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Abstract

This paper presents a model-based vision system to achieve robust recognition
of planar contours that are scale invariant of known models. Planar contours are
partitioned into segments by using constant curvature criterion. A set of descriptors
that are invariant with respect to scale, rotation, and translation are extracted from
the geometric features of the segments. The descriptors are used to carry out effi-
cient indexed search over the models so that to reduce the search space. Fragments
of contours extracted from partially occluded scenes can be individually matched
by using the local shape descriptors. Pruning of large portions of the models is
carried out by keeping only some matched classes which received the highest vote.
This significantly reduces the search and enables the use of finer matching operators
such as comparing the positioning of segments in scene to positioning of matched
segments in the model. More sophisticated matching is applied in later stages over
much restricted number of hypotheses. Therefore, the dependency of the recog-
nition time over the size of the models is significantly reduced. Evaluation shows
the ability of our approach to recognize scenes with real partially occluded objects.
Entirely visible objects are recognized with a reasonably high efficiency (80%) even
with a change in view-point of up to 25◦. The efficiency smoothly decreases but
remains above 60% when the percentage of visible segments drops to 50% and the
change in view-point is as above.

Keywords: Database, heuristic-search, pattern recognition, vision, seg-
mentation

1 Introduction

An effective model-based recognition system [1] must be capable of retrieving the best
matched objects as well as carrying out massive pruning of inconsistent models. Modeling
objects by their local geometric features [2] takes advantage of the coarse shape and
enables quick indexing of object features into the models in an attempt to reduce the
complexity of the search space before carrying out finer pattern matching. Hierarchical
object modeling partitions the object contour into a set of fragments so that each fragment
is a set of features which are selected as invariant under translation and rotation [3, 4].

The efficiency of the matching depends to a large extent on the scalability [1, 5, 6] of the
recognition operator which is the ability to recognize whole contours as well as fragments of
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contours while reducing the combinatorics of the search. For this, the extracted features [7]
must be local and small enough to match wherever they are present but must also be stable
and discriminative. Features are used as searching keys in some quick indexing/hashing
schemes. Model organization was studied by Califano and Mohan [6] which proposed the
use of multidimensional indexing to keep a relatively coarse bucket quantization without
scarifying selectivity. The synergy of the indexing scheme must be small enough because
all the models are potentially involved in the initial search [2, 8]. Grimson [9, 10] equally
treats all the available features in generating hypotheses. This results in tree-matching
structure that is scanned by using depth-first search. The search over the current sub-tree
is abandoned when enough inconsistent evidences are accumulated and the next sub-tree
is started.

Our objective is to optimize the library model and the search so that the recognition
time would mainly depend on the scene complexity without explicit dependence on the
size of the models. The model is designed so that the recognition algorithm spends a small
fraction of time in global model processing while keeping the rate of correct classification
as high as possible. To keep on pruning of inconsistent hypotheses we propose an efficient
shape matching for comparing whole contours as well as fragments. To accelerate the
search, indexed tables are created by using off-line sorting of the classes with respect to
each feature. A combined algorithm is then used to recognize entire contours and partially
occluded contours among a reasonably large dictionary.

This paper is organized as follows. Section 2 presents object modeling including edge
detection, segmentation, model generation, extraction of shape descriptors, and model
organization. Section 3 presents the recognition system including recognition of closed
contours and recognition of partially occluded scenes. Section 4 presents the performance
evaluation which includes a discussion of the proposed method, discussion of recognition
time versus increase in database size, and comparison to other approaches. Section 5
concludes about this work.

2 Modeling object contours

This section presents the design of a library model including edge detection, segmentation,
fine contour model, and coarse contour model. We also present a set of contour features
that are useful for structural indexing of the model.

2.1 Edge detection

Edge detection is applied on gray images for extracting the shape of objects. The first
derivative can be used to detect the presence of an edge at pixel f(x, y) by evaluating the
Gradient G(f(x, y)) = (f ′x(x, y), f ′y(x, y)), where f ′x(x, y) and f ′y(x, y) are the derivatives
in the X’s and Y ’s directions, respectively. The gradient magnitude can be approximated
as |f ′x(x, y)| + |f ′y(x, y))|. To make the gradient less sensitive to noise we use the sobel
operator that average the gradient over larger pixel neighborhood.

Segmentation is carried out by scanning the contour in a uni-directional manner and
each border pixel pi is associated the value of its direction (d(pi)) with respect to previous
pixel pi−1. A starting pixel is one terminal pixel of the contour. The 3 × 3 convolution
mask that is used by us for direction coding is shown in Figure 1-(a). A coded chain is
shown in Figure 1-(b).
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In partially occluded scenes each intersection of three chains is examined by its edge
direction (Figure 1-(c)) in the neighborhood of the intersecting pixel. To resolve the
ambiguity, intersecting chains having similar values of the gradient at the intersecting
edges are merged together. This allows merging chains 1 and 3 which determines the
connectivity of the three chains as shown in Figure 1-(d).

