
Minimization of Memory and Network
Contention for Accessing Arbitrary Data

Patterns in SIMD Systems

Mayez A. Al-Mouhamed∗ and Steven S. Seiden†

Abstract

Finding general XOR-schemes to minimize memory and network contention for ac-
cessing arrays with arbitrary sets of data templates is presented. A combined XOR-
matrix is proposed together with a necessary and sufficient condition for conflict-free
access. We present a new characterization of the baseline network. Finding an XOR-
matrix for combined templates is shown to be an NP-complete problem. A heuristic
is proposed for finding XOR-matrices by determining the constraints of each template-
matrix and solving a set of simultaneous equations for each row. Evaluation shows
significant reduction of memory and network contention compared to interleaving and
to static row-column-diagonals storage.

Keywords: Memory Conflicts, multistage networks, NP-completeness, par-
allel memories, storage schemes.

1 Introduction

Non-uniform access to parallel memories and network contention are responsible for significant
performance degradation [11, 2], especially in SIMD systems. The use of a prime number of
memories [11] significantly outperforms interleaving but requires expensive [9] address transla-
tion. By restricting the type of access to some fixed data patterns, conflict-free access [6, 3, 10]
to rows, columns, and diagonals of arrays were proposed on the basis of row rotations. The
drawbacks are the dependence on the array size, the number of memories, and the complex
address transformation.

Based on skew storage, XOR-schemes were proposed [6, 7, 14] for eliminating most of the
above problems. In [7] a necessary and sufficient condition for conflict-free memory access of
a given template is presented but no methods were proposed for finding the XOR-scheme for
composite templates.

Because of the excessive cost of crossbar switches, multistage networks such as the Benes [4],
Omega [10] and, Baseline [13] were analyzed with respect to their permissible permutations.

∗Computer Engineering Department, College of Computer Science and Engineering, King Fahd University
of Petroleum and Minerals, Dhahran 31261, Saudi Arabia. Email: mayez@ccse.kfupm.edu.sa

†Department of Information and Computer Science, University of California, Irvine, CA 92717.

1

In most cases, conflict-free access to the network is obtained for some fixed data templates.
For row, column, diagonals, and square blocks, a scheme [5] based on composite linear per-
mutations was proposed for the Omega network.

While all these approaches are useful, they either: 1) treat only the parallel memory
characterization, or 2) treat memory and network aspects by considering only a reference set
of static templates. Our objective is to find a storage scheme that combines the requirements of
composite data templates and network topology in synthesizing global address transformation
so that memory and network contentions are minimized.

This paper is organized as follows. Section 2 describes the notation used. Section 3
defines templates and XOR-schemes. Characterization of the Baseline network is presented in
Section 4. The NP-completeness aspects are presented in Section 5. An algorithm for finding
XOR-schemes is presented in Section 6. Section 7 presents the performance evaluation and
Section 8 concludes this work.

2 Notation

We denote abstract objects such as vector spaces and templates using capital cursive letters,
i.e. the vector space V . Sets are denoted using capital italic letters, i.e. the set S. Integers and
vectors are denoted using small italic letters. The binary representation of a d bit integer x is
xd−1 . . . x1x0. We can identify the set of integers in the range [0 : 2d−1] with the d dimensional
vector space over Z2, the integers modulo 2. Addition corresponds to logical exclusive-or
and multiplication corresponds to logical and. Adding two vectors in Zn

2 corresponds to
taking the bitwise exclusive-or.

Vectors of some vector space are linearly independent if and only if no non-zero linear
combination of them is zero. Formally, if we have a set of vectors {v0, . . . , vn−1} then they
are linearly independent if and only if the linear combination a0v0 ⊕ · · · ⊕ an−1vn−1 is zero
exactly when all ai are zero, where each ai is a scalar. The vector space Zn

2 is generated by
its canonical basis which will be denoted by {v0, . . . , vn−1}.

Let φ be a function. Then we say φ is linear if φ(x⊕ y) = φ(x)⊕ φ(y) and φ(cx) = cφ(x).
Suppose φ is a linear function φ : Zn

2 7→ Zm
2 . The function φ is represented by an m × n

matrix Φ over Z2. We apply φ to a vector x by matrix multiplication φ(x) = Φx. The upper
left-most entry of Φ is Φ0,0. We denote the ith row of Φ by Φi,∗, and the jth column of Φ by
Φ∗,j. The columns of Φ represent the values of φ on the basis vectors of Zn

2 . If vj is the jth
basis vector, Φ∗,j is the value of φ(vj). φ will be onto if and only if Φ has full rank.

