processor selection are based on finding the earliest startable task and
its best suited processor. Therefore, the main stategy of this algorithm is the local mini-
mization of processor idle times through exploiting the offered opportunity of overlapping
computation with communication. However, ETF local decision has shown to cause some
performance degradation especially when is there is little opprotunity to exploit simul-
taneity between compuation and communication. LCF searches a task and a processor
such that the largest amount of communication are supressed, but if no saving on com-
munication is present then the task that has been ready at the earliest time is selected. In
DLS, the largest sum of computations from task T to exit is considered as static task level
SL(T ). The ready task that has the highest dynamic level DL(T, p) = SL(T )−ST (T, p)
is selected first, where ST (T, p) denotes the earliest time at which all incomming data
transfer complete for T . This requires evaluation of ST (T, p) for all ready tasks and all
processors. Basically, the complexity of ETF, LCF, DLS algorithms is O(pn2).
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Our objective is to generalize the notion of task-level in a manner to incorporate
the effects of computation, volume of transferred data, and network latency. Graham’s
scheduling is based on fetching ready tasks by idle processors. This concept has been
widely used for scheduling computations with or without communications. Graham’s
scheduling leads to uniform processor scheduling and inefficiently utilizes the task-level
in presence of communications. We propose a new approach called Computation-driven
scheduling which combined with our generalized task-level enables early reservation of re-
sources to critical computations and communications. We further extend our approach by
iteratively refining the generalized task-level while exploring a space of “good” solutions.
Analysis of the proposed task-level, computation-driven scheduling, and iterative refine-
ment is presented. We carry out extensive experimental evaluation for different instances
of problem granularities, inherent parallelism, and network latency.

This paper is organized as follows. Section 2 reviews Graham’s scheduling concept.
Derivation of the generalized task-level is presented in Section 3. The computation-
driven approach is developed in Section 4. Section 5 presents the iterative refinement
scheduling and analysis of the proposed approach is presented in Section 5. Evaluation of
two iterations scheduling is presented in Section 6. Evaluation of the iterative refinement
scheduling and comparison to other approaches are presented in Section 7. Section 8
concludes and outlines possible future extension of this work.

2 Background

A fundamental result of scheduling theory is the introduction of list-scheduling (LS) and
its performance bound [4]. The objective function is to minimize the execution time
of computations that can be represented by using precedence-constrained graphs with
no communication times. One important aspect of LS is the use of the longest sum of
computation from starting a task T to any exit node [6] as a measure of task criticality
that is called the task-level (l(T )). After evaluating the task-levels, LS sorts the tasks in
the decreasing order of their levels and store them in a list L. Next, each idle processor
p scans L from the beginning searching for a ready to run task. If p finds a ready task
T , then T is started on p and run without preemption. Otherwise, p does not start the
above process until completion of some currently running task which causes other tasks
to become ready.

The key point to this algorithm is the way the scheduling process is controlled and the
selection function (multi-objective) which accounts for the earliest startable task as well
as task priority. Graham’s list-scheduling implicitly enforces the starting times of succes-
sively scheduled tasks be non-decreasing sequence in time. This in turn enables finding
the well known Graham’s worst case bound [4]. The finish time ωLS over m processors
always satisfies ωc ≤ ωLS ≤ (2−1/p)ωopt, where ωc is the highest task-level or logest path
and ωopt is the optimum solution. Note that Graham’s task-level is independent from
mapping tasks to processors because of zero communication.

LS generates optimum solutions for tree-computations with equal task times. Ex-
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perimental evaluation of LS [1] proved that as shown that LS generates near-optimum
solutions for both deterministic and stochastic computations as it deviates from opti-
mum by less than 5% in 90% of the cases. Unfortunately, List-scheduling does not apply
[7] to scheduling of precedence-constrained computations with communications that are
targeted to distributed memory systems, which is the major issue in this work.

Our objective is to investigate near-optimum scheduling approaches for problems
where the volume of transferred data is one important aspect as well as the communication
delays in the underlaying distributed memory system. For this, we generalize Graham’s
task-level, investigate more efficient methods for controlling the scheduling process, and
propose an optimization approach for refining the solution.

3 Precedence computations with communications

For a precedence-constrained computation with communications, the evaluation of the
shortest distance from starting a task T to any exit task depends on the mapping of
the tasks to processors because the communication delays between the processors are
not identical. In the following we analyze the evaluation of the earliest starting time of
the tasks, show its dependency on the task-processor mapping problem, and discuss our
approach for heuristically defining the task-level.

A set of Γ(T1, . . . , Tn) of n tasks (T ) with their precedence constraints and communi-
cation costs are to be non-preemptively scheduled on p identical processors so that their
overall execution time is held to a minimum. The computation can be modeled [7] by us-
ing a directed acyclic task graph G(Γ,→, µ, C) where →, µ(Ti), and c(Ti, Tj) ∈ C denote
the precedence constraints, the task execution time, and the number of communication
messages (volume of data) that are sent from task Ti to its immediate successor Tj, re-
spectively. The multiprocessor is denoted by S(P,R) where P is a set of processors and
R is the interconnection network. The time to transfer one unit of messages (datum)
from a processor pi to processor pj, through the interconnection network, is denoted by
r(pi, pj), where pi and pj are the processors that are assigned tasks Ti and Tj, respectively.
The communication model is based on a linear communication latency model. Assuming
that the communication media is contention-free, the time to transfer c(Ti, Tj) messages
is c(Ti, Tj)r(pi, pj).

Consider the hypercube network and let h(pi, pj) be the number of hops the packet
holding the volume of data c(Ti, Tj) should travel on between processors pi and pj. When
the communication media is contention free, the time to perform the transfer can be
expressed as follows:

c(Ti, Tj)r(pi, pj) = ts + c(Ti, Tj)× thop × h(pi, pj) (1)

where ts and thop are the packet setup time and the time to transfer one unit of data
over one hop. This approach allows incorporating a model of data transfer delays in
evaluating the earliest-starting-time of the tasks.
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Let Ti be a task and denote by Pred(Ti) the set of predecessors of Ti. By considering
only one predecessor task, the earliest-starting-time est(Ti, pi) of Ti for some processor pi

depends on 1) the completion time ct(Tk, pk) of predecessor Tk on processors pk, 2) the
number of messages c(Tk, Ti) sent from Tk to Ti, and 3) the cost of routing one unit of
messages from pk to pi.

