
JOURNAL OF LATEX CLASS FILES 1

Array Organization in Lock-Step Parallel Memories
Mayez A. Al-Mouhamed1, Steven Seiden2, and SHussam Abu-Haimed3

Abstract—The serialization of memory accesses is a major
limiting factor in high performance SIMD computers. The data
patterns or templates that are accessed by a program can be
perceived by the compiler, and therefore, the design of dynamic
storage schemes that minimize conflicts may dramatically im-
prove performance.

The problem of finding storage schemes that minimize the
access time of arbitrary sets of power-of-2 data patterns is proved
to be NP-complete. We propose linear address transformations
that can be dynamically applied by each processing element for
mapping array references onto memories. An efficient approach
for combining the constraints of different access patterns into
one single linear address transformation is presented. We prove
that finding the transformation that minimizes the access time
is reduceable to N-coloring, where N is the number of parallel
memories. Using coloring heuristics, storage schemes that min-
imize overall memory access time are heuristically constructed.
Evaluation shows that synthesized storages lead to dramatic
reduction of the degree of conflict and largely outperforms
interleaving and row-column-diagonals (STARAN) storages.

Keywords: Heuristics, memory organization, parallel memories,
performance evaluation, storage schemes

I. INTRODUCTION

The serialization of memory accesses is a major limiting
factor to bandwidth balancing between processors and parallel
memories. Memory interleaving maps consecutive addresses
into different physical memories so that simultaneous accesses
can be performed in one memory cycle. Conflict-free access
is possible only when the stride associated with successive
references is relatively prime to the number of memories.

Budnik and Kuck [1] proposed the row-rotation scheme that
allows conflict-free access to arbitrary row, and column of
arrays. To avoid run-time overhead, Sohi [2] proposed bit-
wise boolean address transformations for vector processors in
order to determine the memory number where a given array
element should be stored. The scheme can be efficiently used
for power-of-2 strides but other strides can also be accessed
through the use of few buffers at the memory inputs and
outputs. The buffers reduce the effects of transient degradation.

The image by the storage scheme of all the elements of a
given pattern should map into different memories. Therefore,
the columns or the rows of the needed transformation matrix
should be linearly independent [3]. As the interconnection
network should provide data alignment between processors
and memories, other constraints can then be used for finding

(1) Department of Computer Engineering, College of Computer Science
and Engineering (CCSE) King Fahd University of Petroleum and Minerals
(KFUPM), Dhahran 31261, Saudi Arabia. mayez@ccse.kfupm.edu.sa

(2) Info. & Comp. Sc. Dept.,ICS, UCI, Irvine, CA 92717 sei-
den@ics.uci.edu

(3) Department of Computer Engineering, CCSE, KFUPM, Dhahran 31261,
Saudi Arabia. shams@ccse.kfupm.edu.sa

the storage matrix. Boppana [4] proposed a bitwise linear
transformation matrix (non-singular) for accessing to the row,
column, main-diagonal, and square blocks.

We are concerned with dynamically reconfigurable storage
schemes for SIMD models that minimize the overall access
time of an arbitrary set of weighted data patterns. The problem
is to find how arrays can be stored into parallel memories
in order to enforce the elements of a given data pattern be
uniformly distributed over the memories. Given a program that
requires access to a set of data patterns, our objective is to find
a cost-effective storage scheme that minimizes overall memory
access time.

This paper is organized as follows. Section 2 presents the
background. The template bases are defined in Sections 3.
Section 4 and 5 present the Perfect Storage that allows
combining data patterns and minimizing the implementation
cost. Section 6 presents the Semi-Perfect storage that allows
minimizing overall access conflicts. Section 7 presents our
method for synthesizing storage schemes. The evaluation of
this work and comparison to other proposals are presented
in Section 8. The conclusions to this work are presented in
Section 9.

II. BACKGROUND

Any processor in an SIMD system can access any memory
through an interconnection network. Assume there are an equal
number P = 2p of processors and memories. Conflicts occur
when i processors (i > 1) try to access the same memory
during a given cycle which requires i cycles for the memory
to serve them. Since all processors run in lock-step, the entire
computation is dramatically slowed. It would be desirable to
store the data that should be simultaneously accessed into
different memories so that parallel access can be achieved.

A template is defined as a pattern of array elements whose
addresses are related by some relationship such as those shown
in Figure 1. A template is a set of data elements that should
be accessed in parallel, by all the PEs, during the running of
the program. We are interested in templates having power-of-2
elements. The origin of a template is the coordinate, within
the array, of its upper left-most element. For example the set
of all rows (columns) is a template, and each row (column) is
a template instance [3].