Since φ produces a vector, we wish to consider how φ produces each component of that
vector. We define φi(x) to be the ith component of the vector φ(x). Or more succinctly
φ(x) = (φ0(x), . . . , φm−1(x)), where φi(x) = Φi,∗x.

Given a subset S of the basis of Zn
2 , we can create a restriction of φ to S denoted by

φS. Since the basis of Zn
2 is an ordered set, an ordering of S is imposed by the ordering

of the basis. The matrix representing the restricted function is denoted ΦS. Formally, if
S is a subset of the basis v0, . . . , vn−1 of Zn

2 , and m is the size of S, then φS is defined by
φS(x) = (φi0(x), . . . , φim−1(x)), where vij is the jth member of S. The matrix ΦS consists of
the columns Φ∗,i0 . . . Φ∗,im−1 , concatenated in that order.

2

T1 T3T2 T4

Figure 1: Example of a set of patterns

3 XOR-schemes

We wish to identify each array position (a, b) with a unique vector. The row index a can
be identified with the vector (a0, . . . , ad−1) and the column index b can be identified with
(b0, . . . , bd−1). Array position (a, b) can be uniquely identified with (a0, . . . , ad−1, b0, . . . , bd−1).
We also identify each memory unit number c with (c0, . . . , cp−1). We now define formally the
vector spaces to which we have been alluding.

We define a vector space F = Zd
2 to represent horizontal indices. We define F =

{f0, f1, . . . , fd−1} to be the canonical basis of F . We similarly define vector spaces G for
column indices and H for memory unit numbers, with canonical bases G = {g0, g1, . . . , gd−1}
and H = {h0, h1, . . . , hp−1}, respectively.

The Cartesian product of the vector spaces F and G is a new vector space V = F × G
with basis F ∪ G. Let n = 2d. We denote this combined basis as V = {v0, v1, . . . , vn−1},
where v0 = f0, v1 = f1, vd = g0 etc. . . . This vector space is isomorphic to Zn

2 . Any position
(a, b) in the array is uniquely associated with a vector in V . This vector can be expressed as
a linear combination of the basis elements a0v0 ⊕ · · · ⊕ ad−1vd−1 ⊕ b0vd ⊕ · · · ⊕ bd−1vn−1. We
refer to the elements of the basis V using either f ’s and g’s, or v’s, depending on which is
notationally convenient.

A template is a pattern on array element locations. Templates are used to describe the
access patterns of an algorithm. The problem is to find a scheme that allows conflict-free access
to all instances of a template. XOR-schemes can handle a large class of useful templates, such
as rows, columns, square, blocks, and power-of-2 strides.

A template Ti is defined by its basis Ti, which is a non-empty subset of V . All template
bases are of size p. Figure 1 shows some templates. Let p and d both be 3. Our basis is
V = {f0, f1, f2, g0, g1}, or alternatively V = {v0, v1, . . . , v4}. Template T1 is defined by its
basis T1 = {f0, f1, f2}. Every element in a template instance is a linear combination:

a0f0 ⊕ a1f1 ⊕ a2f2 ⊕ b0g0 ⊕ b1g1

where the b’s are constant, and the a’s are allowed to vary. Similarly, templates T2, T3, and
T4 have bases T2 = {f0, f1, g1}, T3 = {f1, f2, g0}, and T4 = {f0, f1, g0}, respectively.

An XOR-scheme is a linear function φ : F × G 7→ H, that is a p × n matrix Φ. An
XOR-scheme φ allows conflict-free access to Ti if and only if φ maps each linear combination

3

of Ti to a unique element of H [7]. In other words, φTi must be onto. For conflict-free access
to all templates, φTi must be onto for all Ti.

4 The Baseline Network

We consider SIMD systems in which the PE’s are interconnected to the memories by using a
Baseline network as the data-alignment system. We study how a message passes through a p-
stage Baseline network from a given source to a given destination. To simplify the notation we
consider the indirect Baseline IBp = Eσ2Eσ3 . . . EσpE and find the position of the message
at the ith stage, where the sub-shuffle σi(x) is defined by σi(xp−1, . . . , xi, xi−1, xi−2, . . . , x0) =
xp−1, . . . , xi, xi−2, . . . , x0, xi−1.

