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Abstract

This paper presents a robust telerobotic system that consists of a real-time vision-based
operator hand tracking system (client) and a slave robot (server) which are interconnected by
using a LAN. The tracking system (1) monitors the operator hand motion and (2) determine
its position and orientation which are used to control the slave robot. Two digital cameras
are used to monitor a four-ball called feature frame that is held by the operator hand. To
determine the 3D position a tracking algorithm uses uncalibrated cameras together with
the affine invariant property. This allows finding 3D differential position and orientation
of operator hand. The features of proposed systems are (1) a metric for color matching to
discriminate the balls from their background, (2) a uniform and spiral search approaches
to speedup the detection, (3) tracking in the presence of partial occluding, (4) consolidate
detection by using shape and geometric matching, and (5) dynamic update of the reference
colors. The operator can see the effects of the previous motion which enables making the
necessary corrections through repetitive operator hand-eye interactions. In the evaluation
we study the static and dynamic errors of the tracking system as well as combined errors
due to the affine invariant transformation. We also present the telerobotic real-time control
scheme and its network and processing delays.

1 Introduction

This paper presents a telerobotic system [1] that consists of a vision-based station (client) and
a slave robot (server) which are interconnected through a 100 Mbps Ethernet LAN. A real-time
vision system consisting of two digital cameras monitors the operator hand motion to control
a tele-robot. To view the robot scene, the operator uses eyes shuttering glasses with display
of stereo views at the client station. Using uncalibrated stereo vision the multiple-view affine
invariance property is used to build a 3D interpretation for the feature frame which is considered
as a reference of the operator hand frame. The frame is represented by twelve parameters, three
for the cartesian coordinates of its origin and nine for its orientation matrix.

Fukumoto et al. [2] proposed a stereo vision system where the user can point a place on
the computer’s screen by his hand and give some commands by hand gesture. They require
camera calibration which limits the user motion. The absolute position and orientation of the
hand in the space are used for gesture recognition, which means that the operator should not
move his body from the initial position at the calibration. To overcome the problems of time-
delay and bandwidth limitation the operator directly interacts with a model of the remote site
instead of delayed remote site. For this the operator points to a known object feature in a
video image of the remote site and use 2D images of these features to solve for the 3D position
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Figure 1: The RGB for a scan of a red ball with white background

of the object. Using one single camera Lloyd [3] used the pin-hole camera model with off-
line calibrated focal-length and radial distortion for one single camera. Using simple camera
calibration the geometry of affine stereo vision is used [4] to estimate the positions and surface
orientations needed to locate and reach for objects by sight. The advantage of this system is its
immunity to unexpected translations and rotations of the cameras and changes of focal length.
Uncalibrated stereo vision [5] is also used in a pointing-based interface for robot guidance based
on the use of active contours to track the position and pointing direction of a hand in real time.
An interactive human-robot interface [6] is proposed to track a hand pointer using a constrained
perspective transform. The real-time tracking system visually tracks the operator’s pointing
hand and projects a mark at the indicated position using an LCD projector.

Kuno et al. [7] proposed an interfacing method by using uncalibrated stereo vision. Their
system is based on the multiple view affine invariance theory. It calculates the hand positions
as invariant coordinates in the basis derived from four points located on the user’s body in a
user-centered frame so that the operator can move his hand forward and backward relative to
his body regardless of possible body motion.

Our system recognizes the position and orientation of the feature frame regardless of the
position of the operator. The position and orientation of the feature frame is evaluated with
respect to its previous configuration. The position of the balls are calculated as invariant coor-
dinates in the coordinate system with the three basis vectors defined by the four points. The
operator can control the slave arm by moving the feature frame regardless of the position of his
body. This approach needs no camera calibration because the camera parameters do not affect
the affine invariance feature. This system is based on a robust boundary detection, fast tracking
strategy, and a simple mechanism for partial occlusion. The gravity center of each ball should be
computed precisely. Ideally an increase in the communication delay is translated by a graceful
degradation in the task execution time, i.e. resilient system. For this the control strategy is
based on a coarse-control of the slave arm which leads the operator to assign a coarse-trajectory
to the slave arm leaving the generation and fine trajectory control to a local slave controller.