2.2 Segmentation

The objective is to associate to each scene object a model that represents a polygonal ap-
proximation of the contour. The algorithm we used for polygonal approximation consists
of detecting break-points by comparing the average direction of a set of pixels to the gra-
dient of the current reference segment. In other words, our method is based on successive
conditional merging operations that are performed along the chain of directions until the
least-squares error line fit of the merged directions thus exceeds a preset threshold. In
this case, a break-point is detected, recorded, and a new segment is started. The process
is continued until all chains have been visited.

Each segment is associated its length and its exterior angle with respect to the previous
segment as shown in Figure 1-(e). The kth segment Dk is formed by a pair of break-points
bk = (xk, yk) and bk+1 = (xk+1, yk+1). The length of Dk is sk = (∆x2

k + ∆y2
k)

1/2, where
∆xk = xk+1 − xk and ∆yk = yk+1 − yk. The angle θ(sk) between segments Dk−1 and
Dk is evaluated as the exterior angle which is defined by θ(sk) = cos−1((∆xk−1.∆xk +
∆yk−1.∆yk)/(sk−1.sk)). The segment length and exterior angle are shown in Figure 1-(e).
The correct sign of θ(sk) can be found by examining the coordinates of bk−1, bk, and bk+1.

2.3 Modeling the contour

A fine angle-length model of contour F = {(θ(ρi), ρi)} is an ordered set of straight segments
with lengths ρi and exterior angles θ(si). Figure 2-(a) shows a contour having many small
segments in the fine model which approximate the contour curving by small straight
segments. These straight segments appear as horizontal segments in the angle-length
graph as shown in Figure 2-(b). The correspondence between the contour (Figure 2-(a))
region and that of the fine model (Figure 2-(b)) is marked with letters. Variation in scale
directly affects the segment lengths when the distance to object changes. The exterior
angles between the segments do not depend on the initial planar orientation of the object.
This model is invariant versus changes in position and orientation of the original object.

The starting segment depends on initial orientation of contour and on the starting
point in the contour-following. Changing the initial orientation produces fine models that
differ in their starting segments. Each of these models can be obtained from any other
through a number of rotate-shift operations over the ordered sequence of segments.

For given starting segments of fine models FA and FB of objects A and B, a distance
denoted by d(FA, FB) can be defined as the sum of the area difference along the common
length of FA and FB in the angle-length graph. The distance is defined by d(FA, FB) =∑

∆ρ |θA(∆ρ) − θB(∆ρ)|∆ρ, where ∆ρ is the largest interval of contiguous lengths over
which both θA(∆ρ) and θB(∆ρ) are constant. In other terms, models FA and FB generally
have different number of segments with different lengths, thus the area difference d(FA, FB)
must be evaluated over the union of length intervals of FA and FB.

The distance is meant to be the least value of all possible sum of area difference that
is the minimum value of d(FA, FB) versus all possible horizontal shifts of FA with respect
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to FB. The minimum area difference is an excellent metric to quantify the degree of
similarity between two shapes. It provides a metric that is useful for shape matching. To
find the minimum value [11] of d(FA, FB) we find a value of initial angle that minimizes
a quadratic objective function on the distance.

The use of this metric in a recognition system faces the problem of linearly searching
all the models that any recognition system is to avoid. Therefore, the distance matching
d(FA, FB) becomes useful only when enough evidences have been accumulated on potential
matching of the scene object FA and a small set of library models. In summary, brute
force evaluation of d(FA, FB) is completely inefficient but the use of segment matching
information alleviate the need for the shift operations and makes this distance matching
very useful in later matching decisions.

2.4 Coarse model

Shape matching is based on the use of local geometric features which are initially too
fragmented in the the fine model. Too simple features may occur in many models. The
features should contain enough discriminatory information in order to provide efficient and
accurate indexing of candidate library models. Too complex features have two drawbacks:
1) cannot be observed in partial contours, and 2) lead to linear search across the database.
We therefore need local features that contain enough discriminatory information.

We need to exploit the benefit of library model in decomposing contours into constantly
curved segments. A sequence of segments that corresponds to a contour having constant
curvature can be represented by one single segment. Successive straight segments, having
similar ratios of angular change over length, are merged to form one super segment. For
example, the coarse segments shown on the angle-length graph of Figure 2-(c). Formally,
the coarse model C results from clustering the segments of the fine polar model F . Though
the fine model has 55 straight segments (Figure 2-(b)) the clustering produces a stable
coarse model with only 16 segments (Figure 2-(c)).

In general, a coarse segment Sk is characterized by three parameters that are: 1) the
initial angle θinit(Sk), 2) the total angular change ∆θe(Sk), and 3) the segment length ρk.
The initial angle θinit(Sk) is the exterior angle between segments Sk−1 and Sk that is the
turning angle from Sk−1, or its tangent if Sk−1 is curved, and Sk or its tangent if Sk is
curved. The total angular change ∆θe(Sk) is the turning angle from the tangent to Sk

at its start point to the tangent to Sk at its end point. Formally, the coarse model C is
an approximation of the original contour by means of an ordered set of constantly curved
segments, i.e. C = {Sk = (θinit(Sk), ∆θe(Sk), ρk)}.