In other words, est(Ti, pi) is defined by the relationship:

est(Ti, pi) = ct(Tk, pk) +

{

0 if pi = pk

c(Tk, Ti)× r(pk, pi) otherwise
(2)

The est(Ti, pi) will be null for every processor pi in the case Ti has no predecessors
(Pred(Ti) = ∅). By considering all the predecessors of Ti, est(Ti, pi) is the earliest time
the latest message from the predecessors reaches processor pi:

est(Ti, pi) = max
Tk∈Pred(Ti)

{ct(Tk, pk) + c(Tk, Ti)× r(pk, pi)} (3)

As est(Ti, pi) depends on the routing cost r(pk, pi), then there exists at least one
processor p∗, that is free at time t(p∗), for which Ti can start at the earliest time est(Ti, p

∗)
among all the available processors:

est(Ti, p
∗) = minpi

{max{est(Ti, pi), t(pi)} } (4)

Function est(Ti, pi) incorporates the effects of computation and communication along
some chain of predecessors of T up to entry node in addition to the cost of transferring
messages between these predecessors. Moreover, est(Ti, pi) explicitly depends on how
tasks are mapped to processors as well as the implied network latency.

Denote by pmax the maximum number of tasks that can be made ready to run at any
given time for a given computation. In general, selecting pmax processors with a given
interconnection network for evaluating the earliest starting time does not guarantee that
est(Ti, pi) represent the shortest time distance from some entry task to starting Ti. This
is due to the dependence of est(Ti, pi) over the processor selection which in turn affects
the cost of transferring data between immediate tasks. Even if we choose pmax proces-
sors in S(P,R) with arbitrary interconnection network, evaluating est(Ti, pi) cannot be
achievable in all cases because two tasks may simultaneously compete for the same pro-
cessor in order to achieve the lowest earliest-starting-times. For the model G(Γ,→, µ, C),
the task-level strongly depends on the routing costs between the processors. Therefore,
the evaluation of the task-level is not tractable using G(Γ,→, µ, C) and multiprocessor
S(P,R).

Note that using Graham’s model G(Γ,→, µ) of the computation the task-level is in-
dependent from mapping tasks to processors, due to zero communications, which enables
evaluation of the task-levels using only knowledge of the computation model.

To avoid the difficulty in the evaluation of the task-level as a quantifier of task criti-
cality, only local scheduling heuristics have been proposed such the earliest-task-first [7]
and the largest-communication-first [3] for the computation model G(Γ,→, µ, C). These
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heuristics are based on locally minimizing the processor idle time as a strategy toward
minimizing overall finish time. On the other hand, discarding all the communication as-
pects [19, 15, 10], or accounting for all of them [21], in evaluating the task-level leads to
excessively inaccurate evaluations that fail specifying the degree of criticality of the tasks
with respect to overall computation.

Our approach is based on a heuristic estimate of the task-level and refining the estimate
through an iterative scheduling process. According to this method, a primary estimate
of the task-level is obtained by scheduling the reverse graph (Gr) over multiprocessor
S = S(P,R) by using the principle of earliest-task-first. The reverse graph Gr is identical
to the original computation graph G = G(Γ,→, µ, C) except that all edge directions are
reversed. Note that scheduling Gr starts with the exit tasks of G and propagates up
to entry tasks. Following the scheduling of Gr, the primary task-level l(T ) is set to the
achieved completion time (ct(T )), i.e., l(T ) = ct(T ) for each task T . For the original
graph G, the above l(T ) represents an approximation of the remaining computation and
communication along a directed chain X : (T → . . .→ Tn) of tasks whose first task is T
and last task Tn is any exit node of G. Clearly, l(T ) provides an estimate of the shortest
distance from starting T to arbitrary exit node with respect to G. Note that l(T ) now
incorporates the effects of the computation, communication, and network latency along
the chain X because l(T ) = ct(T ) results from scheduling Gr over S. The next step is to
use the above task-level l(T ) according to the principle of highest-level-first in scheduling
the original computation graph G over system S in an attempt to minimize overall finish
time.

Based on heuristic evaluation, our approach has the advantage of incorporating the
precedence constraints, communication aspect, and network latency factors in evaluating
the task-levels. The important point is that the estimate of the task-level can easily be
improved through an iterative refinement process that will be described later in this paper.

In the next section, we discuss the traditional approach for controlling the scheduling
process and propose a new method, called Computation-Driven, which combined with
our heuristic evaluation of the task-level will prove to be efficient and simple compared
to existing scheduling approaches.

4 The computation-driven scheduling

In this section we analyze Graham’s list scheduling and specially the way the scheduling
process is controlled. Graham [4] accurately defined his approach to controlling and
sequencing the List-Scheduling that will be referred to as Processor-Driven.

The processor-driven approach allows controlling the scheduling so that the starting
times of successively scheduled tasks form a non-decreasing sequence in time. This ap-
proach was first proposed by Graham [4] (Section 2) and later was used in many other
scheduling applications [7, 15, 19, 21] for computations either with or without commu-
nication times. When at least one processor completes execution of some task T , the
successors of T are examined in order to find out whether any of them becomes ready-
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to-run in which case such a successor is added to the current set of ready-to-run tasks.
Clearly, only the successors of those newly completed tasks are involved in the updat-
ing process. This leads the PD scheduler to track the increasing sequence of processor
completion times using a global time. Fundamentally, this approach leads to uniform
scheduling of the processors because the starting times of successively scheduled tasks,
for all the processors, form a non-decreasing sequence in time. Example of well known PD
scheduling are the list-scheduling and the ETF heuristic [7] that is based on the principle
of earliest-task-first.

We propose a new approach called Computation-Driven (CD) to control the scheduling
process as opposed to the processor-driven that was proposed within the framework of
list-scheduling and more recently used in many other scheduling. To emphasize the notion
of critical tasks, the CD uses a decision function d(T ) = F (l(T ), . . .) that is increasing
function (F ) of the task-level l(T ) which has been defined in Section 3. In general, function
d(T ) is to be dynamically evaluated. The CD approach mainly consists of the following
steps:

1. Initialize: evaluate the task-levels l(T )

2. Until there are no unscheduled tasks

• The task T with the highest d(T ) is assigned to some processor p that can run
T at the earliest time. The earliest time p becomes free is set to the earliest
completion of T on p

• At the starting of T on p, the set of ready-to-run tasks is immediately updated
to include any successor of T whose predecessors have all been assigned to some
processors but have not necessarily been completed

The important features of CD compared to PD are 1) the absence of global time, 2)
the set of ready-to-run tasks is immediately updated following the starting of each task,
3) the starting times of successively scheduled tasks are not necessarily a non-decreasing
sequence in time. While PD rather uniformly schedules the processors, the CD is non-
uniform with respect to processor selection because the tasks of a critical chain can be
sequentially scheduled on one or few processors. The PD scheduling is driven by free
processors but CD scheduling is driven by the computation graph and more precisely by
some chain of critical tasks that are selected based on their task-levels. On the other hand,
the explicit choice of function F is necessarily driven by the need to implement different
minimization strategies depending on how the task-level should be combined with other
information. The formal characteristics of the CD approach will be analyzed in Section
5.1 and evaluated in Section 6.