This paper is organized as follows. Section 2 presents a metric to measure color matching.
Section 3 presents our the tracking algorithm. Section 4 presents the 3D position matching
module. Section 5 presents the evaluation. Section 6 concludes about this work.

2 A metric to measure color matching

In practice the colors (RGB) that appear in different images taken by different cameras are
not stable under different conditions. For example, a horizontal scan of a red ball with white
background produces the RGB shown in Figure 1. The middle part (ball) of the figure indicate
that there are some components for the green and blue that cannot be omitted for a specific red
color. There are various reasons for the problem of variation in the values of RGB components,
like light reflection, color saturation, camera sensitivity and configuration, external noise,..etc.
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Figure 2: Metric functions for a scan of red ball with white background

Every pixel on the image is represented by three bytes, which means that every primary
component will be stored as a byte of information. This property of the RGB color space help
us to explore the color features, and consequently to detect them.

A color pixel p is represented by its RGB components p = (c1, ¢, ¢3), where ¢1, ¢a, and c3 are
the lunimance of the red, green and blue of the RGB components. Although each of R, G, and B
is represented by one byte ( 256 levels) we assume normalized RGB components, i.e. 0 <¢; <1
for j = 1,2, or 3. For example the horizontal scan of a red ball with white background shown in
Figure 1 produces an RGB plot versus the pixel location. Note that the white background has
similar ¢; component to the red ball which has non-zero ¢y (green) and c3 (blue) components.
In this case, the red ball can mainly be discriminated from its background based on its co and
c3 components. Note that the white background has similar ¢; component to the red ball which
has non-zero cg (green) and c3 (blue) components. A black background significantly reduces the
c1 components which improve the discrimination with red ball but the ¢y and c3 components
are still present.

A monochromatic color has only one luminance component. A reference color 7 is represented
by its reference RGB parameters (c%, cb, ci). We define a function V;(p) to measure how close a
color pixel p = (c1, c2, ¢3) is to a reference color i, where 1 < i < 6. The reference color i can be
a monochromatic color (one color) like the red, green, or blue or a combination of two colors like
the red-green, red-blue, or green-blue. We define a normalized color luminance function V;(p)
as follows:

c1+ (1 —c2)+ (1 —c3) for the primary red color (i = 1)
(1—c1)4+ca+ (1 —c3) for the primary green color (i = 2)
1) (1—c1)+ (1 —c2)+c3 for the primary blue color (i = 3)

Vilp) = 3) ci et (1—c3) for the red-green (i = 4)
c1+c3+(1—ca) for the red-blue (i = 4)
cot+ces+(1—c) for the green-blue (i = 4)

The first three colors (1 < i < 3) are being the primary RGB colors which are the red, green,
and blue. The function Vj(p) is maximal if p has full component ¢; = 1 on a primary color ¢
and zero component on the remaining two. The complement of component ¢; is being 1 — ¢; for
normalized references but in practice each primary color component occupies one byte, i.e. 256
levels. The last three colors (4 < i < 6) represent any combination of two primary colors such
as the red-green, red-blue, and green-blue. In this case the function V;(p) is maximal if p has
full component on two primary colors and zero component of the third color. Currently we are
using four balls colored with red (i = 1), green (i = 2), blue (i = 3), and yellow (i = 4).

The function V;(p) measure the similarity between a color pixel p and a single or combined
primary color. Ideal colors are difficult to design. In addition they may have have different
values for their primary components under different conditions of lighting and image quality.



These references are useful for matching with those of a color pixel to prevent the detection of
color pixels having high V;(p) values when the searched ball is occluded or out of range. Notice
that with a black background the c¢s and c3 components are similar for those of the red ball. In
the case of black background there is a good preservation of relative composition of the RGB
components as compared to the case of the white backgournd. The selection of threshold value
for V;(p) is not governed by any rule and can be affected by the changes in the image and lighting
conditions. This shows that the color luminance function V;(p) may lead to processing of many
exceptions derived from detection errors.