The coarse model provides gross modeling of the contour shape (sketch) regardless of
the object scale or initial position and orientation. Our approach is to extract structural
geometric features out of ordered set of coarse segments which will prove to be essential
to reduce the complexity of the recognition process.

2.5 Designing shape descriptors

The efficiency of the matching depends to a large extent on the scalability [1, 5, 6] of the
recognition operator which is the ability to recognize whole contours as well as fragments of
contours while reducing the combinatorics of the search. For this, the extracted features [7]
must be local and small enough to match wherever they are present but must also be
stable and discriminative. Global features are inadequate when contours are partially
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observed. To avoid the linear search problem, different approaches have been proposed
in the literature which use some level of abstraction in modeling objects as a collection
of local features which are used in pruning unreasonable matches prior to attempting the
accurate matching over a small number of potential objects. This strategy greatly reduces
the matching complexity.

The features must be: 1) stable enough with respect to digitization, 2) invariant ver-
sus changes in the position and orientation, and 3) scale invariant to some degree. By
combining the features we can define a library of descriptors. There are two objectives
behind the design of descriptors which are: 1) clustering of the library information in
a discriminative manner, and 2) enabling the search of library objects using partial in-
formation. We present two experiments for setting of descriptors: (1) descriptor set A
(DS-A), and (2) descriptor set B (DS-B).

In DS-A, we present a set of eight local and global descriptors which are shown in
Table 1. The descriptors can be classified as straight segment descriptors and curved
segment descriptors.

In DS-B, a set of four descriptors (see Table 2) are defined on the basis of referring
the current coarse segment Si with respect to its previous segment Si−1. To increase
discriminability, four categories of segment connections are used to distinguish between
different possible combination of straight and curved segments. For example, in type
straight-curved (s-c) the current segment Si is straight and the previous segment Si−1 is
curved. The four possible types of the two-segment descriptors are: 1) straight-straight
(s-s), 2) straight-curved (s-c), 3) curved-straight (c-s), and curved-curved (c-c). The
geometric representation of each of these types is shown on Figure 3. The length ρi of
Si is used with reference to the sum of segment lengths ρi + ρi−1, the relative length
is ρi/(ρi + ρi−1). When the current segment Si is curved the total angular change ∆αi

that Si undergoes from its start to its end is also used. Another important point is that
in DS-B the descriptors have multi-dimensional index that include the type, the relative
length, exterior angle, and eventually the total angular change.

Note that in both experiments the selected descriptors are invariant with respect to
change in object position and orientation. Some descriptors from DS-A like the number
of segments (D1) and length of longest segment (D2) are global descriptors. These can
be used only for entirely observed objects. On the other hand, the length used in DS-A
is scale variant because its values change with changes in the scale of the shape. This is
the case of D2, D4, and D8.

2.6 Building the library model

To maximize sharing of the library model, supervised learning is applied for defining
classes so that each class consists of a set of objects whose descriptors are nearly identical.

Formally, let D(Oi) and D(Oj) be the set of descriptors associated to objects Oi and
Oj, respectively. These objects will be clustered into the same class if for every descriptor
Dk we have |Dk(Oi)−Dk(Oj)| ≤ ∆Dk, where ∆Dk is an accepted tolerance for Dk. Due
to digitization noise some tolerance must be established on the value of descriptors to
ensure reliable indexing. The range of values for Dk allows finding a reasonable upper
bound on the tolerance ∆Dk. The bound should be tight enough to preserve the descriptor
discriminating information while allowing some degree of sharing among similar shapes.
The classes result from partitioning the objects based on their coarse description.
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Given the classes and their corresponding descriptors, we define a set of indexed tables
{Inxk} each is associated to a distinct descriptor Dk. Table Inxk results from sorting all
the classes according to the decreasing order of the kth descriptor values Dk of all the
classes. Inxk is used as an indexed table which means that the table is built so that its
entry key is the value of Dk and its output is a set of classes for which the value of the
kth descriptor is the key. In other terms, {Inxk} is the set of all classes sorted so that
the first class is one with the highest value of Dk, the second class has next highest value
of Dk, etc.

A heuristic search function H consists of finding all the library classes which share a
given value of one specific descriptor. Denote by Dk(O) the value of the kth descriptor
for some object O, then a class C will be selected by H if the kth descriptor Dk(C)
matches the value of Dk(O) within some allowed tolerance. In other terms, we must have
|Dk(O)−Dk(C)| ≤ ∆Dk. Therefore, the heuristic decision H(Dk(O), ∆Dk) allows finding
a cluster (CLk) of classes so that each class in this cluster shares with O the value of the
kth descriptor, i.e. C ∈ CLk implies |Dk(O)−Dk(C)| ≤ ∆Dk.