Theorem 4.1 Given a IBp network, let posi(s, d) be the position of a message passing from
input s to destination d after the ith stage. Then posi(s, d) = sp−1 . . . sidp−1 . . . dp−i where dj

is the jth bit of d, and sj is the jth bit of s.

Proof The proof is by induction. The base case is pos0(s, d) = sp−1 . . . s0. We assume that
posi(s, d) = sp−1 . . . sidp−1 . . . dp−i and we show that posi+1(s, d) = sp−1 . . . si+1dp−1 . . . dp−i−1

Since the message enters stage (i+1) following a sub-shuffle σi+1, the position of the message
at the entry of stage (i + 1) is given by:

σi+1(posi(s, d)) = sp−1 . . . si+1dp−1 . . . dp−isi

The message exits stage (i + 1) at its upper (dp−i−1 = 0) or lower (dp−i−1 = 1) output, de-
pending on the routing bit dp−i−1. The position of the message at the output of stage (i + 1)
is then posi+1(s, d) = sp−1 . . . si+1dp−1 . . . dp−idp−i−1.

4.1 Linear Permutations

Let φ be a p× p linear permutation matrix from Zp
2 onto Zp

2 , i.e. d = φs. We wish to know if
the IBp network can perform φ. From Theorem 4.1 we find that:

posi(s, φ(s)) = (φp−i(s), . . . , φp−1(s), si, . . . , sp−1)

Since we always refer to a message going from s to φ(s), we shall abbreviate posi(s, φ(s)) to
psi(s). If Φ is the matrix of φ, the matrix of psi(s) is:




Φp−i,0 · · · Φp−i,i−1 · · · · · · Φp−i,p−1
...

...
...

Φp−1,0 · · · Φp−1,i−1 · · · · · · Φp−1,p−1

0 · · · 0 1 · · · 0
...

...
...

...
0 · · · 0 0 · · · 1




(1)

4

We define:

Φ[i] =




Φp−i,0 · · · Φp−i,i−1
...

...
Φp−1,0 · · · Φp−1,i−1


 (2)

Note that Φ[i] is just the i× i sub-matrix in the upper-left corner of matrix (1), which is the
i× i sub-matrix in the lower-left of Φ.

Theorem 4.2 psi is onto if and only if Φ[i] is non-singular.

Proof psi will be onto if and only if its matrix (1) is non-singular. The matrix (1) contains
the identity matrix in its lower-right hand corner. We can cancel any entry Φj,k = 1 where
p−i ≤ j ≤ p−1 and 0 ≤ k < i, by adding row k to row j. This leaves the identity in the lower
right quadrant, matrix (2) in the upper-left quadrant, and zeros in the remaining quadrants.
Therefore, the non-singularity of (1) depends on its upper-left quadrant, which is matrix (2).

We now characterize linear permutations φ which the inverted baseline network can per-
form. We say that an p × p matrix Φ is sub-non-singular if and only if Φ[i] is non-singular
for 1 ≤ i ≤ p− 1.

Theorem 4.3 A linear permutation φ on Zp
2 can be performed by IBp, if and only if its

matrix Φ is sub-non-singular.

Proof If two messages are mapped to the same output of a single switch in the network,
the permutation will fail. If some sub-matrix Φ[i] is singular, then psi is not onto, and two
messages will be mapped to the same output of some switch in the ith stage.

4.2 Sub-Non-Singular Matrices

We find the number of p × p matrices M defined over Z2 which are sub-non-singular. Let
us denote the number of p× p matrices which are sub-non-singular by Sp. It is obvious that
S1 = 1 and there are S2 = 4 matrices which are sub-non-singular:

(
0 1
1 0

) (
1 1
1 0

) (
0 1
1 1

) (
1 0
1 1

)

Theorem 4.4 Let Sp be the number of sub-non-singular p× p matrices over Z2. Then Sp =
2(p−1)p.

Proof Let M be a p × p matrix so that M [i] is sub-non-singular. Using row and column
operations, we can transform M such that M [i] is the mirror identity matrix:




...
...

bi−1 bi−2 · · · b0 c · · ·
0 0 · · · 1 a0
...

...
...