Depending on how task-selection maps into the generalized task-level and the incurred
processor idle time, we define the following CD scheduling heuristics. Heuristic CD/HLF
is computation-driven/Highest-level-first for which the decision function is defined by
d(T ) = l(T ).

8



Selecting tasks according to an HLF criterion may lead to increasing the processor idle
time that precedes the starting of the highest level task. Therefore, a heuristic function
that imposes a penalty due to the idle time which precedes its starting time consists of a
decision function d(T ) = l(T ) − est(T, p), where est(T, p) is the least starting time of T
that can be achieved on some processor p. This approach leads to define a computation
driven scheduling heuristic called Highest-Level-Earliest-Task-First (CD/HLETF). In the
following we analyze the selection function of heuristic CD/HLETF.

Consider task T that is scheduled first by CD/HLETF whenever T satisfies l(T ) −
est(T, p) ≥ l(T ′)− est(T ′, p′) for any ready task T ′, where p and p′ are the processors on
which T and T ′ can run at the earliest time. If p 6= p′, then the decision order of T and
T ′ are independent and non-conflicting. In this case, assigning T on p at time est(T, p)
does not block T ′ from being assigned later to start at time est(T ′, p′).

Assume p = p′ and consider the following two cases: 1) est(T, p) ≤ est(T ′, p′), and 2)
est(T, p) > est(T ′, p′).

Assume est(T, p) ≤ est(T ′, p′). The task-level can be written as l(T ) ≥ l(T ′) −
(est(T ′, p′)− est(T, p)) = l(T ′)−∆idle, where ∆idle is the idle time that precedes T ′ if T ′

is selected first. Since, l(T ) ≥ l(T ′)−∆idle indicates that CD/HLETF decreases the level
(penalty) of T ′ because it incurs an idle time ∆idle if is was selected first.

Assume est(T, p) > est(T ′, p′). We similarly obtain l(T ) ≥ l(T ′)+∆idle, where ∆idle =
est(T, p)−est(T ′, p′). This is equivalent to penalizing task T as the level of T ′ is increased
by ∆idle because the starting of T incurs an idle time ∆idle. CD/HLETF imposes a penalty
on the task-level (increasing or decreasing) that is the amount of relative idle time which
precedes the starting of every task.

We now present algorithm (CD/HLETF) which is shown in Figure 1. CD/HLETF
uses task-levels {l(T )} as inputs and set A and B to store ready-to-run tasks and assigned
tasks, respectively. Initially, A contains all tasks without predecessors and B is empty.
t(p) holds the earliest time p is idle. The main loop (Statement 2) repeats until there are
no unscheduled tasks. It selects a task T ∗ and a processor p∗ such that l(T ∗)− est(T ∗, p∗)
is the highest among all ready tasks for which the task’s least starting time (least est(T ))
is for processor p∗. Following the scheduling of T ∗ on p∗, the time at which p∗ becomes
free (t(p∗) = est(T ∗, p∗) + µ(T ∗)) is used to update the est(T, p) for all tasks of A. It also
finds new least est(T ) if the current least est(T ) is modified.

For each task T , an integer λ(T ) is initially set to the number of predecessors of T .
Following the scheduling of T , λ(T ′) is decremented for each successor T ′ ∈ Succ(T ). If
λ(T ′) = 0, then all the predecessors of T ′ have already been assigned and, consequently,
T ′ becomes ready according to the CD approach. T ′ can start after all precedence and
communication are satisfied but its inclusion in A enables it to compete early with others
and possibly get scheduled (reservation). Notice that finish time of successively scheduled
tasks is no more a non-decreasing sequence in time. The outputs of CD/HLETF are the
completion times {ct(T )} of the tasks and their processor assignment {p(T )}.

The main loop of CD/HLETF is statement 2 that executes n times because one task is
scheduled in each run. Statement 2.1 executes at most pn times in order to select one task.
Statement 2.3 updates the parameters but its last operation executes n times. Operation
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Algorithm: CD/HLETF
(1) Initialize: A← {T : Pred(T ) = ∅}, B ← ∅,

For each T ∈ A and each p: est(T, p) = 0, least est(T ) = 0, t(p) = 0.

(2) While |B| < n Do
Begin
(2.1) Select T ∗ ∈ A and p∗ such that least est(T ∗) = est(T ∗, p∗) and

l(T ∗)− est(T ∗, p∗) = maxT∈A{l(T )−minp{est(T, p)} }.

(2.2) Assign T ∗ on p∗ : p(T ∗) = p∗, ct(T ∗) = est(T ∗, p∗) + µ(T ∗), t(p∗) = ct(T ∗),
Remove T ∗ from A, Add T ∗ to B,
For each T ∈ A, update: est(T, p∗) = max{est(T, p∗), t(p∗)},

Find new least est(T ).

(2.3) Repeat for each task T ∈ Succ(T ∗) : λd(T ) = λd(T )− 1 ,
If λd(T ) = 0 Then Add T to A,

For each p: est(T, p) = max{maxT ′∈Pred(T ){ct(T
′)+

c(T ′, T ).r(p(T ′), p)}, t(p)}.
Find least est(T ).

End

Figure 1: Scheduling algorithm CD/HLETF

λ(T ) = λ(T )−1 in statement 2.3 executes O(n2) times but the condition λ(T ) = 0 occurs
only once for each task. The time complexity of CD/HLETF is then O(pn2).

An optimization technique that can improve management processor idle time is to
attempt filling the idle time that precedes the the most prior task T by another task
T ′ provided that T does not get delayed. If such T ′ can be found, then updating A by
eventually adding some successor T ′′ of T ′ always satisfies d(T ) > T ′′, thus processor
reservation is maintained for T . This approach defines heuristic CD/HLETF ∗ which only
increases the constant in pn2.