The storage of library model is as follows: 1) the set of library classes, 2) the descriptors
of each class, 3) the fine model of each library object, and 4) the set of indexed tables for
the library. More specifically, each model contour must be associated a set of descriptors
that results from pre-processing of the scene image as shown in Figure 4-(a). It is shown
that the operators used are: 1) edge detection, 2) direction coding, 3) segmentation, 4)
clustering, and 5) feature extraction which produces a set of descriptors associated to the
scene contour. The set of descriptors are used to build the indexed tables which together
with the fine and coarse models represent the library models. This process is summarized
in the flowchart shown in Figure 4-(a).

3 The recognition system

We present a recognition method based on the use of structural indexing as the main
strategy to avoid linear search of the models. The detail of the recognition system will
be presented in a gradual manner starting with recognition of closed contours to complex
recognition of partially occluded scenes.

3.1 Recognizing closed contours

The heuristic search for closed contours is based on local and global descriptor values
which enables efficient indexing of the library. This allows pruning large portions of
the models in early steps of recognition. The strategy used consists of three steps: 1)
pre-processing, 2) pre-recognition, and 3) recognition. In the following we explain these
steps.

Pre-processing of the scene image consists of applying low level vision operators to
obtain the model of scene contours. This is shown in the the dashed frame of Figure 4-(a)
in which a solid box represent a processing function and input or output are indicated
inside simple boxes. Pre-processing consists of obtaining the fine and coarse models as
well as the descriptor values as shown in Figure 4-(b). Each descriptor values (D) allows
finding a matching cluster (CL) of classes so that each class in CL admits the value of
D as part of its descriptor set. Note that descriptors from DS-A and DS-B can be used
in this phase. The next step consists of selecting a small percentage of candidate classes
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which received the highest vote among all matched clusters. The matched classes are
sorted in decreasing order of frequency.

Finally, we evaluate the distance matching between the scene object and each of the
matched classes. Starting with the class having the highest matching frequency (C),
the distance matching (D(Ox, C)) between scene object Ox and model C is evaluated.
The first model for which the value of distance matching is below some threshold is
hypothesized. The algorithm fails when none of the hypothesized models can be matched
with the scene object.

The use of local and global features considerably reduces the combinatorics of the
search. Unfortunately, this strategy does not apply for partially occluded scenes in which
only local features are observed. In the next section we present recognition of partially
occluded scenes.

3.2 Recognition of partially occluded scenes

Figure 5 shows one possible partial occlusion among two cutters and one allen wrench
from the library shown in Figure 6. Figure 6 shows two classes of objects. The scene
contains six fragments of contours (Ai), of which one contour is recognized as an entirely
observed contour (A1) and the remaining five fragments (A2, A3, A4, A5, and A6) are
partially observed contours.

Some fragments like A4 and A5 carry poor information, while other fragments (A2)
carry rich geometric information. A recognition algorithm is to exploit the amount of
available information on each fragment starting with rich fragments that contains more
discriminative information. Poor fragments can help in consolidating and validating over-
all interpretation. The ambiguity due to three intersecting contours is examined by the
gradient direction and resolved by assuming continuity of the contour in the neighborhood
of the intersecting pixel. This connects two contours and the third is left as open.

The objective is to find a global interpretation of the scene in which each fragment
is mapped (matched) to known library object. The mapping must be coherent that is
the inter-relationships among the fragments in the scene must be similar to the inter-
relationships among the matched fragments in the models. Our heuristic search consists
of indexing local features to find a set of classes so that each fragment is mapped by its
local geometric shape to a small set of library fragments.

Denote by A = {Ai : i = 1, . . . , t} a set of t open fragment of contours. The problem
is to relate the descriptors D(Ai) associated to fragment Ai to those of a candid class Ck.

Descriptors D1, D2, and D5 from DS-A cannot be used in the search because these are
global descriptors. The heuristic search requires the use of local descriptors such as D3, D4,
D6, D7, and D8. We also note that descriptors D4 and D8 are scale variant. Therefore,
recognizing partially occluded scenes with the descriptors defined in DS-A require the
descriptors be local and scale invariant. This means that the descriptors that can be used
from DS-A must be limited to D3, D6, and D7.

On the other hand, the descriptors defined in DS-B (Table 2) do not require any
global contour information. The reason is that the descriptor used refers to the following
information: 1) the type of the two joining segments, 2) the ratio of successive segments
length, 3) the exterior angle between successive segments, and 3) the total angular change
for curved segments. All these features are local with respect to the contour as well as
scale invariant (relative length). Therefore, recognizing partially occluded scenes can be
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done by using all the descriptors defined in DS-B.
The heuristic search is applied to the descriptors of each fragment Ai for finding its

cluster CLi = {(C, F ) : D(Ai) ∈ C}, where C is a class that shares F values of the
descriptors D(Ai). Finding the clusters of matched classes is the first step of recognizing
partially occluded scenes as depicted in the pre-recognition part of the flowchart shown
in Figure 7. At this point, only some classes of CLi contains the geometric order of the
segments of Ai. Since each cluster initially contains many classes, therefore, the need
to reduce each matched cluster to those classes that contains the entire shape of the
fragment. This is the objective of the next section.