The memory is assumed to be a single two dimensional
array of size 2d × 2d such that the element in the ath row
and the bth column is denoted by (a, b). The upper left-most
element is (0, 0). The sizes of the horizontal and vertical
dimensions are both 2d.

A row position a can also be thought of as a vector, over the
finite field Z2, the integers modulo 2. In Z2, addition corre-
sponds to logical exclusive or, and multiplication corresponds

JOURNAL OF LATEX CLASS FILES 2

T2 T4T3T1

Fig. 1. Example of four templates

to logical and. We define a vector space F = Zd
2 for horizontal

position. Let F = {f0, f1, . . . fd−1} be the canonical basis of
F . Each row has a unique representation as a vector in F .
A Row a is expressed as a0f0 ⊕ a1f1 ⊕ · · · ⊕ ad−1fd−1 in
terms of F . We similarly define vector spaces G for column
positions and H for memory unit numbers, with canonical
bases G = {g0, g1, . . . gd−1} and H = {h0, h1, . . . hp−1},
respectively.

The Cartesian product of the vector spaces F and
G is a new vector space V = F × G with basis
{f0, f1, . . . fd−1, g0, g1, . . . gd−1}. Let n = 2d. We denote this
combined basis as V = {v0, v1 . . . vn−1}, where v0 = f0,
v1 = f1, vd = g0 etc. This vector space is isomorphic to
Zn

2 . Any location (a, b) in memory is uniquely associated
with a linear combination of the basis elements a0v0 ⊕ · · · ⊕
ad−1vd−1 ⊕ b0vd ⊕ · · · ⊕ bd−1vn−1.

III. TEMPLATES

We define a template Ti by a basis Ti, which is a non-empty
subset of V . We assume all templates bases are of size p, i.e.
there are 2p elements in any given template instance. This is
best explained by looking at some examples. Let p and d both
be 3. Our basis is V = {f0, f1, f2, g0, g1, g2}, or alternatively
V = {v0, v1 . . . v5}. Consider the template T1 defined by T1 =
{f0, f1, f2}. The set of templates instances described are all
non-overlapping columns of eight elements, the upper left-
most template instance having origin (0, 0). Every element in a
template instance is a linear combination a0f0⊕a1f1⊕a2f2⊕
b0g0 ⊕ b1g1 ⊕ b2g2, where the b’s are constant, and the a’s are
allowed to vary (b0g0 ⊕ b1g1 ⊕ b2g2 is the template instance’s
origin). Intuitively, we are letting the three least significant bits
of a vary, while the other bits of a, and all bits of b, remain
fixed. By allowing different bits to vary, we generate templates
of different shapes. Let T2 have basis T2 = {f0, f1, g1}. Then,
in T2 all template instances are four elements tall. Since g0

is omitted, this template skips a column. We define T3 by
T3 = {f1, f2, g0}. This template is four 1×2 sub-arrays spaced
two rows apart. We let T4 have basis T4 = {f0, f1, g0}. All
of these templates are illustrated in Figure 1.

An XOR-scheme is a linear function φ : F × G 7→ H. The
function φ is represented by a p×n matrix, which we denote
Φ. We apply φ to a vector X by matrix multiplication:

φ(x0, x1 . . . xn−1) = Φ ·

x0

x1

...
xn−1

The ith entry of the jth column of Φ is Φi,j . (The upper left-
most entry is Φ0,0.) We denote the ith column of Φ by Φ∗,i,

f0

f1

f2

g0

g1

f0

f1

f2

g0

g1

16

16

135

55
4

4

13

10

3

1 16

b - Conflict graph
 for T1,...,T4

c - Weighted Conflict
 graph

a - Conflict graph
 for T1,T2,T3

f0

f1

f2

g0

g1

Fig. 2. Conflict graph for template bases

and the ith row of Φ by Φi,∗. The columns of this matrix
represent the values, in terms of the basis H , of φ on the
members of the basis V . I.e. Φ∗,i is the value of φ(vi).

We can also consider φ as an ordered set of p functions,
{φ0, φ1 . . . φp−1}, mapping from F×G to Z2, where φ(X) =
φ0(X)h0 ⊕φ1(X)h1 ⊕· · ·⊕φp−1(X)hp−1. The matrix of φi

is Φi,∗.
Then φ allows conflict free access to Ti, if and only if φ

maps each linear combination of Ti to a unique element of H.
Since φ is linear, all translations of these linear combinations
are also conflict free. In other words, if for one template
instance X in Ti, φ restricted to X is one to one, then for
all template instances X in Ti, φ restricted to X is one to
one.