5 Iterative refinements

A computation-driven scheduling heuristic (Hcd) uses a decision function d(T ) =F (l(T ), state),
where l(T ) is the task-level, F is some increasing function of l(T ), and state is some dy-
namic function of T and the status of the processors at the time task T is considered for
possible scheduling. Clearly, l(T ) results from some global knowledge of the computation
in order to state how critical T is compared to other competing tasks. The decision func-
tion represents some Generalized Task-level (GTL) because it combines an approximation
of the task-level with some penalty function. An example of CD scheduling is a heuristic
that selects tasks according to the principle of highest d(T ) = l(T )− est(T, p) among all

10



ready to run tasks. In this case, est(T, p) represents an approximation of the shortest
time distance from some entry node to T .

The principle of CD scheduling consists of using the completion time of the tasks
that results from scheduling the reverse graph Gr as the quantifier of task criticality for
scheduling G on the basis of the principle of highest-level-first. The completion times
so utilized are only approximate but they incorporate the most critical effects along an
arbitrary chain of tasks that are the computations, communications, and network latency.
We expect this strategy to yield solutions that statistically minimize the finish time.
Therefore, we propose extending this process by alternatively scheduling Gr and G over
system S and passing the completion time ct(T ) of the tasks from one CD scheduling
iteration to the next in order to search in a space of solutions. We call this approach
Iterative Refinement Scheduling (IRS). The important point of IRS is that the task-levels
used in some scheduling iteration are the task completion times that result from the very
previous scheduling iteration. For this, each scheduling iteration passes its output {ct(T )}
to the next iteration for use as task-levels. The objective of this iterative process is to
search solutions with shorter finish times as a result of using a more refined estimate of
the task-level throughout successive refinements.

The iterative refinement scheduling is shown on Figure 2. A scheduling iteration,
denoted by Hcd(G,S, L) = {ct(T )}, consists of scheduling graph G over system S by using
heuristic Hcd and a list L of task-levels so that the resulting schedule is defined by the task
completion times (ct(T )) and their processor assignments. The processor assignment is
assumed but intentionally omitted from this notation. The iterative process is initialized
by using a CD heuristic HCD and scheduling of Gr according to the principle of earliest-
task-first, i.e., highest-level-first with a decision function d(T ) = −est(T, p). The above
scheduling can be represented by the notation Hcd(Gr, S,−) = {ct1(T )}, where ct1(T ) is
the completion time of T following the first iteration. Next, the set of task completion
times {ct1(T )} are used as task-levels in the second iteration. The second step is defined by
Hcd(G,S, {ct1(T )}) = {ct2(T )}, where {ct2(T )} are the task completion times as achieved
in the second iteration. Generally, odd numbered iterations perform scheduling of the
reverse graph Gr and even numbered iterations operate on the original graph G. Formally,
iterations 2k − 1 and 2k are defined by the successive scheduling (k ≥ 1):

2k − 1 : Hcd(Gr, S, {ct2k−2(T, p)}) = {ct2k−1(T, p)}

2k : Hcd(G,S, {ct2k−1(T, p)}) = {ct2k(T, p)}

The iterative refinement is repeated until some condition is met. In the following we
present an Iterative-Refinement-Scheduling algorithm which terminates if the finish time
of the solution converges to some value, oscillates, or the number of iterations exceeds
some bound. The iteration counter is denoted by k and ωk denotes the finish time of the
current solution. The output is the solution with the least finish time (Lsol).

Using one single CD heuristic, the IRS scheduling allows searching into a space of
solutions. The assignment of a task T to processor p affects the solution in different
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Input: Precedence-Graph G = G(Γ,→, µ, C), its reverse Graph Gr, Γ = {T1, . . . , Tn},
multiprocessor model S = S(P, R), and number of iterations N

Output: List L = {(ct(T ), p(T )) : T ∈ Γ} for the best solution

Algorithm : Iterative Refinement for Heuristic Hcd

(1) Initialize: set ct0(T ) = 0 for all T ∈ Γ, use temporary storage Gt = Gr,
set ω =∞ and counter k = 1

(2) Until (ωk converges) or (ωk oscillates) or (k > N ) do
Begin

(2.1) Schedule Gt using Hcd : Hcd(Gt, S, {ctk−1(T )}) = {(ctk(T ), pk(T )) : T ∈ Γ}
(2.2) set ωk = maxT∈Γ{ctk(T )}, k ← k + 1

if ωk < ω then ω = ωk, L← {(ctk(T ), pk(T ))}, endif
if even(k) = true then Gt = G

else Gt = Gr, endif
End

Figure 2: Iterative Refinement Scheduling

manner, mainly the volume of data to be transferred from the predecessors and the
network latency in routing the data to p. Therefore, the size of the searching space and
the number of iterations required to reach some steady state are necessarily dependent
on the problem granularity (ratio of communication to computation) and the network
latency. The size of the search space and the iterative process behavior will be discussed
in section 7.1.

5.1 Analysis of the iterative refinement

The PD approach was initially introduced by Graham [4] and later extended [7, 15] to
precedence-constrained computation with communication times. Initially at time zero,
each processor p scans the list of tasks searching for a task T that can start without
delay. If T is found, then p starts T , otherwise it idles until another processor completes
execution of some other task.

This strategy was designed with a worst-case bound [4] in mind for problems with zero-
communication. The PD approach and the bound were later generalized to computations
with non-zero communication. It is proved [7] that the finish time ωPD/ETF satisfies:
ωPD/ETF ≤ (2− 1/m)ωopt + C, where m is the number of processors, ωopt is the optimum
solution without communication costs, and C is the sum of communication along some
chain of tasks that finish at ωPD/ETF . The bound results from the fact that the starting
times of successively scheduled tasks is a non-decreasing sequence in time. In the following
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we prove that a schedule generated by the computation-driven approach does not satisfies
the above stated bound.

Theorem 1 The Computation-Driven scheduling does not satisfy the worst case bound
of processor-driven/earliest-task-first.

Proof The set of time points in (0, ωcd) can be partitioned into two subsets A and
B that consist of all the time points for which: all processors are busy (A), and at least
one processor is idle (B). B is the disjoint union of q open intervals B = ∪1≤i≤q(bli , bri

)
and bl1 < br1

< . . . < bli < bri
< . . . < blq < brq

. We prove that is impossible in general
to find a chain of tasks X : T1 → T2 → . . . → Tk such that Tk completes at ωcd and
chain X covers B. In other terms ΣT∈Xµ(T ) + ΣT,T ′∈Xc(T ′, T )rmax cannot always covers
Σ1≤i≤q(bri

− bli), where rmax = maxp,p′{r(p, p
′)}.