3.2.1 Cluster reduction

The reduction process consists of selecting a subset of classes from each matched cluster
such that each selected class contains the geometric shape of at least one fragment Ai.
To test the matching between Ai and some Ck ∈ CLi, the information on the identity of
the matched descriptors between Ai and Ck is used together with the distance measure
that has been defined in Section 2.3. A class Ck ∈ CLi whose distance d(Ai, Ck) to Ai is
small enough is added to a reduced cluster CL∗i to state that the geometric shape of Ai

is present in the description Ck.
Finding the reduced clusters of matched classes is the second step as depicted in

the cluster reduction part of the flowchart shown in Figure 7. It evaluates the distance
D(Ai, Ck) along the segments of Ai. If the distance exceeds some normalized threshold
εf , then evaluation of D(Ai, ck) is abandoned and evaluation of the distance is started for
the next class Ck+1. This allows finding unique or multiple matching solutions because
a fragment of contour can be matched more than once in a given matched class. The
output of the cluster reduction step is a set of reduced clusters that contains the matched
classes sorted in the decreasing order of the descriptor matching frequencies which is the
output of cluster reduction shown in Figure 7.

3.2.2 Partitioning the fragments into classes

Using the reduced clusters, grouping all the fragments that belong to the same class allows
generation of hypotheses on the potential mapping of fragments to classes. A group gk{Ai}
consists of all the scene fragments whose geometric shape is present in class Ck. Assume
Ai, Aj ∈ gk. One can find out whether the relative position and orientation of Aj with
respect to Ai in the scene is identical or similar to that of the matched segments within
class Ck. If the above geometric relationships are similar, then the pairing of (Ai, Aj) to
class Ck is valid because Ck may contains fragments Ai and Aj as they are positioned in
the scene.

Assume that Ai and Aj have previously been matched to model Ck. Let x1, x2, and x3

be any non co-linear vertices of some three segments which are denoted by (s1, s2, s3) of
Ai. Denote by A∗

i and A∗
j the contours of Ck that are matched to Ai and Aj, respectively.

As each segment of Ai is matched to some segment Ai
∗, then consider the points x∗1, x∗2,

and x∗3 that are the vertices of the segments of Ai
∗ which are matched to s1, s2, and s3,

respectively. Similarly, let y1, y2, and y3 be any non co-linear points that are the vertices
of some segments denoted by c1, c2, and c3 of Aj. Now, let y∗1, y∗2, and y∗3 be the vertices
of the segments of A∗

j that are matched to c1, c2, and c3, respectively.
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We use a relative distance error d(Aj-Ai/scene,A∗
j -A

∗
i /Ck) between to relative position

and orientation of A∗
j/A

∗
i in scene and those of their matched segments. The distance is

intuitively defined by:

d(Aj − Ai/scene,A∗
j − A∗

i /Ck) =
3∑

k

3∑

l

|d(xk, yl)− d(x∗k, y
∗
l )|

Min{d(xk, yl), d(x∗k, y
∗
l )}

where Min(., .) is used to normalize the distance error. The pairing (Ai, Aj) is valid
with respect to class Ck whenever d(Aj − Ai/scene, A∗

j − A∗
i /Ck) ≤ εd, where εd is some

normalized threshold. In this case, the relation Rk(Ai, Aj) is established. The output of
geometric matching shown in in Figure 7 is a set of {g∗k{Ai}} of matched groups.

3.2.3 Interpretation

Generally, a fragment can be member of more than one group which indicates the need
for some selection criterion to find valid partitions such as favoring the largest group of
fragments. In this case, the group with highest cardinality is selected first. Among all the
remaining groups, it only keeps the groups to which it belongs at least one fragment that
is not covered by the previously selected groups. Note that the selected set of fragments
are not necessarily disjoint due to potential overlapping.

Assume five fragments (A1, A2, A3, A4, and A5) have been matched into four groups
g∗1(A1, A3, A4), g∗2(A1, A2, A3), g∗3(A2, A3, A5), and g∗4(A1, A3, A4, A5). Selection of the
largest group g∗4, leads to select either groups g∗2 or g∗3 because the uncovered fragment A2

may belong to g∗2, g∗3, or both. Therefore, two initial solutions are present: sol1 = {g∗2, g∗4}
and sol2 = {g∗3, g∗4}. Note that fragments (A1, A3) and (A3, A5) overlap in sol1 and sol2.
By discarding g∗4, the fragments are still all covered by the remaining groups, other so-
lutions can then be found. Fragment A4, is now only covered in g1

∗. One solution is
sol3 = {g∗1, g∗3} because A5 is only covered in g∗3 and the union of g∗1 and g∗3 covers all
fragments.