Another metric to measure the color matching can be selected as the normalized distance
D(p,pief) between the a reference color pief = (ct, b, c}) and a given color pixel p = (c1, ca, c3).
The normalized distance color matching is defined as:

1/2

D(p7pj”ef) - g Z(CJ - C;")Z
j=1

Although the distance metric gives useful results in general it may fail because many sporadic
scene pixels may have components that are quite similar to those of the reference. This situations
can occur under poor lighting conditions or in noisy environment. Then the detection of the
correct color in a narrow range will be more difficult. For the above reasons the distance matching
may sometimes give poor results. The objective is to have one single metric that maximizes the
dicrimination of ball colors from a wide spectrum of realistic background colors. One approach
to preserve the benefit of the distance matching D(p,pf,ef) and the color luminance function

V;(p) is to combine them into one single color matching function M (p,pl, 7) defined by:

M(pap:ﬂef) = V:L(p) - D(pvp’;‘ef)

where the subscript 7 denotes the color of one of the four balls and pief represents its
normalized RGB reference parameters. The color matching function satisfies —1 < M (p, pi . f) <
+1 which gives 1 and —1 for a maximally and a minimally matched color pixels, respectively.
Figures 2 show the plot of functions V(p), D(p,z), M (p,x) where p is pixel position and x is
the reference to the red color. Both plots show that M (p,z) maximizes discrimination between
the red ball and its background as compared each of V(p) and D(p,x).

The color luminance function V;(p) contributes in improving discrimination in poor lighting
conditions and under noisy background. For this, we use the color matching function M (p, pi . f)
in the remainder of this paper as the main technique for color detection and matching.

3 The tracking algorithm

In this section we first present the color matching function, then our tracking algorithm that
monitor the position and orientation of the feature frame. A too small search area may lead
to missing the searched object. A too large search area leads to slowing down the tracking
algorithm. For this we use a uniform and a spiral searching techniques (Section 3.1) with
backtracking to minimize the number of visited pixels while covering a relatively large area.
This algorithm allows tracking the motion of the feature frame by identifying its instantaneous
position and orientation (Section 3.3). For this each camera tracks the feature frame, shown in
Figure 3-(a), and identifies the coordinates of each ball with respect to its camera frame. Using
information from both cameras the 3D position and orientation of the feature frame can then
be evaluated. The metric for color matching (Section 2) allows boundary detection of each ball
which enables finding its position in the camera frame. The algorithm also handles the case of
partial or total occlusion (Section 3.4) among the balls and determine reasonable solution for
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Figure 3: Feature frame, Uniform and Spiral search, and the case of occluding

each case. To consolidate the detection our algorithm validates the detected balls through shape
and geometric matching 3.5 prior to dynamically updating the ball reference colors.

The tracking mode represent the normal operation, where all the balls were detected suc-
cessfully in the previous frame. The flow chart of the tracking algorithm is shown in Figure 4
which describes the algorithm structure and its major functions. In this mode, there are differ-
ent approaches are used to assist tracking the ball and to measure the center and the diameter
of each ball. In the following, we present the major functions of the tracking algorithm.

3.1 Supervised learning of colors

In supervised learning allows finding the typical RGB parameters for each color ball. For this
the user points to each ball in the image of the feature frame. The reference RGB parameters for
each color are determined by using the histogramming technique which cluster the color pixel
population against the immediate neighborhood of the ball. The display of horizontal scans over
the selected ball allows checking the retained parameters and the detection borders.