IV. PERFECT XOR-SCHEMES

We say that an XOR-scheme is perfect if and only if all
columns Φ∗,i contain at most one non-zero entry. In other
words, in the expression φ(X) = φ0(X)h0 ⊕ φ1(X)h1 ⊕
· · · ⊕ φp−1(X)hp−1, any particular xi is used at most once,
where hi is the ith canonical vector of the basis of the memory
numbers. A perfect XOR-scheme only requires n XOR gates
to be implemented.

We give an example using the templates of Section III
for which n = 6 and p = 3. We would like to find a
perfect XOR-scheme for this set of templates. But first, let
us consider the subset of templates {T1, T2, T3}. Notice that
f1 appears in all templates bases of this subset. Therefore, let
φ0(a0, a1, a2, b0, b1, b2) = a1. Further, notice that g0 appears
only in T3 and f0 appears only in T1 and T2. Therefore,
let φ1(a0, a1, a2, b0, b1, b2) = b0 ⊕ a0. Finally, notice that g1

appears only in T2 and f2 appears only in T1 and T3. We
let φ2(a0, a1, a2, b0, b1, b2) = b1 ⊕ a2. Let us generalize this
procedure. Let Φ be the matrix of a perfect XOR-scheme. If
Φk,i = 1 and Φk,j = 1 where i 6= j, and vi and vj are both
in T`, then T` cannot not be accessed conflict free.

Proof: This is easily seen by a counting argument. φk

can only take on two values. xi and xj can each take on two
values, for a total of four. Further, because each column of Φ
contains at most one non-zero, no other φk varies with xi or
xj . Therefore, given a template instance, we are mapping two
elements of it to each memory unit in its image. Let T : V 7→
2T be a function mapping from a given basis vector to the set
of templates bases which contain that vector. More precisely,

JOURNAL OF LATEX CLASS FILES 3

Ti ∈ T (v) if and only if v ∈ Ti. We allow Φk,i = 1 and
Φk,j = 1 only if T (vi) and T (vj) are disjoint. The conflict
graph (V,E) of the template set represents this relationship.
The vertices of the graph are the vectors of the basis V . An
edge (vi, vj) is in E if and only if i 6= j and T (vi)∩T (vj) 6= ∅.
The graph for T1, T2, and T3 is illustrated in Figure 2-a.

For a set of templates T, a conflict free XOR-scheme for P

memory units exists, if and only if the conflict graph of the
templates is p-colorable.

Proof of this Theorem can be found in [5]. Indeed, the graph
in Figure 2-a is 3-colorable. The matrix of the perfect XOR-
scheme is:

Φ =

(

f0 f1 f2 g0 g1 g2

0 1 0 0 0 0
1 0 0 1 0 0
0 0 1 0 1 0

)

However, consider what happens when T4 is added. The graph
of T1 . . . T4 is shown in Figure 2-b. This graph is not 3-
colorable, because g0, f0, f1 and f2 form a clique, and thus
no perfect XOR-scheme exists. We can prove [5] that finding
a perfect XOR-scheme for a set of templates and arbitrary p is
NP-complete. Note that two-coloring is polynomial, and thus
finding a perfect XOR-scheme for 4 memory units is tractable.

V. NON-PERFECT XOR-SCHEMES

Suppose we do not restrict ourselves to perfect XOR-
schemes. Does the set of templates in Figure 1 have an XOR-
scheme? By inspection, we find the matrix of one possible
XOR-scheme is:

Φ =

(

f0 f1 f2 g0 g1 g2

0 1 0 0 0 0
1 0 0 1 0 0
1 0 1 0 1 0

)

Why does this function allow conflict free access? Consider
φ restricted to the template T1. The matrix of this restricted
function is:

Φ(T1) =

(

f0 f1 f2

0 1 0
1 0 0
1 0 1

)

Notice that this matrix has rank 3; its columns are linearly
independent. The dimension of the image of φ restricted to
T1 is three, and therefore, conflict free access is assured. We
denote φ restricted to Ti by φ(Ti). The matrix of φ(Ti) is
Φ(Ti) = (Φ∗,j)vj∈Ti

. The matrices of φ restricted to T2 . . . T4

have all rank 3. In general, we need to find a function φ with
matrix Φ, such that Φ(Ti) has rank |Ti|, for all templates Ti.
How can such XOR-schemes be found? First consider a more
general problem.