Consider a task T ∈ X such that its starting time s(T ) ∈ B. By definition of B, there
exists a processor pε that is idle in interval I = (s(T )− ε, s(T )), where ε is some positive
number. Denote by T ′ a task that starts on pε at s(T ′) ≥ s(T ). Consider the case where
the latest message for T reaches processor pε prior to time s(T ). In this case, we have
est(T, pε) ≤ s(T ). The reason for which T was not started earlier (at time est(T, pε)) on
pε could be d(T ′) ≥ d(T ) and T ′ was scheduled on pε prior to scheduling T on p even with
est(T, pε) ≤ est(T ′, pε). CD scheduling may leave interval (est(T, pε), s(T )) uncovered
by the data transfer from the predecessors of T . Therefore, interval I cannot always be
covered by µ(T ) and c(T ′, T )rmax.

For the processor-driven approach, the criterion behind the bound is to locally mini-
mize the processor idle time as the main strategy toward minimizing overall finish time.
The bound is useful notion but one important question is whether a heuristic that sat-
isfies the bound is capable of generating near-optimum solutions under critical problem
instances such as fine-grain or non-uniform network latency, or both.

By abandoning the strict enforcement of PD scheduling, the computation-driven ap-
proach applies a balanced decision function with respect to task criticality (task-level)
and the incurred processor idle time. Tasks with higher levels are scheduled in-sequence
along immediate chain of tasks until the priority is reversed to other chains which leads to
out-of-sequence scheduling. We call this process the effect of processor reservation which
will be clarified by the following theorems.

Theorem 2 The decision function of CD scheduling is a decreasing function along any
directed path (T1 → T2 → . . . TL) in G or Gr.

Proof Consider two immediate tasks T and T ′ ∈ Pred(T ) in G at iteration k. Let pk

and p′k be the processors that are assigned tasks T and T ′ at iteration k, respectively. We
need to prove that ctk−1(T

′) − estk(T
′, p′k) > ctk−1(T ) − estk(T, pk). As T ′ ∈ Pred(T )

and µ(T ) 6= 0, therefore, we have estk(T, pk) > estk(T
′, p′k) for any immediate tasks of

iteration k. Now consider the previous iteration k − 1 for which T is a predecessor of
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T ′ (T ∈ Pred(T ′) in Gr). In this case, ctk−1(T
′) > ctk−1(T ) which can be combined

with estk(T, pk) > estk(T
′, p′k) to give ctk−1(T

′)− estk(T
′, p′k) > ctk−1(T )− estk(T, pk) for

arbitrary k.
By definition, the CD decision function dk(T ) is increasing function of ctk−1(T ) at

iteration k. Therefore, dk(T ) decreases long any chain (T1 → T2 → . . . TL) of immediate
tasks where T1 is an entry task and TL is an exit task in G. The same proof applies to
chains of Gr.

The computation-driven approach schedules a task at each decision step. Denote by
do(T ) the decision order of T that satisfies: 1 ≤ do(T ) ≤ n for n tasks.

Theorem 3 The decision function d(T ) is non-increasing function along any increasing
sequence of decision orders.

Proof We need to prove that the decision function d(T ) always satisfies d(T ) ≥ d(T ′)
whenever do(T ) < do(T ′). Assume T is scheduled at some decision order do(T ), we nec-
essarily have d(T ) ≥ d(T ′) for any ready task T ′. Consider task T ′′ ∈ Succ(T ′) as any
successor of T ′. In this case, we necessarily have d(T ′) ≥ d(T ′′) as shown in Theorem
2. Therefore, d(T ) is a non-increasing function along any increasing sequence of decision
orders because d(T ) ≥ d(T ′) > d(T ′′) whenever do(T ) > do(T ′) and T ′′ is any successor
of any unscheduled but ready task T ′.

A dominant chain of tasks is a sequence of immediate tasks in a schedule such that
delaying one of these tasks cause increasing in the schedule time. The CD strategy is
to schedule tasks along dominant chains of tasks until the task-level drops (Theorem 3)
below that of some ready tasks in which case scheduling switches to the next chain. The
task-level of all tasks used in one scheduling iteration completely identifies a solution or
a state. Therefore, IRS can be seen as a deterministic evolutionary process [9] that has
hereditary variation and differential production.

It changes through iterations such that each new state (solution) is similar to previous
state and yet different. The similarity is present because the task-level does not always
significantly change, from one iteration to another, to trigger a change in the decision
function d(T ). Reversing the decision order requires relatively significant change in task-
level in a differential manner.

Each state is evaluated through mapping of task-level to completion times for all tasks.
This means that inferior task assignment are discarded because “excessive” task delay in
current state means “excessive” task-level in next iteration, thus partially improves the
local state. Each new iteration is likely to retain some similarity with previous states and
introduces variation at the same time. IRS continues until finding some balancing which
corresponds to some steady local minima. We expect this corrective process to explore a
space of “good” solutions that allows sharpening of the finish time.
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6 Evaluation of two-iteration CD scheduling

The objective is to compare performance of local scheduling heuristics and the proposed
approach which is based on pre-evaluation of the task-priority and generalized list schedul-
ing. We compare our approach to the well known PD/ETF [7]. A heuristic called CD/R
is used to randomly select ready tasks and assign them to run at their earliest starting
times. This is useful to compare the effect of random and deterministic task selections.
Testing includes three PD heuristics (PD/ETF, PD/HLF, and PD/HLETF) and five CD
heuristics (CD/ETF, CD/HLF, CD/HLF∗, CD/HLETF, and CD/HLETF∗).

A random graph generator (RGG) is used for generating computation graphs with
few hundred tasks and with task computation time ranging from 10 to 190 time units.
The average communication cost, number of level, and the number of processors are
indirectly controlled using three parameters. The average communication to the average
computation is denoted by α = ΣT,T ′c(T ′, T )rmin / ΣT µ(T ) = carc/µT , where rmin is
the least time to transfer a unit of data between two processors (set to 1), µ(T ) is the
computation time of T , carc is the average edge communication time, and µT is the average
task time.