3.2 Boundary detection and searching area limits

We noticed that a fast refreshing rate with relatively simple tracking algorithm, of the feature
frame, and a narrower searching area is more effective than a slower algorithm with wider search.
One of the main issue is the processing and memory access times of a large number of pixels
associated with the use of commercial processors. A slow refreshing rate constrains the speed of
operator hand in addition to increasing the probability of exception occurrence for which one of
balls is not detected and a costly search of a wider image area becomes the only solution. For
this an effective position prediction of the feature frame combined with a narrower searching
area makes faster memory access time of cached data for two reasons. First, we only need to
process a small volume of data associated with fast memory access because the locality of the
searching area is easily captured in the processor cache memory, i.e. better re-use of cache data.
For this we search a square area centered at a point that is linearly predicted based on the
previous positions of each ball in each camera frame. Second, given the refreshing frequency of
the tracking mode it is found that the side of the searching area needs not to exceed three times
the most recent diameter of the corresponding ball. For boundary detection, the use of the color
matching function M (p, pi . f) for a scene color pixel p enables matching to the ith ball reference

color pt, ¢ whenever the following condition is met:

M(Z%Z’Z«ef) > M(pbkgap?ref) +ax (M(ptypfiapief) - M(pbkgapj’ef)) (1)
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Figure 4: Flow chart of the tracking algorithm and its major functions.

where M (pprg, Pl f) and M (pyyp—i, P f) is the color metric value at a neighboring background
pixel pprg and at a typical ball pixel pg,—; both taken from the previous tracking iteration, and
« is a constant satisfying 0 < a < 1. Note that pfqef is a reference for the ith color (ball) that
is determined from (1) the supervised learning phase, or (2) the most recent validation and
reference update. Note that the right hand side of Equation 1 is recomputed once following each
successful ball detection.

To minimize the searching time, the search of a ball within a predicted area is based on
alternating between a uniform search (US) and a spiral-shaped (SS) search within the searched
area as shown in Figure 3-(b) and (c), respectively. Initially, no information is available and
US is started. When one pixel matches the searched color we switch to SS and search around
the detected pixel and continues until complete detection of the ball or abandon the SS search
if enough inconsistent evidence are accumulated. An inconsistent ball detection occurs when
the number of matched pixels is a small fraction of the total number of visited pixels by the SS
search. The algorithm backtracks to the US search, at the previous state, when the SS search
is abandoned. However, if the predicted area is visited without detecting the ball the algorithm
restarts with a larger search area.

The SS search is based on a 2D square-shaped spiral algorithm that starts at a predicted
pixel. The algorithm is based on repeatedly alternating the direction while moving in a bi-cyclic
fashion over an increasing number of pixels. The direction of motion is fixed for n pixels. In
each step the spiral is created by scanning n pixels along a given direction, i.e. the row or the
column. Next the motion direction is rotated by 7/2 in the plan and another set of n pixels is
scanned in the new direction. The next step starts after incrementing n. A segment size of n
pixels indicates that the total number of scanned pixels is n(n + 1) + 1. Thus the spiral search
is ended when the total number of scanned pixels exceeds a square whose side is three times
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Figure 5: The luminance, distance, and matching functions for red ball a reflection area

the most recent value of the ball diameter (d in pixels). In other words is search is ended when
n(n+1) + 1 exceeds 9 x d2.

The US search consists of uniformly carrying out color matching within a rectangular area
(RA) L, x Ly, where L, and L, represent the length and the width. This procedure allows
computing the matching function over a set of 2 uniformly distributed locations (boxes) within
RA after k iterations. In each iteration, RA is partition into a number of equally sized boxes
and the matching function is computed at the center of each box. At start we initialize the
box size to that of RA. In each iteration the box is divided into 4 smaller boxes. If there is a
match the ball is detected and we abandon the US search. Otherwise, the algorithm continues
after subdividing the box size. In each iteration the number of visited points is four times that
of the previous iteration. Thus after the kth iteration the algorithm visited a total of Zilg 4
uniformly distributed pixels within the predicted searching area. The search is ended if the
box size becomes smaller than half the expected diameter of the searched ball. In this case the
searched ball is not present in RA and a global search must be activated like at the initialization.

