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A Multi-Threaded Distributed Telerobotic
Framework

Mayez A. Al-Mouhamed, Onur Toker, and Asif Iqbal,

Abstract— A reliable real-time client-server telerobotic system
is proposed using aDistributed Component Frameworkto promote
software reusability, ease of extensibility, debugging, and data
encapsulation. .NET remoting is used for automatic handling of
the network resources and data transfer while isolating the com-
ponents from network protocol issues. A client-server transfer of
live stereo video provides the operator 3D views of the slave scene
with augmented reality (AR) framework and services. Overall
distributed framework and design independence improves the
portability and modularity of the proposed telerobotic system.
A multi-threaded execution is proposed for streaming of force,
command, and for the transfer of live stereo video data. The
proposed framework provides a useful integrated software and
hardware environment to enhance man-machine interactions
using stereo visualization and AR in real-time telerobotic systems.

Index Terms— Distributed application framework, reflected
force feedback, man-machine interface, 3D visualization, teler-
obotics.

I. I NTRODUCTION

ROBOTIC technology [1], [2] is enhancing surgery
through improved precision, stability, and dexterity.

Depth perception and haptic sensing [3], [4], [5] are needed
at the surgeon’s console. Needed media data have increasing
sampling rate which requires tradeoffs between quality and
sampling frequency. A central problem is how to design a
man-machine interface for the implementation of effective
telerobotic systems that extends human manipulative skills
over a distance. For this a real-time framework that efficiently
and pervasively integrates physical robot, sensors, software,
and hardware is highly desirable.

Internet telerobots [6] (ITRs) can be driven by anyone
and include robots that navigate undersea, drive on Mars,
visit museums, float in blimps, handle protein crystals, etc.
The study of ITRs enabled the assessment of communication
delays and the analysis of supervisory control.

A WWW remote supervisory control architecture combin-
ing computer network in an autonomous mobile robot with
collision avoidance and path planning is proposed in [7].
Sheridan[8] defines a model of supervisory control. The
operator provides system commands to a human interactive
computer that controls a task interactive computer which
translates higher level goals into a set of commands.
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Hu et. al.[9] proposed JAVA for network interfacing and
video as well as the use of C++ for the robot controller
for Internet-based telerobotic system. TCP/IP sockets [10] is
one highly reliable method for sending information over the
Internet using VxWorks real-time multitasking system. By
prioritizing the tasks the user can control the order of task
execution and the amount of CPU time allocated to each task.

A component-based distributed control for Internet tele-
operations using DCOM and JAVA is proposed in [11] to
explore the foot of a volcano using a mobile robot. JAVA
is used for database connectivity and path planner GUI and
DCOM for network connectivity. JAVA virtual machine (MS
VM) is proposed to bridge the gap between JAVA and DCOM.
The robot position feedback is provided by two paths, one
from the GPS (Global Positioning System) data and the second
one from the visual feedback.

A DCOM-based distributed component system [12] is
proposed to integrate web technologies and telerobotics to-
gether with environmental constraints. The main feature is
a DCOM/ActiveX based supervisory control server operating
over the Internet. Operator views 3-D model, control paths,
and issue commands through supervisory control. Ho [13]
developed an Internet based telerobotic system using JAVA
and VRML. JAVA-based frame is used as grabbing software
to move an image from camera to main-memory.

A CORBA-based distributed robot object model [14] is
proposed for mobile robotics. Object communication uses
timely leased communication patterns associated with the
availability of some resources. A distributed perception strat-
egy [15] is proposed for internet robotics using the perception-
motion process (behavior) and task planning (mission). The
objective is a robot that can find neighboring Internet sen-
sors for improved reliability. For this, behavioral objects
are transported via Internet to favor local interaction which
improves stability and synchronization when Internet becomes
unreliable. A distributed robot architecture [16] is proposed
for modularity for integrating learning aspects in a mobile
robot. The robot functions are designed as hardware agents
whose resources and notifications are managed by an agent
manager. Behavioral functions are flexible programs that are
created by task knowledge learning and managed by an agent
manger. An environment model is used for tasks, skills,
and objects. Distributed objects communicate using CORBA
publish-subscribe mechanism.