1 0 · · · 0 ai−1 · · ·




5

We denote the entry in the upper-right corner as c, the entries below c as a0, . . . , ai−1, and
the entries to the left of c as b0, . . . , bi−1. By examining these quantities, we can determine
whether M [i + 1] is non-singular. The fact that M [i] is the mirror-identity makes it easy to
cancel the ai’s and bi’s using row and column operations. M [i+1] will be non-singular, if and
only if, after these operations c = 1. If aj = 1, add the column containing bj to column (i−1)
of M . This changes aj to zero. If bj = 1 and we add the row containing aj to row (p− 1− i)
of M , this changes bj to zero. These operations affect c as follows: 1) there is no change to c
if either aj = bj = 0 or aj ⊕ bj = 1 and, 2) c is flipped if aj = bj = 1.

The non-singularity of M [i + 1] will therefore depend on two factors: the initial value of
c, and the number of flips. There are 3i ways to get 0 flips because there are three ways each
a-b pair can be assigned without causing a flip. There are i3i−1 ways we can get one flip, and
i(i−1)3i−2/2 ways we can get two flips. In general, there are

(
i
j

)
3i−j ways we can get j flips. If

c is initially zero, M [i+1] is non-singular exactly when there are an odd number of flips. This

can happen in
∑

0≤j≤i,oddi

(
i
j

)
3i−j different ways. If c is initially one, M [i + 1] is non-singular

exactly when there are an even number of flips. This happens in
∑

0≤j≤i,eveni

(
i
j

)
3i−j ways.

The total number of ways is simply
∑i

j=0

(
i
j

)
3i−j.

It can be proved [1] that all 4i values of a’s and b’s are possible. If there are Si ways

that M [i] can be non-singular, then there are Si
∑i

j=0

(
i
j

)
3i−j = Si(3 + 1)i = Si4

i ways that

M [i+1] can be non-singular. Combining this with our value for S1 = 1 we have Sp+1 = Sp4
p.

Since Sp is always a power of four, let sp = log4 Sp. Then s0 = 0 and sp+1 = sp + p. This
gives sp =

∑p−1
i=0 i = (p− 1)p/2. Therefore, we have Sp = 4(p−1)p/2 = 2(p−1)p.

Note that the proof of this theorem implies a Θ(p3) algorithm for determining the sub-non-
singularity of a matrix. The best known algorithm for determining non-singularity takes more
than Θ(n2) time. Now we compare the number of non-singular matrices to matrices.

Theorem 4.5 The number of p× p matrices that are non-singular is Up =
∏p

i=1(2
p− 2i−1).

Corollary 4.1 The ratio of p× p non-singular matrices to matrices is:

Vp =
p∏

i=1

2i − 1

2i
=

1

2
· 3

4
· · · 2

p − 1

2p
(3)

Furthermore, Vp converges as p goes to infinity.

Proof of Theorem 4.5 and corollary 4.1 can be found in [1].

5 XOR-schemes and the Network

Suppose φ is an XOR-scheme for a set of templates. φ is network-contention-free if and only
if all template instances of all templates are mapped by φ in such a way that the network can
perform the mappings.

Theorem 5.1 Let φ be an XOR-scheme for a template set T = {T1, . . . , Tt}, with matrix Φ.
Then φ is conflict-free and network-contention-free for the Indirect Baseline network if and
only if ΦTi is sub-non-singular for all i.

6

v6

v5

v4

v2

v1

v0

v3

X Y

1
1

0
1

1
1

1

0
1

0
1

f01
0

1
1

0

0
1

0

0
1

0

f1 f2

g1

g0

0

(a) (b)

0

Figure 2: Examples of SNSS with p=2

Proof Consider φ restricted to some template Ti. Then this restricted φ must be a linear
permutation, if it is to be conflict-free. The matrix ΦTi must therefore be sub-non-singular.
So ΦTi must be sub-non-singular for all i.

5.1 NP-Completeness

We show that the problem of finding an XOR-scheme which allows conflict-free and network-
contention-free access for a given set of templates is tractable for p = 2, but NP-complete
for p > 2. We consider the following abstract problem: 1) a vector space Z = Zp

2 , 2)
a set of n variables V = {vi | 0 ≤ i ≤ n − 1} and, 3) a set T of p-tuples of variables,
T = {(vi0 , . . . , vip−1) | 0 ≤ ij ≤ n− 1}. The vectors assigned to the variables of a tuple form

the columns of the p× p matrix. For example, if (v0, v1) is a tuple and v0 =
(

0
1

)
and v1 =

(
1
1

)
,

then the matrix of this tuple is
(

01
11

)
.