3.3 Computing the coordinate of ball center

The search is successfully completed when each ball is detected in the predicted area. The ball is
generally subject to many sources of noise like the light reflection which produces white regions
within the ball boundary as shown in Figure 5. During the spiral search procedure, in each row
i we only record the detected edge pixels located at the most left (ji,) and most right (Jmaz)
position of a given row that intersects the outer corona of the ball. The edge pixels represent the
ball boundary pixels with the background. To significantly reduce the effects of the potential
of white regions only the edge pixels contribute in the evaluation of the ball center coordinates.
The center of each row is computed using the edge pixels with the assumption that all the pixels
between the two edges are matched to the ball color. With this approach the coordinates of the
row center (i,,j,) are computed by averaging the coordinates of N, = (Jimaz — Jmin + 1) pixels
within edges (7, jmin) and (7, jmaz). This simplifies to:

(irajr) — (-’ jma:ﬂ X (]rgax + 1) *]mm X (]mm + 1)) (2)
(]maac — Jmin + 1)

The matched rows contribute to the evaluation of the ball center by summing up the row
center coordinates (i, j.) with N, being their weight. Note that the true metric of the ball
diameter D need not be identified. The largest value of N, (in pixels) for a given ball is
considered as the current ball diameter.



3.4 Partial and total occluding

The strategy is to monitor the distance between the ball centers and detect a partial occluding
situation which implies that the computation of ball center must be modified.

As shown in Figure 3-(d), given two Balls X and Y, the technique of computing the coor-
dinate of the ball center by using Equation 2 is valid when the distance d(X,Y’) between the
identified centers of two balls (C,) and (Cy) exceeds (D + D,)/2, where (D) and (D,) are the
most recently evaluated values of the diameter just before the detection of the partial occluding
situation. Otherwise, a ball is considered under partial occluding due to another. The former
ball (X) is identified by comparing the values of its currently computed diameter D, and area A,
to previously stored values of the same parameters that were evaluated in the most recent pass
without partial occluding for each ball. The later ball is fully visible and its computed center
(C) and diameter (D) are valid. Since ball X is detected under partial occluding the above

algorithm returns (Cx) as its center. However the true center (C'x) must be located on the
Cx-C

|Cx—C|
between the edge pixels along the direction U. Then Cx is just D/2+ (Dg — Dx/2) away from
C on the direction U. The center C'x can be evaluated by using the following vector equation:

direction U of the unit vector For ball X, let’s assume (Dg) is the computed distance

Cx —C

Ox =C 4+ X%
|ICx — C|

(D +05(D — Dy)) (3)
Note that if |C'x — C| becomes very small we may assume that Cx = C where ball X is
partially or totally occluded.

3.5 Validation rules

The RGB references of the ball may change depending on the location of the feature frame. For
this we need to update the color references if there is enough confidence in detection of all the
balls in the current tracking iteration. The confidence function used here consists of meeting
three validation rules [8] for each camera frame which are: (1) the shape matching, and (2) the
geometric matching.

The shape matching measures for each camera how circular are the balls that are detected
without partial occluding. In this case the ratio of ball area (in pixels) to the to the square of
the current ball diameter (d in pixels) must be close to m/4. To avoid degradation due to the
digitization effect this rule can only be used when d is large enough.

The geometric matching consists of matching the currently detected position of each ball
with respect to each other ball to that of the same ball in a scene obtained by extrapolating the
previously identified 3D feature frame. In each camera frame, the expected position of the ball
center is evaluated by (1) extrapolating its previously detected 3D position, and (2) projecting
the expected position over each camera frame. Denote by X (¢ + 1) the expected 3D position of
a ball center with respect to the previously detected feature frame R(t). R(t) is defined by its
origin Xo(t) and its orthonormal vectors E;(t), where 1 < ¢ < 3. In 3D the ball center vector
X(t+1) is defined by X (¢t + 1) = Xo(t) + X3, oy x E;i(t), where o, for 1 <4 < 3, is the ith
component of point X (¢ 4+ 1) over R(t). The affine invariant projections of X (¢ + 1) over R(t)
allow writing z(t 4+ 1) = zo(t) + Y51 a; x €;(t), where z(t + 1), zo(t), e;(t) are 2 x 1 vectors
that represent the projections of X (¢ + 1), Xo(t), and E;(t) over the camera frame.