The graph parallelism is the average number of tasks that can be made ready to run
at the same time. This can be measured by using the ratio of the sum of all computation
times in the problem over the sum of computation times along the longest chain (Xlongest).
Xlongest is a chain of immediate tasks starting at entry node and ending at exit node such
the sum of all its task times is the largest among all available chains. In other words, the
graph parallelism is

∑

T∈Γ µ(T )/
∑

T∈Xlongest
µ(T ). We define the degree of parallelism (β)

as the task graph parallelism over the number of processors (p):

β =

∑

T∈Γ µ(T )

p×
∑

T∈Xlongest
µ(T )

(5)

The degree of parallelism is an indicator of the average number of tasks that can be
made ready per processor. It also indicates the average number of tasks that may compete
for each processor. The communication system is based on letency cost model which is
applied in this study to fully connected (FC), the hypercube (HC), and the ring (RG).
Note that low value of α corresponds to coarse grain tasks and high values of α correspond
to fine grain computations.

The studied ranges of α and β is [0 − 3] with a step of 0.5 and [0.5, 1, 2, 2.5, 3, 4],
respectively. The variance on Carc is set to 50% of the current average of Carc. Each
graph has at least 6 levels and 70% of the outgoing arcs from one level are incoming arcs
to the next level and the remaining 30% reach arbitrary forward levels. For each instance
of α, β, and topology (126 instances), the RGG uses the uniform distribution to generate
500 random computation graphs that are scheduled by each of the previously defined
heuristics.

The shortest finish time that is achieved by some heuristic for a given task graph is
denoted by (ωb) and used as a reference of the optimum solution. To compare the finish
time (ωh) of some heuristic H to reference ωb we use the formula (ωh/ωb − 1)100 that
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FC HC RG
Heuristic Decision Low High Low High Low High
PD/ETF est(T ) 4 7 4 9 4 10
PD/HLF l(T ) 8 45 25 90 40 130

PD/HLETF l(T )− est(T ) 2.5 5 3 9 4 14
CD/R random 16 32 20 35 25 40

CD/ETF est(T ) 3 4 3.5 7.5 4 8.5
CD/HLF l(T ) 1 6.5 3 13 4 15
CD/HLF ∗ l(T ) 1 2.5 1.5 2.5 2 3

CD/HLETF l(T )− est(T ) 0.8 3 1.5 5 2 6
CD/HLETF ∗ l(T )− est(T ) 0.6 1.3 0.8 1.5 1 2

Table 1: Average percentage deviation from ωb for all the tested heuristics

represents the percent deviation of H from ωb. The average percent deviation is obtained
by averaging the deviations for a given instance of studied levels of communication (α),
parallelism (β), and network topology.

Table 1 lists the average percent deviation, from ωb, of the finish time as achieved by the
studied heuristics for the fully connected (FC), hypercube (HC), and ring (RG) topologies.
Entries of the table are obtained by averaging the finish time over the studied range of
parallelism. The columns entitled Low and High denote the range of low communication
(0 ≤ α ≤ 1) and high communication (2 ≤ α ≤ 3).

6.1 Random versus deterministic task selection

Although the random scheduling CD/R assigns each randomly selected task at its earliest
starting time, it produces unacceptable deviation from ωb for all studied values of com-
munication, parallelism, and network topology. The finish time of the solutions generated
by CD/R deviates from ωb by 16% to 40% as shown in Table 1. Therefore, deterministic
task selection is needed specially when increasing parallelism and communication.

6.2 The task-level under the PD approach

Heuristic PD/HLF significantly deviates from ωb because task selection according to
highest-level-first does not handle to idle time left just before starting the task. PD/HLETF
overcomes some of the deficiency of PD/HLF but still have unacceptable deviation (9%
and 14% for HG and RG) from ωb because the benefit of task-level cannot be exploited
with PD approach. For PD, the starting times of successively scheduled tasks is a non-
decreasing sequence in time (horizontal), while, the benefit of task-level is to be able
to schedule dominant tasks in sequence on some processor (vertical reservation) prior to
assigning idle processors. These criteria are obviously conflicting.
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Figure 3: Average percentage deviation of PD/ETF from ωb

6.3 Local heuristics

Heuristics PD/ETF and CD/ETF have nearly the same average deviation from ωb with
small advantage to CD/ETF (2%). The PD and CD approaches are identical within the
framework of local scheduling. However, the slight advantage of CD/ETF over PD/ETF
is due to the use of the effective earliest-starting-time in CD/ETF (Eq. 4) against the
theoretical one (Eq. 3) in PD/ETF. Figure 3 shows the average deviation of PD/ETF
from ωb for the FC, HC, and RG topologies, respectively. A deviation of 5% or less is
achieved by PD/ETF only when β/α ≥ εtop, where εtop is a topology dependent parameter.
Using the definition of α and β, analysis of the data gives:

NT

NL

.
µT

carc

≥ εtop.p (6)

Therefore, to achieve acceptable deviation (5%) the inherent parallelism (NT /NL) and
the communication ratio (carc/µT ) imposes a bound on the number of processors used.
We conclude that local heuristics that are based on earliest-task-first rely on overlapping
computation and communication as a strategy to minimize the finish time. Therefore,
these heuristics require increasing the parallelism, or decreasing the number of processors,
in order to achieve acceptable deviations as shown on Figure 3.

6.4 The generalized task-level under the CD approach

The heuristics CD/HLF, CD/HLF∗, CD/HLETF, and CD/HLETF ∗ give acceptable de-
viation from ωb for low to average communication (0 ≤ α ≤ 1.5). However, the best
results are obtained for CD/HLF∗ and CD/HLETF∗ which show that the main issue is
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Figure 4: Average percentage deviation of CD/HLETF∗ from ωb

to combine the knowledge on task-level with efficient management of the processor idle
time.

The plots of the average deviation for heuristic CD/HLETF ∗ is shown on Figure 4
for the FC, HC, and RG topologies, respectively. While CD/HLF deviates by more than
8% for (α > 1.5), heuristic CD/HLETF overcomes most of the deficiency of CD/HLF
with respect to processor utilization because CD/HLETF slightly increases its deviation
with increasing communication. For all studied levels of parallelism, the peak deviation
of CD/HLETF is 4.5%, 6%, and 7.5% for the FC, HC, and RG topologies, respectively.
Heuristic CD/HLETF ∗ achieves the lowest average deviation that is nearly 2% for all
studied level of parallelism and communication. This shows a clear advantage of global
priority-based scheduling over the local approaches. The slight deviation of CD/HLETF ∗

compared to those of CD/HLF and CD/HLETF indicates that the major issue is to com-
bine the task-level with efficient management of the processor idle times. This objective
seems to be achieved within heuristic CD/HLETF ∗ that maintains small deviation over
the studied range of communication, parallelism, and multiprocessor topologies.