We want to find an assignment of vectors in Z such that the matrices corresponding to
all tuples are sub-non-singular. We call this problem Sub-Non-Singular Satisfaction (SNSS).

This problem can easily be solved for p = 2. A 2 × 2 matrix is sub-non-singular only
if its lower left entry is non-zero. Let X be the set of vertices that appear first in some
tuples, and thus can be assigned only two values

(
0
1

)
or

(
1
1

)
. Let Y be the set of vertices that

appear second which can be assigned three values
(

0
1

)
,

(
1
0

)
or

(
1
1

)
. The remaining vertices can

take any values. Two vertices of the same tuple must be assigned different vectors, or the
corresponding matrix will be singular. We build a conflict graph to this problem. All edges
will be between two vertices in X, or between a vertex in X and one in Y . We two-color the
vertices in the graph. We call this algorithm XIB2.

Suppose we have variables v0, . . . , v6 and T1 = (v0, v4), T2 = (v1, v5), T3 = (v2, v5), T4 =
(v3, v6), T5 = (v0, v1), T6 = (v1, v2), T7 = (v2, v3), and T8 = (v0, v3). Sets X = {v0, v1, v2, v3}
and Y = {v4, v5, v6}. The conflict graph of this problem and one possible coloring are shown
in Figure 2-a. It is proved [1] that SNSS is NP-hard for p=3. In general, SNSS corresponds
to 2p−1-coloring which is an NP-complete problem for p ≥ 3.

7

6 Heuristic Approach to SNSS

We present an algorithm for finding an XOR-scheme for a given template set. The idea is
to construct the matrix of the XOR-scheme one row at a time, from the bottom up. We use
algorithm XIB2 along with the proof of Theorem 4.4. Suppose p = 3 and we are given the
templates shown in Figure 1. The bases of these templates are given in Section 3.

We construct the bottom two rows of Φ using algorithm XIB2. For each ΦTi , the lower-left
2× 2 sub-matrix is to be sub-non-singular. The reduced template bases are T ′

1 = T ′
2 = T ′

4 =
{f0, f1} and T ′

3 = {f1, f2}. The sets of vectors that appear first and second in some template
bases are X = {f0, f1} and Y = {f2}, respectively. The conflict graph and one possible
coloring are shown in Figure 2-b. We let x0, . . . , x4 be the values in the top row:

Φ =




f0 f1 f2 g0 g1

x0 x1 x2 x3 x4

0 1 1 0 0
1 1 0 0 0




We must now ensure that each ΦTi is non-singular. The first step is to get the mirror identity
matrix in the lower right 2× 2 sub-matrix, using only row operations. Using the notation of
Theorem 4.4, each ΦTi is non-singular if c = 1 and the number of pairs ai = bi = 1 is even, or
if c = 0 and the number of pairs ai = bi = 1 is odd. We can express this as linear equations
over Z2 which gives x0 ⊕ x1 ⊕ x2 = 1 for ΦT1 , x4 = 1 for ΦT2 , and x3 = 1 for ΦT3 and ΦT4 .
One solution for this system of simultaneous equations is x1 = x3 = x4 = 1 and x1 = x2 = 0.
The final storage matrix is:

Φ =




f0 f1 f2 g0 g1

1 0 0 1 1
0 1 1 0 0
1 1 0 0 0


 (4)

The permutations corresponding to ΦT1 , ΦT2 , and ΦT3 map (0, 1, . . . , 7) into (0, 2, 3, 1, 5, 7, 6, 4),
(0, 4, 3, 7, 5, 1, 6, 2), and (0, 4, 2, 6, 3, 7, 1, 5), respectively. Note that ΦT2 = ΦT4 . All these per-
mutations are memory and network conflict-free with respect to an IB3 network.

In general, the algorithm for finding a SNSS storage matrix is:

1. Determine the bottom two rows of the matrix using algorithm XIB2.

2. Create each remaining row, working from the bottom up.
For i in 2 to p− 1 loop:

(a) For each template Tj do:

i. Obtain a matrix Φ̂Tj by reducing the matrix ΦTj so that it has the mirror
identity matrix in its lower-left corner, using only row operations. Operations
do not affect the matrix Φ.

8

ii. Use the ith column of this matrix to determine the equation associated with
this template. Let the basis of Tj be v`0 , . . . , v`p−1 , and yk = Φ̂

Tj

p−k−1,`i
. Then

the equation is:

x`i
⊕

i−1⊕

k=0

x`k
yk = 1 (5)

(b) Solve the system of simultaneous equations. Assign entry Φp−i−1,k the value xk.