The function d(zy, y;) represents the distance between the ball centers zj and y; as measured
by the tracking algorithm in a camera frame. Using the predicted feature frame and its projection
in each camera frame we compute the distance d(x},y;) for the expected ball centers z} and y;.
A relative distance error d(Measured, Predicted) that accumulates the mismatches between all
pairs of distance errors:
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d(Measured, Predicted) = Z Z
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Min{d(xk, y1), d(xy, yf)}

where Min(.,.) is used to normalize the distance error. A small value of d(Measured,
Predicted) indicates that the current geometric distribution of the balls with respect to each
other in the current scene is similar to that of a predicted scene.

4 The 3D position matching module

The camera model is based on weak perspective projection. Since the dimension of the balls is a
small fraction of the distance between the camera and the ball the weak perspective projection
can be considered as a valid approximation of the general projective transformation. This
approach uses uncalibrated stereo vision based multiple views generated by two cameras which
enable computing the 3D invariant position of a point with respect to our four-ball feature frame.
The cameras can be set in an arbitrary position or even move to keep centering on the observed
feature frame.

We use multiple views generated by two uncalibrated cameras to compute the 3D invariant
position of a small ball. For this we define a 3D frame of reference R formed by three mutually
orthonomal axes using basis vectors {E; : 1 < i < 3} and origin O. We assume frame R is
observed with respect to a fixed frame Ry. The mapping of R to our feature frame is as follows:
(1) the origin O of R is the position X of red ball center, (2) the position of the edge of each
basis vector E;, for 1 < ¢ < 3, is the center X; of the green (i = 1), blue (i = 2), and yellow
(1 = 3) balls, respectively. In other words, if X; is being the 3D coordinates of the ith ball the
basis vector F; can then be evaluated as:

B = iz X (4)
[1Xi — Xol|2
The position and orientation of frame R can be determined at time ¢ by using the 3D
coordinates of each ball. This gives R(t) = {Xo(t), Ei(t) : 1 < i < 3}. At time ¢ + 1 frame
R moves (operator) to a new position and orientation defined by R(¢ + 1) which is observed
with respect to the previously identified frame R(t). The position of X (¢+ 1) of a ball center of
R(t+ 1) becomes:

X(t+1)= +Zale (5)

where «; is being the ith components of a ball of frame R(¢t+ 1) that is observed with respect
to R(t). Parameters «;, for 1 <i < 3, are also the affine invariant projections of edge X (¢ + 1)
over the basis vectors of R(t). In other words, the coordinate of the same ball of R(t + 1), with
respect to R(t), in the 2D frame of first camera are given by:

o
R AN RO R O OR N ©

Y Yo 61,2(t) 62,2@) 63,2(75) o
where ($1>y1>t7 (x(l)ay(l))t7 (6%,1(75)76%,2(75)): (6%71@),6%’2(15)), and (63 1(t)a€§,2(t)> are the pro-
jections on first camera (superscipt) of X (¢ + 1), Xo(t), E1(t), Ea(t ), and Ej3(t), respectively.
This means that we can derive two equations with three unknowns for any point location in a

single 2D camera frame. The problem of finding «; is under-determined. A second view with



known correspondence to the first view can, however, give an over-determined set of equations.
Thus we have four equations with three unknowns. In matrix notation we have:

X =M.«

where M ia a matrix formed by the projections E;(t), E2(t), and E5(t) over the first (upper
two rows) and second camera (lower two rows), respectively. We have:

33(1) ei,l(t) e%,1<t) e:};(t) a
yo; _ 6’%72@) eg,z(t) 6’3,2@) I, (7)
1’8 @%,1(75) 63,1@) 6223,1(’5) o
Yo e1o(t) e54(t) e54(t)
The least squares solution & is given by:
&= (M'M)"*M'X (8)

Thus & provides an estimate of the 3D position of any given ball. We may obtain an estimate
of the 3D position for each of the four balls that represent the feature frame R(t + 1) by simply
repeating the computation of Equation 8 for each ball. Therefore the position of the feature
frame R(t + 1) can be fully identified by the position of its origin X¢(¢ + 1) and its orientation
matrix ®(t+1) = {E1(t+1), E2(t+1), E3(t+ 1)} which derive from Equation 4. Both X¢(t+1)
and ® represent differential information on position and orientation of hand motion because
they measure changes with respect to previous frame R(t).