The classical remote procedure call is redesigned for
resilience, transparency, and event-driven notification [17].
CORBA is used to connect objects across heterogenous pro-
cessing nodes. Using CORBA event service two interaction
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models are proposed: (1) an event channel be operated using
proxies for client and server for communication with mul-
tiple clients where active servers push events on registered
clients, or (2) a notification scheme where a client dynamically
subscribes to a set of events which define event priority and
lifetime.

A subsumptive, distributed, vision-based robotic architec-
ture is proposed in [18]. To improve system fault tolerance
different behavioral strategies are coded into multiple loops
(fine-to-coarse) where each loop adds to the competence level
of the loops below. The loops are independently processed
and their results ranked by an arbitrator using application-
based criteria to decide which loop should instantly control the
robot. The decoupling of video processing and communication
is similar to proposed multithreaded execution for concurrent
frame acquisition and transmission.

We propose a reliable, real-time, telerobotic framework us-
ing object-oriented distributed components technology. .NET
remoting technology is used to allow a software component
to be developed in one computer and used in many different
computers. All updates on an instance of a component (object)
can be seen in all connected computers as if it is a local
component. Stereo vision greatly enhances the operator’s effi-
ciency but imposes severe requirements in terms of bandwidth
to transfer real-time video data in a client-server environment.
A client-server framework for grabbing and live video transfer
is proposed.

The organization of paper is as follows. In Section II the
robotic aspects of the multi-threaded distributed framework
are presented. In Section III the software system design is
presented. In Section IV the live stereo video transfer is
presented. In Section V the results are briefly presented. In
Section VI a comparison to others is presented. We conclude
in Section VII.

II. A MULTI -THREADED DISTRIBUTED FRAMEWORK

The aim is to extend natural eye-hand motion coordina-
tion through a computer network while preserving human
manipulative dexterity in scaled working environments. The
objective is to develop a multi-disciplinary telerobotic research
environment integrating motion, vision, and haptic senses
to experience telerobotic system interactions, man-machine
interfacing, and computer aided teleoperation (CAT).

We present a Multi-Threaded Distributed Framework
(MTDF) for Telerobotics. The proposed framework consists
of components and patterns that establish how components
interact with each other. The server station components (Sec-
tion III-A) are (1) a slave arm components that consist of a
robot PUMA (SPUMA) and a Force (SF ) components, and
(2) a video (SV ) component (Section IV). The client station
components (Section III-B) are (1) a master arm component
that consists of a Motion (CM ) and a Force (CF ) compo-
nents, and (2) a video component (CV ). All client (server)
components are concurrently run as independent threads on
the client (server) computer. For example, one pattern consists
of real-time threadSV (also SF and CM ) that is logically
interconnected toCV (alsoCF andSPUMA) to which it sends
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Fig. 1. A layered representation of client-server telerobotic system

data through the network. A layered representation of proposed
client-server telerobotic system is shown in Figure 1. In the
following we present the robotic aspects of the proposedMulti-
Threaded Distributed Framework(MTDF).

1) Server motion coordination:The kinematics of the slave
arm is represented by means of three frames: (1) a fixed world
frame (Rw) at arm origin, (2) an effector frame (Re), and
(3) a user defined tool frame (Rt). The controllable frame
Re is represented by its3 × 1 position vector (Ew(θ)) and
its (3 × 3) orientation matrix (Me

w(θ)), whereθ is the slave
arm joint vector andw refers toRw. The tool frameRt is
defined by its position vectorTt and its orientation matrixM t

e

of frame Rt with respect to frameRe. The position of the
tool point is defined byTw = Ew + Me

w(θ)M t
eTt. The slave

station receives a command to translate the tool frameRt by
∆Tw and to rotate it by∆Mt. The operator motion can be
efficiently mapped onto the tool frame when the translation
is specified in tool frame, i.e.∆Tt. The new arm controllable
position vector is:

∆Ew = M t
w(I −∆Mt)Tt +

{
∆Tw Operator-tool
M t

w∆Tt Operator-world
(1)

where M t
w = Me

wM t
e. The new effector orientation ma-

trix (controllable) becomes∆Me = M t
e∆MtM

e
t . To avoid

cumulative errors in the above equation Gram-Schmidt or-
thogonalization [19] is used to guarantee that the columns of
∆Me represent unit vectors that are orthogonal. The PUMA
reads current joint vectorθ and computes effector position
Ew(θ) and orientationMe

w(θ). The target effector position and
orientation areE+

w = Ew(θ)+∆Ew andMe+
w = Me

w(θ)∆Me.
The inverse kinematic modelθ+ = G−1(E+

w , Me+
w ) provides

the joint vectorθ+ that moves the tool by the commanded
translation∆T and rotation∆M . θ+ is sent to the slave arm
motion controller. Incremental change in operator hand frame
Rop is superimposed on tool frameRt. For example, when
Rop is tilted the remote tool frameRt is tilted by the same
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angle.
2) Server active compliance:The force sensor consists

of two parallel platesp1 (frame Re) and p2 (frame Rs)
interconnected by three elastic links. The force sensor used
is developed by the authors [20]. The motion ofp2 with
respect top1 is measured by a (1) translation vector∆Se,
and (2) orientation matrix∆Me. The sensor structure allows
finding ∆Se and∆Me as functions of the six sensing signals.
The sensor frameRs is located betweenRe and Rt. An
external force applied to the tool causes a deflection vector
∆Te = ∆Se+(∆Me−I)M t

sTt to the tool frame origin as well
as a change∆Mt in Rt orientation as∆Mt = Ms

t ∆MM t
s .

Since M t
e = ∆MM t

s the tool deflection vector is∆Tt =
Ms

t ∆M−1∆Te.
Active Compliance (AC) control consists of converting the

measured force into an incremental motion for the slave tool.
The force (Ft) and moment (Ct) vectors are computed using
vectors∆Tt and Ms

t ∆MM t
s . Using the passive compliance

matrices for linear (Kl) and rotational (Kr) motion of the
tool we compute the forceFt = (fx, fy, fz)t = Kl∆Tt and
momentCt = (cx, cy, cz)t = Kr∆Mt vectors.Ft andCt are
used to: (1) display the reflected force feedback at the client
station, and (2) implement active compliance mechanism as a
force control strategy as shown in Section III-A.3.

3) Assistance functions:Server teleoperation assistance
functions can be activated by buttons at the client station. The
assistance functions are:

1) Relative or world mapping: operator motion is mapped
to: (1) world frame, or (2) tool frame in tool manipula-
tion tasks.

2) Floating tool mapping: operator motion is dynamically
mapped to the slave tool frame by defining the tool frame
position and orientation at some point of interest for the
task. This may greatly reduce the number of iterations
done by the operator to set up the manipulated object in
a given position and orientation.

3) Planar or linear motion: constraining some tool motion
axes to linear or planar motion and leaving the other
axes under direct operator manual control.

4) Force Control: implements active compliance by contin-
uously sensing the force exerted on the tool, evaluates
a proportional force error based on a desired force, and
converts the error into a position increment to reduce
the force error. Here the user may select setting up
active compliance over a sub-set of tool axes while other
axes are kept under position control. In this case the
selected components of computed forceFt and moment
Ct vectors are feedback as elementary tool translation
∆T = AFt and rotation∆M = BCt, whereA andB
are two3× 3 matrices that determine the selected axes.

4) Client CAT support:The client station have a set of
button-controlled teleoperation functions which are: (1) real-
time rendering of the operator motion, (2) indexing, (3) space
scalability, and (4) impedance control. In the following we
present each of these functions.