We call this algorithm XIB. Note that we do not have to row reduce from scratch each time we
perform Step i. We can directly row reduce this partially reduced matrix and reduce the time
complexity of this step from O(p3) to O(p2). The complexity of algorithm XIB is O(ptn2),
where t, 2p, and n, are the number of templates, the number of processors, and the number
of distinct vectors of the template bases, respectively.

6.1 Approximate Solutions

Algorithm XIB fails if the sub-graph X cannot be two-colored. To find approximate two-
coloring we assume that each template has a weight of 1. The problem is to find a two-
coloring of X which violates the least number of edges. Garey, Johnson, and Stockmeyer [8]
have shown this problem to be NP-complete. Algorithm XIB fails if a solution to the set of
equations cannot be found. The problem is to find an Approximate Linear Solution (ALS) to
the equations, for which the sum of the weights is minimized.

Theorem 6.1 Approximate Linear Solution is NP-hard.

Proof We can use an algorithm for ALS to solve the problem of finding an optimal ap-
proximate two-coloring, which is NP-complete [8]. Suppose we are given an arbitrary graph
G, and we wish to find an approximate two-coloring which violates the minimum number of
edges. In Z2, for each vertex vi of G we create a variable vi. For each edge (vi, vj), we create
an equation vi ⊕ vj = 1 and give it weight 1. It is easily seen that an optimal approximate
solution to the resulting system of equations corresponds directly to an optimal approximate
two-coloring of G.

If contention occurs at one stage for a given ΦT , then the inputs of each switch of that
stage must be serialized, i.e. its cost is two. If contention occurs at c stages the cost is 2c.
Contention will occur at stage i if and only if the rank(ΦT [i]) = rank(ΦT [i− 1]). We define
rank(ΦT [0]) = 0. Let Ci = 1 if rank(ΦT [i]) > rank(ΦT [i − 1]), and Ci = 0 otherwise. The
subrank of ΦT is then subrank(M) =

∑p
i=1 Ci. The cost of an XOR-scheme Φ will be:

cost(Φ) =
t∑

i=1

wi2
p−subrank(ΦTi) (6)

In particular, the cost of an XOR-scheme that is network-contention-free will be
∑

wi. Algo-
rithm XIB is performed repeatedly, until an XOR scheme within pre-set performance param-
eters is found, or an iteration limit is reached. In the later case, the best XOR-scheme found
is used. We call this randomized algorithm RXIB.

9

Figure 3: Percentage of optimum cases found

7 Evaluation

Testing RXIB is performed as follows. The number of templates t ranges from 3 to 12, the
weight was set to 1, and p ranges from 3 to 6, where 2p is the number of processors. One
thousand cases were generated for each combination of these parameters.

For each value of t and p, the left and right entries of Figure 3 and 4 show 1) the percentage
of cases where an optimum solution was found and, 2) the average time increasing over
the optimum access time. Our scheme finds near optimum solutions for small numbers of
templates and moderate numbers of processors. For the cases where the optimum solution
is not found, the average deviation from the optimum access time is moderate in all studied
cases. The degradation smoothly increases with increasing the number of templates or the
number of processors.

Algorithm XIB found a memory and network-contention free scheme when the set of
templates is formed by power-of-2 strides. We compare RXIB to row-major interleaving (INT)
and to a static-storage-scheme (SSS) that consists of the row, column, and both diagonals [5].
In the case of arbitrary templates, the INT scheme causes the average access time to be 6, 9.37,
13.59, and 18.64 fold the optimum access time for 23, 24, 25, and 26 processors, respectively.
Similarly, the SSS scheme causes the average access time to be 4.23, 5.31, 5.79, and 5.84 fold
the optimum access time for the same number of processors. RXIB significantly outperforms
both INT and SSS under the studied conditions.

In the following we compare with other approaches. In [7], conflict-free access to parallel
memories based on full-rank matrix transformations was proposed. However, the network
aspects were not considered. Also, no method was proposed for finding the XOR-scheme
in the case of composite templates. The idea of using non-singular matrix transformation
has also been reported in [14] for vector processors. We proposed an efficient approach for
combining data templates into a single storage matrix for which the condition to conflict-free
access can be easily formulated. While it is simple to find the XOR-matrix of one template,
we proved that finding a combined XOR-scheme is an NP-complete problem.