Suppose we are given: 1) a vector space Z = Z
p
2 , 2) a

set of variables V = {v0, v1, . . . vn−1} and, 3) a set T =
{T1, T2, . . . Tt}, where each Ti is some member of 2V and
each variable must appear in some Ti. The problem is to assign
each variable a value in Z , such that for all i, the vectors
assigned to the variables in Ti are linearly independent. We
call this problem linear independence satisfiability (LIS). We
can prove [5] that LIS is NP-complete. Our proof that LIS is
NP-complete does not depend on the fact that Z is over Z2.
LIS is NP-complete over any finite field.

It is easily seen that LIS is equivalent to finding a non-
perfect XOR-scheme. Note that finding a general XOR-scheme
for 4 memory units is NP-complete, where finding a perfect
XOR-scheme for 4 memory units is polynomial. Also note
that we can build independence graphs only for p = 2. We
need to find a model of XOR-schemes for p > 2, from which
good heuristics can be derived.

VI. SEMI-PERFECT XOR-SCHEMES

We investigate a class of XOR-schemes which are some-
where between perfect and general XOR-schemes. We call
this class of XOR-schemes semi-perfect. We say that an XOR-
scheme φ, represented by a matrix Φ, is semi-perfect if and
only if for all templates Ti in T , the matrix of φ restricted
to Ti contains at most one column with two non-zero entries,
and the rest of the columns have one or zero non-zero entries.

Let Φ be a matrix over Z2 with at most one non-zero entry
in each column. Let Φ′ be defined by:

Φ′

i,j = 1

i=candj=kΦi,jforsomefixedcandk.Then(Φ′) ≥ (Φ).
Proof: If Φc,k = 1 then Φ′ = Φ, and therefore (Φ′) =

(Φ). Otherwise, if some other column Φ′

∗,x has a non-zero
in row c, then add Φ′

∗,x to Φ′

∗,k giving a new matrix Φ′′,
which has the same rank as Φ′. Since this other column must
have at most one non-zero entry, the only change to Φ′′ is
that Φ′′

c,k = 0. Now Φ′′ = Φ, and therefore (Φ′′) = (Φ).
If no other column Φ∗,x has a non-zero in row c, then the
rank of Φ′ is one greater than that of Φ. We can use the
preceding theorem to create a semi-perfect XOR-scheme with
a decreased number of conflicts, by selectively adding ones
to its matrix. In fact, the example given in Section V is a
semi-perfect XOR-scheme. We call this process of selectively
adding ones augmenting.

Given a perfect XOR-scheme which is not conflict free, we
want to know if it can be augmented to a conflict free semi-
perfect scheme. Unfortunately, answering this is NP-complete.
Each column Φ∗,i will either be augmented or not. For each
template Tj at most one column of Φ(Tj) may be augmented.
Given these restrictions, we wish to find a subset of columns
to augment such that all Φ(Tj) are augmented. For p = 3
this problem is exactly ONE-IN-THREE SAT, which is NP-
complete.

VII. HEURISTIC APPROACHES

To p-color conflict graphs we extend the weight function to
the edges and vertices of the graph. The weight of an edge
is proportional to the number of extra CPU cycles that will
be spent if the vertices of that edge are identically colored
(assuming that all other edge constraints are met). Thus the
weight of an edge is ω(vi, vj) =

∑

vi,vj∈Tk
ω(Tk), where

ω(Tk) is the access frequency of Tk. The weight of a vertex
is defined by ω(vi) = maxvj

{ω(vi, vj)}. The weighted graph
for T is shown in Figure 2-c.

Graph coloring heuristics are used for solving problems
such as scheduling, and register allocation. We present two
heuristics called Highest-Weighted-Conflict-First (HWCF) and

JOURNAL OF LATEX CLASS FILES 4

Most-Immediate-Conflict-First (MISF) for generating perfect
XOR-schemes. These are modifications of the basic greedy
method for weighted graphs.

A color number is an integer in the range [0 . . . p − 1].
A vertex number is an integer in the range [0 . . . n − 1]. A
template number is an integer in the range [0 . . . t − 1]. An
array cost(v, c) indexed by vertex numbers and colors is used.
Intially, cost(v, c) = 0 for all v and all c.