Real-time rendering of the operator motion and display of
force feedback are implemented as follows. There are two
major inputs: (1) the joint vector read from position sensors

and (2) force data coming from the remote side. Arm kine-
matic modelGM (θ) allows computing the current operator
hand position vectorX+ and orientation matrixM+, where
θ is the arm joint vector. Using last referencesX and M , it
computes the variations∆X = X+ −X and∆M = M tM+

with respect to reference. The client sends the above computed
variations to the slave arm as an incremental motion command
for the slave tool frame. The client also outputs the received
force feedback as master arm motor torques to display the
force feedback on operator hand.

The indexing function is defined as follows. In direct teleop-
eration the variation in operator hand position and orientation
(X+ − X, M−1M+) is evaluated and transmitted to server.
During indexing the system continuously sets up the reference
to current (X, M ) and disable transmission to slave arm.

The scalability function is defined as follows. The increment
in master position vector (∆X) and orientation matrix (∆M )
are scaled-down before being transmitted to the server. For this
the variation in the operator hand orientation matrix (∆M ) can
be seen as made of three euler angles, i.e.∆M = Rx(αx)
Ry(αy)Rz(αz) = Rxyz(M), whereRu is a rotation matrix
about axisu andRxyz is the product of three rotation matrices
sets for∆M . Since∆M is known, we inverse the above equa-
tion and find the three angles as(αx, αy, αz) = R−1

xyz(∆M).
Using an operator-controlled scale factors, the scale function
becomes:

(∆X, ∆M) = ((X+−X)∗s,Rxyz((R−1
xyz(∆M))∗s))) (2)

To avoid singularities, the three Euler angles are computed
for the variation in the operator orientation matrix∆M . Due to
speed of operator motion and real-time mapping, the computed
angles are small which avoids the singular area.

The impedance control is implemented as follows. The
master arm dynamics [21] determine the motor torqueτ
as τ = D(q)q̈ + C(q, q̇) + G(q), where q joint vector, q̇
joint velocity, q̈ joint acceleration,D(q) is the inertia matrix,
C(q, q̇) is the coriolis and centrifugal coefficients, andG(q) is
the gravity term. We compute termsC(q, q̇), G(q), andD(q)
which enables finding the motor torque:

τ = αq̈ + βq̇ + C(q, q̇) + G(q) + τff (3)

where termαq̈+βq̇ is generated based on the operator motion,
termsC(q, q̇) andG(q) are used to compensate for dynamic
effects and gravity, andτff is the force feedback. The overall
dynamic motion equation becomes:

τff = (D(q)− α)q̈ + βq̇ (4)

where termD(q)−α represents the reduced master arm inertia
(impedance) andβq̇ is a motion damping factor. The values of
the parametersα andβ are experimentally determined based
on a performance/stability criterion.

III. SOFTWARE SYSTEM DESIGN

A. Server side components

The server components are: (1) PUMA Component
SPUMA, (2) Force Sensor ComponentSF , and (3) Decision
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Server Component. In addition to these components, we also
have three interfaces known as (1) Proxy Robot Interface
(2) Force Sensor Interface, and (3) Decision Server Interface
which will be presented subsequent sections.

1) PUMA component:SPUMA acts as a software proxy of
the robot for which commands are issued to the component
as they are issued to the robot. Some importantpublic meth-
ods exposed bySPUMA includeConnectRobotthat connects
server to slave robot,InitializeRobotsends a program to robot
that repeatedly moves the robot in an incremental fashion.
Some properties are: (1) reading robot angles, (2) computing
the position vector and orientation Matrix of robot hand frame,
(3) setting up specification of robot tool frame, (4) setting up
the communication between server and robot, etc. The events
invoked bySPUMA include: (1) Data received from PUMA,
(2) some errors occurred with PUMA, (3) Robot moved to a
new location, and (4) PUMA status changed.