10

Figure 4: Percentage of time increasing over optimum access time

Where the network aspects are considered, the problem is restricted to finding a storage
scheme for a well defined set of templates [5, 12]. For example, minimizing memory and
network contention for a subset of rows, columns, diagonals, and square blocks was proposed
in [5]. In [12], network contention has been analyzed with respect to conflict-free access
to a fixed set of strides. Our method has the advantage of being a general approach that
incorporates the constraints of conflict-free access to arbitrary sets of templates with respect
to memory and network.

Considering other networks such as Omega, Cube, and Delta, the position of the message
at some stage can always be expressed as a combination of bits of the source and destination.
Therefore, the results presented here are also applicable to other multistage networks.

8 Conclusion

We investigated the problem of finding general XOR-schemes to dynamically minimize mem-
ory and network contention in accessing arrays with arbitrary data templates in SIMD com-
puters.

Characterization of linear permutations for the Baseline network was presented by using
non-singular boolean matrices which guarantee conflict-free access to both memory and net-
works. We proved that finding the XOR-matrix for accessing arbitrary data templates is an
NP-complete problem. To minimize memory and network contention, a heuristic algorithm
was proposed for finding storage schemes for accessing an arbitrary set of data templates.
Evaluation shows that the proposed XOR-schemes significantly reduce the memory and net-
work contention compared to interleaving and other static storages.

The contributions of this work are: 1) a general approach for finding combined storage
schemes, 2) characterization of necessary and sufficient conditions for conflict free-access of
memory and network and, 3) an efficient algorithm for automating the process of finding the
combined XOR-matrix.

11

9 acknowledgment

Thanks to the College of Computer Science and Engineering, King Fahd University of Petroleum
and Minerals, Dhahran, Saudi Arabia, for granting the sabbatical leave of the first author.
Thanks to Professors Daniel Hirschberg and Lubomir Bic, Department of Information and
Computer Science, University of California, Irvine, for listening critically to the various proofs
and for their remarks concerning the presentation of this paper.

References

[1] M. Al-Mouhamed and S. Seiden. Minimization of memory and network contention for
accessing arbitrary data patterns in SIMD systems. University of California Irvine,
ICS-UCI Technical report 93-29, Jun 1993.

[2] D. Bailey. Vector computer memory bank contentions. IEEE Trans. on Computers,
C-36:293–298, Mar 1987.

[3] K. Batcher. The multidimensional access memory in STARAN. IEEE Trans. on Com-
puters, C-26:174–177, Feb 1977.

[4] V. E. Benes. Mathematical Theory of Connecting Networks and Telephone Traffic. Aca-
demic Press, New York, 1965.

[5] R. V. Boppana and C. S. Raghavendra. Efficient storage schemes for arbitrary size
square matrices in parallel processors with shuffle-exchange networks. In Proceedings of
the International Conference on Parallel Processing, pages 365–368, 1991.

[6] P. Budnik and D. Kuck. The organization and use of parallel memories. IEEE Trans.
on Computers, C-20, No 12:1566–1569, Dec 1971.

[7] J. M. Jalby W. Frailong and J. Lenfant. XOR-schemes: A flexible data organization in
parallel memories. In Proceedings of the International Conference on Parallel Processing,
pages 276–283, 1985.

[8] M. R. Garey, D. S. Johnson, and Stockmeyer L. Some simplified NP-complete graph
problems. Theoretical Computer Science, 2:237–267, 1976.

[9] D. T. Harper III. Block, multistride vector, and FFT accesses in parallel memory systems.
IEEE Trans. on Parallel and Distributed Systems, 2, No 1:43–51, Jan 1991.

[10] D. Lawrie. Access and alignment of data in an array processor. IEEE Trans. on Com-
puters, C-24, No 12:1145–1155, Dec 1975.

[11] D. Lawrie and C.R. Vora. The prime memory system for array accesses. IEEE Trans.
on Computers, C-31, 12:435–442, May 1982.

12

[12] A. Norton and E. Melton. A class of boolean linear transformations for conflict-free
power-of-two stride access. Proceedings of the International Conference on Parallel Pro-
cessing, pages 247–254, 1987.

[13] H. J. Siegel. Interconnection networks for SIMD machines. Computer, 12:57–67, Jun
1979.

[14] G. S. Sohi. High-bandwidth interleaved memories for vector processors–A simulation
study. IEEE Trans. on Computers, 42, No 1:34–44, Jan 1993.

13