In addition to 3D positional information, we can obtain 3D orientation matrix R3x3 infor-
mation based on the 3D position information as following;:

0 Tg— Ty Tp— Ty Ty — Ly
O 1| Y=Y W—Y Yu—Yr
L Zg—2r Z—2Zr Zw— %

R33 =

o OS5
oS O

I3

For teleoperation we need to guarantee that the identified feature frame has normalized
orthogonal vectors. For this we use Gram-Schmidt orthogonalization process to produce an
orthogonal set of function from the set we have computed. The Gram-Schmidt process for
computing an orthonormal basis T' = {71, Zs, .., Z,,} for a m dimensional subspace W of R"
with basis S = {X1, Xo, ..., X;,} through the following steps. In Step 1, we Let Y1 = X;. In
Step 2, we Compute the vectors Yo, Y3, ...Y}, successively, one at a time, as follows:

X:.Yh
1.1

X;.Ys
Y5.Ys

XY

Yi= X, - Aiedicl
‘ i~ Yi1.Yi 1

) Y1 —(

).Yo — .. —( ).Yi1

Note that the set of vectors T* = {Y1,Y3,...Y;,,} is an orthogonal set. In Step 3, we Let

i

Zi=—1<i<m
C vl

Then T = {Z,, Zs, ...., Zp,} is an orthonormal basis for subspace W.

5 Performance evaluation

The vision system configuration used for the experiments consists of two connected PCs, each
has a Firewire card interfaced to a digital camera. The two PCs run in parallel the basic
tracking algorithm. However, for the 3D part one PC transfers its local data to the other PC
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Camera tracking and detection of a circular ball motion
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Figure 6: Tracing of the detected motion of a red ball held by a moving robot

where the 3D affine invariant computation is performed. The result is a set of twelve differential
parameters, of which three for the position and nine for the orientation matrix. The parameters
are transmitted to the slave site through the LAN to control the motion of the robot. Ideally
this results in a slave robot motion that is a replica of the operator hand motion. The stereo
vision allows the operator to see the slave scene and to make the necessary corrections.

Mainly our system can track the feature frame and calculate its 3D information at about
9Hz. The performance of the tracking algorithm is based on (1) evaluation of static and dynamic
positioning errors for each camera, and (2) evaluation of dynamic errors in the 3D transforma-
tion.

The measurement of static errors with respect to each camera consists of evaluating the ball
center position in the camera frame versus change in the ball diameter (12 mm) measured in
pixels. The ball was set at a distance of 1.5 m from the camera. We used the zoom function to
vary the ball diameter in the range of 5 to 65 pixels. For each camera, the average position error
was 3 x 10™% (0.1 pixels) and its upper bound was 6 x 10™# (0.2 pixels) of the camera range. For
example a workspace of 1 m leads to a static error of 0.3 mm with an upper bound of 0.6 mm.

The measurement of dynamic errors with respect to one camera consists of evaluating the
ball position errors in the camera frame while moving the feature frame by the robot along a
linear and a circular trajectories as shown on Figure 6. The ball diameter was approximately
1.2 cm or 15 pixels. Our algorithm was implemented on 2 PCs, one for each camera, and
dynamically tracking in parallel the balls. The camera frame acquisition timer is an indicator of
the availability of new camera frame and used to trigger the acquisition and iterative processing
of the tracking algorithm. As such the refreshing rate was 10 iterations per second. For each
camera, the average position error was 3 x 1073 (1 pixel) and its upper bound was 5 x 1073 (1.6
pixels) of the camera range. For example a workspace of 1 m leads to a dynamic error of 3 mm
with an upper bound of 5 mm. The above results are only valid when the ball speed is below
500 mm/s. The average dynamic errors increase significantly with increase in the ball speed.
for example at a speed of 700 mm/s the average position error becomes 1.2 x 1072 (3 pixels)
and its upper bound was 2.8 x 1072 (7 pixels) of the camera range.