2) Force sensor component:The force sensor component
SF reads the robot wrist force sensor and creates a stream of
reflected force feedback directed to the master station.SF is
implemented as a separate thread, the priority of which can be
adjusted during runtime to allow for the management of CPU
usage. In .NET remoting technology, events can be issued from
one station and received in another, i.e. automatic transfer of
some data. Events do contain certain parameters, for example
MouseClick(3,5) event indicates a mouse click event at po-
sition at 3 and 5. Here a new instance ofSF creates a
new thread and waits until the sensing is triggered. After the
reading has started, it informs the parent application (PA) of
the availability of a new force packet. The PA uses an event
handler at the higher level of application hierarchy. The event
directly transfers the force information to the client. Similarly
the component also providesStopReading()function to abort
the force sensing thread. Sensing can be triggered again using
StartReading().

There are three public properties exposed bySF . The
SensorThreadPrioritysets the priority as one out of five
OS levels. TheTimerValuesets a time interval between two
successive readings. TheThresholdValueactivates the force
event only when there is noticeable change in one of the force
values.

3) Decision server component:DecisionServeris a com-
ponent that provides a supervisory control such as active
compliance, impedance control, and assistance functions. The
DecisionServer is a server abstraction layer to allow: (1) active
compliance control, (2) supervisory commands like space
scalability and indexing. A four-layer hierarchy including
DecisionServer is shown in Figure 2, where physical layer
refers to robot and force and lowest layer refers to the user
interaction level.

4) Server side interfaces and .NET remoting:Proposed
telerobotics is based on object oriented distributed application.
The Decision server interface allows the client to receive the
events fired by the DecisionServer instance on server side. An
interface is a set carrying definitions of public methods and
properties. It serves as a contract [22] for any component that
implements this interface. Any client that accesses or executes
the methods of a component on the server needs an access to
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Fig. 2. Component hierarchy on the server side

the server assembly or component. By giving a reference to
an interface that the server component implements, we can
hide the actual component or assembly from the client which
improves overall system security.

To access references to both the PUMA and Force Sensor
components, two interfaces are defined:IProxyRobot and
IForceSensor. Further we define another interfaceIDecision-
Serverwhich inherits both theIProxyRobotand IForceSensor
interfaces. Using this approach we are able to define a unified
set of public members (methods, properties and events) that
are required to be implemented in the form of DecisionServer
component on the server side. The integrated scheme incorpo-
rating all the components on server side is shown in Figure 3.

.NET remoting is used to publish an instance of Decision-
Server component on the network which is uniquely identified
to potential clients. A client can get a reference to this
instance through anIDecisionServerinterface. .NET remoting
enables accessing objects using SOAP (Simple Object Access
Protocol). Any object in the distributed application can be
referenced using the above scheme as if it was available on
the same machine.

B. Client side components

The client contains theIDecisionServerinterface that allows
referencing the server side component through .NET remoting
as shown in Figure 4. In addition toIDecisionServer, there are
instances of .NET remoting and client Graphic User Interface
(GUI).

1) Decision server interface:The DecisionServer is in-
herited from IDecisionServer and in turn from IProxyRobot
and IForceSensor interfaces. .NET remoting is responsible for
making socket calls to the client and we may choose either
network protocol for these requests.

DecisionServer provides a mechanism for remote execution
of any event handler program. The client assembly must be
known to the DecisionServer which violates object oriented
philosophy and reduces security. For thisShim Classesare
used as agents to forward DecisionServer events over to the
IDecisionServerinterface. Shim classes are thin assemblies
visible to both the server and the client. DecisionServer
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invokes the event which is received by an event handler hooked
by shim classes. This event handler then calls the event handler
of the client (IDecisionServer).

Care must be taken while receiving events from the server
and writing event handlers for them because these are syn-
chronous events which means that the thread that is invoking
the event on the server side will be blocked until all the event
handlers for this event are executed. To send a single TCP
packet, eventually a system call is needed, which is an atomic
operation, e.g. it cannot be pre-empted due to a higher priority
packet. So manipulating threads during the invocation of the
events may cause deadlocks in the distributed client-server
environment.