For the example shown in Figure 5, A1 is matched to cutter 3 which is shown on
Figure 6-g. Fragment A2 is matched to the cutter class and based on geometric matching
A2 was matched to cutter 4. Fragments A4 and A5 were matched to a large number of
classes. Geometric matching of pairs (A2, A4) and (A2, A5) in the scene and in model
(such as in cutter 4) failed. A2 has been hypothesized for a much smaller set of models
compared to those of fragments A4 and A5. Our algorithm processes first the fragments
that have less number of matched models to avoid excessive processing overhead.

Early in the recognition, the class of allen wrench has been hypothesized for fragments
A3 and A6 among few other classes. The geometric matching of (A2, A3) or (A2, A6) was
not evaluated because the cutter class was not hypothesized to fragments A3 and A6. The
geometric matching was evaluated only for the pairs (A3, A4), (A3, A5), (A6, A4), (A6, A5),
and (A3, A6). The relative positioning of the above pairs were found to be quite similar
to that of their matched contours in allen wrench 2 and 3 (Figures 6-(b) and -(c)) with
slight advantage to allen wrench 2 that is the correct solution. Interpretation of the scene
gives the solution: g∗cutter−3(A1), g∗cutter−4(A2), and g∗allen−wrench−2(A3, A6, A4, A5).
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4 Performance evaluation

Evaluation of the proposed indexing scheme for image modeling and recognition is carried
out by: 1) discussing the features of the proposed system, 2) evaluating the search method
and its time, and 3) comparing to others.

4.1 Features of the method

In this sub-section we present some important features [12] of the proposed modeling
and recognition system. The features refers to the generality, stability, robustness, and
discriminative power of this approach.

The generality of modeling and recognition system is concerned with the generality of
the class of contour shapes that can be successfully recognized in the majority of cases.
Our approach is based on partitioning contours into set of constantly curved segments,
extracting descriptors from these coarse segments, and using of the descriptors in pruning
the models. All polygonal shapes can easily be used in this method as their only effect is
to produce simple descriptors. Objects with curved contours having moderate change in
curving are the most adequate for our modeling because these shapes produce moderate
number of coarse segments and consequently require reasonable processing time during
modeling and recognition. Shapes having large number of inflection points are likely to
cause significant increase of the processing time for this approach as well as for many
other proposed modeling and recognition. In our case, the advantage of partitioning
contours into set of constantly curved segments is clear when compared to simple contour
segmentation [12, 13, 3]. Our modeling approach has better contour fitting, produces
much less number of coarse segments, and makes our recognition applicable to a larger
class of real objects.

The stability of contour modeling provides information on how invariant the resulting
model is in the presence of variations in scale, noise, and quantization. We have proposed
a two-level segmentation approach for modeling curved contours by means of constantly
curved segments as a strategy to obtain stable model of the sketch of the original object.
In the first segmentation level, a noisy contour is partitioned into many small straight
segments (fine model). In the second segmentation level, successive straight segments
are merged into super coarse segments which preserves the contour shape because the
secondary effects of noisy break-point are discarded. This process reduces the effects of
noise and digitization on the output model because of its two-level filtering.

The robustness of a recognition system measures its ability to handle real object con-
tours under variations in the rotation, translation, scale, and view-point. Our approach
is based on partitioning contours into set of constantly curved coarse-segments and use
of their descriptors in the recognition process. The descriptors in DS-A are invariant
under rotation and translation but also scale variant. The geometric parameters used as
descriptors in DS-B have coarser granularity and are invariant with respect to rotation,
translation, and scale. It was observed that the recognition can still give a reasonable
(80%) rate of successful classification even when with up to 25◦ change in view-point
than the model. Modeling contours by using constantly curved segments is more robust
than simple polygonal approximation for representing contours of real objects. However,
complex industrial objects that have arbitrary shapes with arbitrary number of inflection
points may cause degradation in the processing time. Therefore, the main effect of in-
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creasing the complexity of object shapes is an increase of the model size and the implied
increase in the recognition time.

The discriminative power [12] of the proposed modeling and recognition refers to the
cost of generating the matched classes (hypotheses) in the pre-recognition phase and the
cost of carrying out the verification through cluster reduction, geometric matching, and
interpretation. We use similar notation to that of [12]. We assume the descriptors are
uniformly distributed over the entries of the indexed tables. The number of descriptors
for each table entry is d, the number of descriptors for the scene is n, and the number of
scene fragments is nf .

When there is significant discrimination power the number of descriptor values that
fall into each table entry is small and possibly equal to 1 (d = 1). In this case, each
cluster corresponds to one single model. There are n/nf descriptors per fragments and
each descriptor is matched to the correct model in the best case. In this condition there is
no need for cluster reduction, geometric matching, and interpretation because of the one-
to-one correspondence between the descriptor values and models. The cost of obtaining
the matching cluster for each fragment is O(n/nf ). The complexity of the best case is
Obest(n) = nf × O(n/nf ) = O(n). We note that the complexity of the best case in our
approach is identical to that of [12].