6.5 Analysis of the distribution

Analysis of the distribution is carried out for PD/ETF and CD/HLETF ∗ because these
heuristics are the best representative of local and CD, respectively. The boundary (Fig-
ure 5) of the best 50% and 90% population of the finish time versus the available paral-
lelism (β) is studied here. The boundary is taken as the maximum deviation for all levels
of studied communications.

While the 50% boundary for PD/ETF is at the 10% deviation level, that of CD/HLETF ∗

does not exceed the 1.5% level. The 90% boundary is nearly about 18% for PD/ETF
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Figure 5: Boundary of 50% and 90% population for PD/ETF and CD/HLETF∗

against 4% to 7% maximum deviation for CD/HLETF ∗.
Changing the topology from FC, to HC, and to RG has the effect of increasing the

communication requirements on the original computation but the general shape of the
distributions is nearly maintained. PD/ETF is more sensitive to the inherent parallelism
than CD/HLETF ∗. PD/ETF slightly reduces its 50% deviation boundary versus increas-
ing parallelism while CD/HLETF ∗ maintains constant deviation at the same boundary
level. The dependency on parallelism and topology appears only at the 90% boundary
level for CD/HLETF ∗.

7 Evaluation of iterative refinement

The iterative refinement scheduling applies to generalized list scheduling heuristics for
which the selection function dk(T ) at some iteration k is increasing function of the task
completion time ctk−1(T ) (task-level) as achieved in the previous iteration k − 1. The
objective is to find shorter finish time than that generated following the first two iterations.
The process relies on using a more refined estimate of the task-level throughout the
iterative process. Evaluation of the iterative refinement was carried out for all the studied
CD heuristics by using the previously defined random graph generation.

7.1 Iterative process behavior

Iteratively scheduling generated graphs by using a given Hcd is characterized by the previ-
ously defined communication parameters (α), parallelism (β), and network topology (FC,
HC, and RG). For each heuristic Hcd and each instance of α, β, and network topology, a
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Figure 6: The four behavioral types of iterative refinement scheduling

space of solutions is explored through the iterative refinement process. Denote by (ωbest)
the shortest finish time that is found through the iterative process by using some heuristic
and for a given problem.

The first observation is that the finish time of the solutions found by the iterative
refinement fluctuates but sharply tends to find solutions with shorter finish time compared
to that obtained from two-iteration CD scheduling (Section 6). The iterative process
behavior can be classified into four categories: a) converges to its best solution ωbest

(Figure 6-a), b) converges to a solution other than ωbest (Figure 6-b), c) becomes cyclic
over a number of iterations (Figure 6-c), and d) does not converge (Figure 6-d). The
behavior of the four types of iterative refinement that are shown on Figure 6 is taken
for the instance (α = 1, β = 2, and FC) and heuristic CD/HLETF ∗. The iterative
refinement for CD/HLETF ∗ gives the least improvement over its two-iteration solution
because its two-iteration finish time already has little deviation from ωb.

The average number of iterations (Ns) required to reach any of the first three states
a, b, or c is characterized by 1) Ns is nearly the same for states a, b, and d, and 2) Ns

strongly depends on the problem instances (α, β, and network topology). The last type
(d) may converge if the iterative process is continued beyond Ns.

Increasing the communication requirements of a problem instance leads to increas-
ing the effect of the scheduling decision on the solution finish time because of increasing
the number of alternatives for scheduling immediate tasks. Therefore, Ns increases with
increasing the communication parameter α. Coarse-grain computation (low α) requires
the least value of Ns for any given instance of β and topology. The network topology
has similar effect to that of the communication because assigning a task T to a pro-
cessor p implicitly affects overall finish time due to connectivity of p and its associated
communication costs.
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Figure 7: Effect of increasing parallelism and communication on Nstable

Increasing parallelism leads to increasing the average number of tasks that compete for
every free processor. This in turn increases the effect on the overall finish time depending
on the used task selection function. Therefore, increasing parallelism implies increasing
the number of iterations required to reach any of the stable states.

Figure 7 shows the average number of iterations Ns versus increasing communication
and parallelism for iteratively scheduling CD/HLETF ∗ with the FC network topology.
The plot of function Ns = F (α, β) for the HC and RG topologies are fundamentally similar
with some gradual shifting due to increasing of the network communication penalties.
For each network topology, the quasi-linearity of function Ns = F (α, β) enables finding
analytical expressions based on experimental data.

7.2 Repetitive random versus iterative refinement

It might be thought that the improvement brought by applying the proposed iterative
refinement is due to arbitrary selection of ready tasks at each iteration. To investigate this
point, repetitive random (CD/R) scheduling was compared to CD iterative refinement.
We compared the best finish time of the solutions generated by using an equal number
of iterations in both scheduling. The iterative refinement of Hcd was able to significantly
improves its best solution compared to its two-iteration finish time. Although a repetitive
Random scheduling was able to produce better results than single-iteration Random, it
was far from delivering a good schedule.

Another aspect is the study of the effect of randomly setting the task-levels for starting
the iterative refinement with CD heuristics. This random-starting uses random task-levels
only for the first iteration of the iterative refinement. The result is that random-starting
was quickly able to generate solutions that are comparable (less than 2% deviation) to
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those generated by CD iterative refinement and over different problem instances. Both
iterative behaviors were comparable in finish time except in that random-starting required
more iterations to converge. The experiments clearly indicate that CD iterative refine-
ment is a deterministic process that searches in a space of solutions with highly probable
improvement over the finish time.

7.3 Improvements to CD heuristics

For each instance of α, β, and studied network topology, we generate 250 computation
graphs and apply the iterative refinement algorithm with each CD scheduling heuristic.
The termination condition of the iterations corresponds to convergence, oscillation, or
when the number of iterations reaches 100.

The performance function of the iterative refinement of a heuristic Hcd is the short-
est finish time ωcd(Ns) that is found through the iterations. The iterative refinement
is compared to the the finish time (ωcd(2)) generated following two-iteration schedul-
ing (Section 6) by using the formula (ωcd(2)/ωcd(Ns) − 1). This enables measuring the
average percent improvement due to iterative scheduling. Figure 8 shows the average
percent improvement for heuristics PD/HLETF , CD/HLF , and CD/HLETF ∗ with
the FC network topology. Heuristics (PD/HLETF, CD/HLF, and PD/HLF (not shown))
that gave unacceptable deviations or performed poorly (PD/HLF) in the two-iteration
scheduling achieved impressive improvement through the iterative refinement. The iter-
ative refinement achieves greater improvements in the upper part (Iupper) of the studied
range of communication α and parallelism β as well as for the HC and RG network
topologies.