HWCF works as follows. Put all vertices in a priority queue
H sorted in the decreasing order of the weight. Pick the
maximally weighted vertex from H , say v, and assign it color c

so that cost(v, c) is the least among all colors (least conflict).
The next step is to updates the cost values of the vertex’s
neighbors. For this cost(w, c) is augmented by ω(w, v) for
each vertex w that is adjacent to v and edge (w, v) is removed
from the adjacency list as it will need no further consideration.
Repeat until all vertices are expended.

We are best equipped to decide the color of a vertex when
some of its neighbors have already been colored. The un-
colored neighbors of vertices in the colored set are color-
ing candidates. MICF works as follows. Pick the maximally
weighted vertex from H , say v, and color it as in HWCF.
Next, add the vertices adjacent to v to a priority queue Hadj

that is empty before any vertices are colored. We repeatedly
remove the maximal vertex from Hadj and color it, until
the current component is completely colored (the graph may
not be connected). We have completely colored the current
component. We proceed to the next component by deleting the
colored vertices from H and setting Hadj = ∅. This proceeds
until H becomes empty.

Analysis of the time complexity [5] shows that HWCF and
MISF run in O(p(t + n) + n2t) time, where t, 2p, and n, are
the number of templates, the number of processors, and the
number of distinct vectors of the template bases, respectively.

We now introduce a heuristic SP for augmenting a perfect
XOR-scheme, which has conflicts, to a semi-perfect scheme,
with fewer conflicts. We assume that a perfect XOR-scheme
is given. SP works as follows. If a one is added to a column
Φ∗,i, then a one cannot be added to any column Φ∗,j , where
Φ∗,i and Φ∗,j are both in some Φ(Tk). Or alternatively, vi and
vj are both in Tk. Whenever a one is added to a column Φ∗,i,
mark all Tk such that vi is in Tk as blocked.

Initially, no columns are blocked. We consider templates in
order of their weight (maximal first). If Ti is conflict free,
go to the next template. Otherwise, two columns of Φ(Ti)
are necessarily identical. Adding a non-zero to one of the
columns will increase the rank of Φ(Ti), provided that the
row to which the non-zero is added contains only zeros, and
that the column is not blocked. In the case that one of the
columns is blocked, we augment the other one. If neither is
blocked, we may choose to augment either. We choose the one
which is contained in the least number of templates. Let the
column so chosen be Φ∗,j . We examine the rows of Φ(Ti). If
some row k contains only zeros, we set Φk,j = 1, and add all
the vectors (columns) which appear in some template with vj

to the blocked set. We then proceed to the next template. The
time complexity [5] of SP is O(p2t log t + αpn) where α is
the number of calls to SP.

 0

 5

 10

 15

 20

 25

 30

 3 4 5 6 7 8 9 10 11 12

P
E

R
C

E
N

TA
G

E
S

 D
E

V
IA

TI
O

N
 F

R
O

M
 O

P
TI

M
U

M

NUMBER OF TEMPLATES

Average percent deviation from optimum of perfect storages

HWCF(P=64)
MICF(P=64)

HWCF(P=32)
MICF(P=32)

HWCF(P=16)
MICF(P=16)
HWCF(P=8)
MICF(P=8)

Fig. 3. Plots of PHWCF and PMISF for perfect storages

 0

 2

 4

 6

 8

 10

 12

 14

 3 4 5 6 7 8 9 10 11 12

P
E

R
C

E
N

TA
G

E
S

 D
E

V
IA

TI
O

N
 F

R
O

M
 O

P
TI

M
U

M

NUMBER OF TEMPLATES

Average percent deviation from optimum of semi-perfect storages

HWCF(P=64)
MICF(P=64)

HWCF(P=32)
MICF(P=32)

HWCF(P=16)
MICF(P=16)
HWCF(P=8)
MICF(P=8)

Fig. 4. Plots of SHWCF and SMISF for semi-perfect storages

VIII. PERFORMANCE EVALUATION

Let ω(Ti) be the number of accesses to Ti. A lower bound
Amin on the number of accesses can be defined as Amin =
∑

ω(Ti). Unfortunately, there is no guarantee that Amin is
achievable. Therefore, the optimum access time (Aopt) of a
perfect scheme, for a given set of templates each with a given
frequency, is found by using a branch-and-bound algorithm.