In the worst case, when the discrimination power is small the number of descriptor
values that fall into each table entry is large. In this case each descriptor cluster (out
of n clusters) may contains large portion of the library models which means that each
table entry has m models in the worst case, where m is the number of library models.
At the early stages of recognition, the number of correct matches represent a very small
fraction of total number of matches. Our approach keeps only few matched models (fixed
number). If we assume the descriptor values are uniformly distributed over the nf scene
fragments, then each fragment has n/nf matched models following pre-recognition. Each
fragment has n/nf clusters and each contains m models in the worst case. For each
fragment, the complexity of sorting the descriptor clusters and selecting a fraction of
models with the highest frequencies is O((mn/nf )

2) = O(m2n2/n2
f ) which is needed

to obtain the single fragment cluster. For all the fragment clusters the complexity is
nf ×O(m2n2/n2

f ) = O(m2n2/nf ). The complexity of cluster reduction for each fragments
is O(mn/nf ) because it requires evaluation of the distance matching for each matched
model. There are nf scene fragments, the complexity of cluster reduction for the scene is
O(mn). The geometric matching requires comparing the positioning of pair of fragments
in scene to positioning of matched fragments in the model. The complexity of geometric
matching is O(mn2

f ) because in the worst case each scene fragment must be geometrically
matched to each other fragment. Finally, the interpretation phase has complexity O(mn2

f ).
Overall worst case complexity is Oworst(n) = O(n2m2/nf +mn+mn2

f ). The real algorithm
complexity (Oalg(n)) is somehow bounded as Obest(n) ≤ Oalg ≤ Oworst(n) that is O(n) ≤
Oalg ≤ O(n2m2/nf + mn + mn2

f ).

4.2 Sub-linear recognition time

We study the effects of increasing the library size on the recognition and classification of
scenes of three objects under partial occluding. Each of the studied objects has between 10
to 30 coarse segments. All thresholds used were experimentally evaluated. Four settings
of the model are used: 1) 10-objects (LB10), 2) 30-objects (LB30), 3) 60-objects (LB60),
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and 4) 100-objects (LB100). We started by setting up LB10 and randomly selecting 3 scene
objects. To build LB30 we randomly selected 20 more objects and added them to LB10,
and so on. All studied objects are lab mechanical tools with different sizes and different
shapes having between 20 to 140 fine segments or between 10 to 50 coarse segments.

The recognition algorithm is run under each of the database settings for recognizing
the scenes like that shown on Figure 5. Table 4 shows the number of fine (F -Seg) and
coarse (C-Seg) segments and number of hypotheses generated for each fragment (Figure 5)
versus the size of the models. The reason for the large number of hypotheses is that each
segment is likely to be matched to many objects due to cluster tolerance.

The descriptors of DS-A are fine grain compared to those of DS-B which explains why
DS-A received more hypotheses. As a result the selectivity of descriptors from DS-B is
greater than that of the descriptors from DS-A. Too small segments like A4 and A5 were
omitted from hypothesis generation. The number of hypotheses grows linearly with the
number of segments and the size of the models for both experiments. The recognition
process would be completely inefficient if all of these hypotheses must be verified further.
Fortunately, the voting technique enables pruning most inconsistent hypotheses. The
fraction of the recognition time spent in the pruning process is small, thus the recognition
time is likely to be independent from the number of hypotheses.

The ranking of hypotheses represents the upper percentage of hypotheses that includes
all correct hypotheses. For example, DS-A with LB10 the algorithm retained 11.8% (see
Table 3) of the hypotheses. This was sufficient to ensure that all correct interpretations
are retained by the pruning technique. This percentage becomes smaller and smaller
as the library size grows. This is shown in Table 3. We may keep only 4% or 5% of
total number of hypotheses for DS-A and LB100. These percentages depend on shape
complexity, degree of similarity among the models, and amount of variations in spatial
layout. By experimentally choosing these percentages the number of retained hypotheses
becomes constant regardless of library size. Thus the recognition algorithm mainly depend
on the scene complexity without explicit dependence on the library size.

The recognition time (Table 3) slightly increases with the library size. However, the
descriptors used in DS-B have better selectivity and discrimination power than those of
DS-A, thus the saving on the recognition time. The recognition time is sub-linear versus
library size which is an indicator of efficiency for the proposed approach.

In Figure 8 we show the efficiency of the recognition system when using the descriptor
set B versus the percentage of visible segments of known models. Here the efficiency refers
to the percentage of cases for which the correct model was among the set of hypothesized
models. These results are obtained for LB100 and the models used in the recognition are
lab mechanical tools having between 30 and 60 fine segments. Each plotted point results
from averaging at least 30 recognition cases. We also repeat the recognition for 4 view-
point angles. Here, a 0◦ view-point angle corresponds to vertical direction. For entirely
visible models (all segments are visible), a reasonably high efficiency (80%) is obtained
(Figure 8) when the change of view-point is below 25◦. However, excessive change in the
view-point angle significantly affects the efficiency. The efficiency smoothly decreases but
remains above 60% when the percentage of visible segments decreases to 50% and the
view-point does not exceed 25◦.
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4.3 Comparison to other approaches

In [12] contours are partitioned into straight segments and aggregation of few segments
is used for defining a “super-segment” that is used for indexing the library. Similar
modeling were also used in [3, 13]. In our case we have proposed fine grained descriptors
in descriptor set A and showed the benefit of increasing the granularity of the descriptors,
making them structural (assembly of neighboring geometric features) and scale invariant.
This was proposed in descriptor set B.