For the 3D position measurements each of the two digital cameras is interfaced to a separate
PC. Both computers continuously acquire images, and run the tracking algorithm in parallel
on two computers. After computing the coordinate of the balls in its camera frame the first

11



200

100

-60 0

X (mm)

Figure 7: Two cameras tracking of a linear 3D trajectory with single-pass and lines

Y (mm) -150  -100

X (mm)

Figure 8: Two cameras tracking of a circular 3D trajectory with multi-passes and lines

computer forwards its data position to the other computer where the 3D position calculation is
carried out. The task of the second computer is (1) compute the affine invariant transformation
and find the changes in the position (vector a)) and orientation (matrix ®) of the operator hand
frame, and (2) send a real-time packet to the server (slave) station with («, ®) as payload.

The measurement of dynamic errors consists of computing the affine invariant transformation
while moving the feature frame by the robot along a known linear and a circular 3D trajectories.
The identified trajectory are shown on Figures 7 and 8. The setting is similar to the previous
experiment. The upper bound on the measured error was a box of 6 X 6 X 6 mm in a slave arm
work of 1 m? when the speed on motion was at most 0.5 mps and the feature frame is about 1
m away from the cameras.

The server station continuously reads the joint position (vector 6 pymq(t)) of the PUMA 560
slave arm, and compute the slave arm tool position and orientation {X (), M (t)} = G(0puma(t)),
where X (t) and M (t) are the position vector (3 x 1) and orientation matrix (3 x 3) of the tool
frame at time ¢, and G(.) is the direct Kinematic model of the slave arm. The Kinematic
model allows localized control of multiple solution and proper processing of each slave arm
singular configuration. Whenever the slave station receives from the client station a position
control packet with (a, ®) as payload it (1) computes the new slave position and orientation as
X(t+1)=X(t)+aand M(t+1) = M(t)®, and (2) evaluate the slave joint position 6 pymq(t +
1) = GYX(t + 1), M(t + 1)) which corresponds to the new tool frame {X (¢t + 1), M(t + 1)},
and (3) sends to the slave robot the new joint position pym(t + 1). The local servo-controller
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Delays in client, server, and robot during typical telerobotic session
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Figure 9: Delays in Client, Server, and PUMA with slow motion (0.5 mps)

in the slave robot moves the arm from its previous position 0pymq(t) to the new equilibrium
position pyma(t + 1).

Figure 9 shows the timing of the various components of the telerobotic system during a
motion controlled by the operator. The dominant parts (about 0.2 seconds) are due to motion
of the robot system and the processing at the client computer. The peaks shown are due to
larger incremental motion.

6 Conclusion

In this paper we presented a telerobotic system that consists of a real-time vision-based tracking
algorithm (client) and a slave robot (server) which are interconnected by using a LAN. The
tracking system monitors a feature frame that is held by the operator hand. The algorithm
determines the 3D position of operator hand by using uncalibrated cameras together with the
affine invariant property. We presented a telerobotic system based on a complete kinematic
mapping from operator hand motion to slave robot joint space. In the evaluation the experi-
mental analysis indicated that the average static error in a workspace of 1 m is 0.3 mm (0.6 mm
upper bound), that of the dynamic errors is 3 mm (5 mm upper bound), and 3D errors were
contained in a box of 6 x 6 x 6 mm if motion speed is below 0.5 mps. Analysis of delays in the
proposed telerobotic real-time control scheme indicated that the dominant delays are due to the
mechanical system and the network.
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