We evaluate the performance of a perfect XOR-scheme by
comparing the number of accesses required with the optimal
perfect XOR-scheme. Denote by As the average number of
accesses of storage scheme s and let Ps be the percentage
of extra memory accesses beyond the optimal that s requires.
The number of memory accesses for a perfect XOR-scheme
is:

As =
∑

Ti∈Tω(Ti)2(p−rank(Φ(Ti)))

The results of this simulation are displayed in Figure 3.
Average PHWCF and PMICF are shown for 3 ≤ t ≤ 12 and
8 ≤ P ≤ 64. One thousand cases were run for each instance
of P and t. The speed of the branch-and-bound algorithm
prohibited us from completing the figures. Note that in general
HWCF was outperformed by MICF. Both heuristics degrade
in a smooth fashion with increasing numbers of templates and
increasing template size. However, for a dozen templates and
16 memory modules, both heuristics deviate on the average

JOURNAL OF LATEX CLASS FILES 5

by more than 20% from the optimum solution.
The semi-perfect heuristic SP has been applied to each

of the perfect schemes that are found using HWCF, MICF,
and branch-and-bound, respectively. The percentage deviation
from branch-and-bound of semi-perfect schemes are denoted
by SHWCF and SMICF. Figure 4 shows the plots of SHWCF
and SMICF. For example, using 6 templates and 32 memories
the average increasing over the optimum in the access time
(MICF) of a template is 0.058 cycles (Figure 4) if the optimum
access is one cycle. The semi-perfect heuristic strongly reduces
the degree of conflict and decreases its deviation by nearly
50% from that obtained for perfect-schemes.

Our scheme largely outperfoms row-major interleaving (6
to 18 times) and the rows, columns, and both diagonals of
(4.23 to 5.84 times). It can easily be shown [5] that our
approach to perfect storage finds optimum combined address
transformations for arbitrary sets of power of 2 strides.

By considering a given set of templates, Frailong, Jalby, and
Lenfant [3], analyzed the conditions for conflict-free access
of data patterns. They proved that the columns or the rows of
the needed address transformation matrix should be linearly
independent. Our approach extends the concepts introduced
by the above researchers and proposes an efficient method
for combining arbitrary templates within one single address
transformation. We have identified the necessary and sufficient
conditions that a combined storage scheme should satisfy in
order to minimize access conflicts.

Sohi [2] used manually synthesized address transformations
(bit-wise) for stride access in vector processors. He proved
that few memory buffers can reduce the effects of transient
degradation in pipelined memories when arbitrary strides are
accessed. By using bitwise linear transformation matrices,
Boppana [4] proposed a conflict-free storage scheme to the
row, column, main-diagonal, and square blocks. While all
the above schemes are manually synthesized, we proposed
heuristic approaches for automatic (compiler) synthesis of
general storage schemes that minimize overall access time
of arbitrary data templates. We also proposed heuristics for
synthesizing storage schemes for arbitrary data templates.

IX. CONCLUSION

Our objective was to find heuristic approaches for au-
tomatic synthesis of general storage schemes. For this, we
proved that finding the address transformation for a given
set of data patterns is reduceable to graph coloring. We also
proposed heuristics for synthesizing address transformations
for arbitrary data patterns. Evaluation of this approach has
experimentally proved to be effective in reducing the amount
of conflicts while using reasonable implementation cost. The
contribution of our work are: 1) a non-redundant XOR-matrix
for arbitrary combined templates, 2) use of conflict graphs
to represent the optimization problem, and 3) an efficient
heuristic for minimizing the access time.

X. ACKNOWLEDGMENT

Thanks to the Research Committee and the College of Computer Science
and Engineering, King Fahd University of Petroleum and Minerals, Dhahran,
Saudi Arabia, for partially supporting this research.

REFERENCES

[1] P. Budnik and D. Kuck. The organization and use of parallel memories.
IEEE Transactions on Computers, C-20(12):1566–1569, Dec 1971.

[2] G. S. Sohi. High-bandwidth interleaved memories for vector processors–
A simulation study. IEEE Transactions on Computers, 42(1):34–44, Jan
1993.

[3] J. M. Jalby W. Frailong and J. Lenfant. XOR-schemes: A flexible data
organization in parallel memories. In Proceedings of the International
Conference on Parallel Processing, pages 276–283, 1985.

[4] R. V. Boppana and C. S. Raghavendra. Efficient storage schemes for
arbitrary size square matrices in parallel processors with shuffle-exchange
networks. In Proceedings of the International Conference on Parallel
Processing, pages 365–368, 1991.

[5] M. Al-Mouhamed and S. Seiden. A cost-effective heuristic storage for
minimizing access time of arbitrary data templates. Technical Report
ICS-UCI 93-30, University of California, Irvine, Jun 18 1993.