Grimson [9, 10] used tree-searching schemes that equally treats all the available fea-
tures in generating hypotheses on possible matches. The search over the current sub-tree
is abandoned when enough inconsistent evidences are accumulated and the next sub-tree
is started. Though this organization allows pruning many inconsistent sub-tree interpre-
tations, the number of visited sub-trees can be large even for simple scenes. In [3] all scene
features participate in the generation of hypotheses that are ranked by mutual support.
This consists of reporting the matched models into the scene and collecting supporting
evidences whenever they map to similar locations. Due to the large number of initially
generated hypotheses, a massively parallel machine (Connection Machine CM5) is used
to parallelize the complexity of scene and each processor carry out verification of one hy-
pothesis. The recognition time mainly depends on scene complexity. As a result of huge
parallelism the recognition time of few objects is about that of recognizing one object.

Our approach avoids handling contours with poor information. It consists of selecting
contours with the largest number of features among all scene contours which allows prun-
ing large portions of the models and provides robust generation of hypotheses. In feature
hypothesizing, we select only the most probable hypotheses which greatly reduces the
recognition time and improves its independency on the size of the models. In fragment
hypothesizing, the ordering of the matched scene features of each fragment of contour is
searched in the hypothesized models which allows finding a small number of consistent
hypotheses.

The novelty of this approach resides in the search operator hierarchy in which the
first operators are timely inexpensive but have large number of operands. Each operator
contributes in reducing the search space, thus leaving less number of verifications which
necessarily become more timely expensive because of their higher conceptual level.

5 Conclusion
In this paper we presented the design and implementation of a model-based pattern
recognition system that is invariant with respect to rotation, translation, and scale. The
proposed recognition strategy extracts some geometric descriptors from the sketch of the
object and use this information for pruning large portions of the models. It progressively
applies finer matching to refine the recognition. Our scheme is based on four steps. A
fine and coarse models of the scene object are used. The coarse model is used to extract
descriptor attributes. Indexed search over the library is carried out for pruning incon-
sistent matching out of an initially large set of hypotheses. Geometric relationships and
distance matching are used to consolidate the filtered decisions. The result of our library
organization and our pruning strategy is that we can produce correct classification with
reasonable probability. The recognition time mainly depends on scene complexity with
only marginal dependence on library size. This proves the effectiveness of our proposed
approach in modeling and recognizing mechanical tools under partially occluded scenes.
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Type Descriptor interpretation
straight D1 Number of segments

D2 Length of the longest segment
D3 Collection of exterior angles {θi : |θ| ≥ εθ}
D4 Collection of segment lengths {ρi ≥ ερ}

curved D5 Number of segments
D6 Collection of curvature factors {Hi}
D7 Collection of total angular changes {∆αi}
D8 Collection of segment lengths {ρi}

Table 1: Topological and geometric features of descriptor set A

Type Feature 1 Feature 2 Feature 3 Descriptor
straight/ Length exterior angle NA
straight ρi

ρi+ρi−1
θi < s− s, ρi

ρi+ρi−1
, θi >

straight/ Length exterior angle NA
curved ρi

ρi+ρi−1
θi < s− c, ρi

ρi+ρi−1
, θi >

curved/ Length Exterior angle Total angular change
straight ρi

ρi+ρi−1
θi ∆αi < c− s, ρi

ρi+ρi−1
, θi, ∆αi >

curved/ Length Exterior angle Total angular change
curved ρi

ρi+ρi−1
θi ∆αi < c− c, ρi

ρi+ρi−1
, θi, ∆αi >

Table 2: Structured and scale invariant features of descriptor set B

DESCRIPTOR SET A DESCRIPTOR SET B
LB10 LB30 LB60 LB100 LB10 LB30 LB60 LB100

Percentage of 11.8 7.3 5.4 3.9 8.2 4.3 3.1 2.1
correct matches
Recognition 27.4 29.7 32.4 35.1 21.4 23.7 25.6 26.8
time (seconds)

Table 3: Ranking of correct hypotheses and recognition time for descriptor sets A and B

SCENE DESCRIPTOR SET A DESCRIPTOR SET B
Fragment F-Seg C-Seg LB10 LB30 LB60 LB100 LB10 LB30 LB60 LB100

A1 118 14 72 241 344 538 38 133 161 189
A2 96 12 55 163 233 417 27 87 117 135
A3 33 6 36 114 171 312 15 41 62 68
A6 10 5 27 76 104 193 11 28 38 52
Total 257 37 190 353 852 1460 91 289 378 444

Table 4: Hypothesis generation for each fragment for descriptor sets A and B
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Figure 7: Flowchart of recognition of partially occluded scenes
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