Evaluation of two-iteration scheduling indicates that the most deviation from ωb, for
a given heuristic, is always located in (Iupper) because of the need for efficient overlap-
ping between computation and communication. Iupper corresponds to the largest studied
solution-space as Ns(α, β) increases with increasing communication and parallelism for
a given network topology. The iterative refinement is able to significantly improve the
solution generated by the two-iteration scheduling specially for problem instances within
(Iupper) as shown in Figure 8. The greatest improvement is obtained for those heuristics
whose two-iteration scheduling significantly deviates from ωb. The more the CD heuristic
deviates from ωb, the more is the expected improvement with its iterative refinement.

7.4 Comparison to other approaches

Pase [15] experimentally studied 12 scheduling heuristics (S1−S12) including the task du-
plication technique (O(pn2)) [10] and PD/ETF [7] (S2). His heuristic (S1) assigns priority
from the graph bottom and selects the task that is closest to top. The priority function
(page 17 of [15]) is evaluated based on task computation times but neither account for
the communication edges nor the network latency. He founds that S1 and PD/ETF
are among the best heuristics and both outperform the TD scheduler of [10]. Our study
indicates that the two-iteration scheduling as well as the iterative refinement significantly
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Figure 8: Improvement due to iterative refinement over two-iteration scheduling

Average Deviation Iterative Refinement
Comm/Comp DSC/ETF DSC/Sarkar HLETF/ETF HLETF/ETF Iter.

0.1-0.3 0.06 5.56 2.8 5.73 5
0.83-1.25 3.3 20.74 3.27 6.87 22
3.3-10 2.36 19.39 6.97 12.02 37

Table 2: Comparison of DSC, Sarkar, PD/ETF, CD/HLETF∗, and iterative CD/HLETF∗

outperforms PD/ETF versus change in communication, parallelism, and network topol-
ogy. All the scheduling heuristics, including ours, fundamentally have identical number
of steps (O(pn2)) but differ slightly in the constant.

The mobility intervals used as task-priority used by Wu [21] (O(n3)) are too inaccurate
because they incorporate all the communication carried by the edges and do not address
the processor selection problem.

The heuristic called Dominant Sequence Clustering (DSC) [22] was proposed for schedul-
ing DAGs on unbounded number of completely connected (FC) processors. DSC schedul-
ing improves the clustering approach presented in Sarkar and Hennessy [17] but slightly
outperform (3.3%) PD/ETF as reported by Yang and Gerasoulis [22] who studied schedul-
ing with the FC network. Heuristic PD/ETF is used as reference in [22] and this work,
therefore we can compare our work to that reported in [22, 17]. DSC (O(n log n)),
PD/ETF, and Sarkar clustering have been studied over an unbounded number of pro-
cessors and their comparison is shown in columns 2 and 3 of Table 2 as reported in [22].
The second step of DSC is to merge clusters in order to match the number of clusters with
that of the processors. The second step is likely to increase the finish time that results
from the use of an unbounded number of processors. Therefore, Table 2 represents the
best results of DSC that can be compared to PD/ETF.
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K/TD P/TD Sarkar DSC Pase ETF CD
O(n4) O(n3(nlogn + e)) O(n(n + e)) O((n + e)logn) O(pn2) O(pn2) O(pn2)

Table 3: Comparison of time complexities

The deviations shown in Table 2 represent the average percent improvement of HX

over HY that is evaluated by (1−ωX/ωY )100. DSC and two-iteration CD/HLETF∗ nearly
achieve the same improvement over PD/ETF in the low to medium communication range
(coarse grain) but CD/HLETF∗ outperforms DSC for fine grain tasks (3.3 ≤ α ≤ 10).
The use of the iterative refinement with CD/HLETF∗ significantly outperforms all the
above scheduling specially for problem instances (fine-grain) where it is hard to find good
solutions. The two-iteration scheduling (HLETF∗) and its iterative refinement largely
outperforms PD/ETF over all studied range of parallelism, communication, and network
topology. The cost of iterative refinement is linear with the cost of CD scheduling.

Finally, Table 3 compares the time complexities of Kruatrachue’s [10] and Papadim-
itriou’s [14] task-duplication scheduling, Sarkar and Hennessy’s [17] and Yang and Gera-
soulis’s clustering [22] over unbounded number of processors, Pase’s scheduling [15],
Hwang and others’ earliest-task-first [7], and our proposed computation-driven scheduling.

8 Conclusion

We have addressed the problem of finding efficient scheduling heuristics for precedence-
constrained computations with communication times targeted on distributed memory
systems.

The task-level is fundamental to differentiate critical from non-critical computations
and communications. We generalized the notion of task-level in a manner to incorporate
the effects of computation, volume of transferred data, and network latency. The ap-
proximate task-level was set to the task completion time that was obtained by backward
scheduling the computation graph. We proposed a new approach called Computation-
driven scheduling which combined with our generalized task-level enables early reservation
of resources to critical computations and communications. The next step was to use the
task-level in forward scheduling according to the principle of highest-level-first.

The task-level can easily be improved through an iterative refinement process that
consists of alternatively scheduling the computation graph and its associated reverse over
a number of iterations. Information on task-levels passes from one iteration to another in
order to refine the tasks-level and, consequently, optimizes the solution.

We carried out extensive experimental evaluation for different instances of problem
granularities, inherent parallelism, and network latency for the fully connected, cube,
and ring. It is found that our two-iteration scheduling outperforms all known scheduling
heuristics for the studied granularities, parallelism, and networks. The iterative refine-
ment scheduling was shown to explore a space of solutions whose size grows with the
amount of parallelism and communication granularity. Solutions generated by our itera-
tive refinement largely outperform all known approaches specially for fine-grain problems
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where other approaches fail.
The iterative refinement is a low cost scheduling approach that can be implemented as a

compiler optimization for programming distributed memory systems. It is specially useful
for large-scale programs that are compiled once but repeatedly executed over different
data sets. Future extension to this work would address the problem of finding generic
model of network latency to incorporate the effect of contentions. Real-time monitoring
of the iterative refinement scheduling may present an advanced approach for synthesizing
“good” solutions in the presence of all system’s effects.
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