2) MasterArm component:Public methods used by Mas-
terArm are used to: (1) start and stop reading the master
arm position (Inherited fromForce component), and (2) write
the given force data to the master arm in a separate thread.
Now we describe some of the public properties. One property
computes the change in position vector and orientation matrix
after the position data ready event is fired. A property is used
to find/set whether a master arm is engaged or not to control
computation of arm kinematics. A get/set property is used
to indicate whether to provide force feedback to the master
arm or not. Other properties are also used to compute the
local impedance control function. A block diagram of the
MasterArmis given in Figure 5.

C. Integrated scheme of client-server components

The integrated scheme incorporating all the components
on client and server side is shown in Figures 3 and 4. The
DecisionServer is inherited fromIDecisionServerand in turn
from IProxyRobot and IForceSensor interfaces. In order to
cause an event handler subprogram to be called (invoked)
on client side for any event invoked by DecisionServer, we
must provide DecisionServer, access to the client assembly.
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Fig. 5. MasterArm component

This introduces severe deployment limitations as described
in Section III-B.1. Here DecisionServer invokes the event
which is received by an event handler hooked by shim classes.
This event handler then calls the event handler of the client
(IDecisionServer). This allows hiding the server and client
assemblies from each other.

D. A multi-threaded distributed telerobotic system

The distributed approach leads the logic of the system
be distributed in different software components. The multi-
threaded aspects stem from the simultaneous threads running
on the server carrying out: grabbing of stereo video data,
reading force sensors, sending control signals to the robot,
reading the feedback from the robot servo controller, and
sending and receiving all of this information to one or more
clients. Two cameras generate pictures which are sent to
the client using the vision server. The operator may issue
commands to the DecisionServer which in turn makes use
of PUMA and Force Sensor components. The client side
uses the GUI as well as master arm to issue commands to
the slave arm on remote side. The vision client receives the
synchronized video data using windows sockets and provides
a stereo display.

IV. STEREO VISION FOR TELEROBOTICS

Stereo vision enhances operator’s efficiency during tele-
manipulation [23]. A client-server framework for live transfer
of video data is implemented using Microsoft Visual C#
and Microsoft DirectX which provides COM interfaces for
graphics related functionalities such as DirectShow. The later
provides an interface for capturing and playback of video data.
The server captures two stereo images and upon a request
from the client it sends video data to the client using windows
socket. SampleGrabber (DirectShow) is used to capture video
frames coming through a live video transfer as shown in
Figure 6.

The client establishes a graphic display, establishes a con-
nection with server, and displays the incoming pictures using
a head-mounted display (HMD). A graphics device interface
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Fig. 7. Stereo vision display on client side

(GDI) of Windows graphical environment is used to (1) com-
municate between the application and the device driver, (2)
perform the hardware-specific functions that generate output,
and (3) display the received picture (see Figure 7). Microsoft
bit block transfer API calledBitBlt() or Blit is used to copy
an image from one device context to another.

A. A distributed framework for relaying stereo vision

Synchronous windows sockets are used for video transfer at
server station (see Figure 6). To maximize video transfer rate
two thread-based schemes are used: (1) a single buffer with
serialized transfer, and (2) double buffer, concurrent transfer.

In the single buffer with serialized transfer, the SampleGrab-
ber component of DirectShow [22] uses a callback function
to inform the completion of one video frame at server. Two
thread instances of SampleGrabber running at the same time
to capture the video coming from two cameras. The data is
copied by SampleGrabber to some global memory buffer to be
sent to the client through sockets. After hooking of callback
function onto SampleGrabber, FilterGraph (DirectShow) starts
the video capturing. The last step of server socket is to transfer
the video data. The server waits for a request of a picture from
client to start video data transfer.

On the client, the GDI is set to draw the received pictures.
The server flushes the previous bitmap buffers, grab left
and right images using callback functions, create a bitmap
information header for these images and transfer to the client.
The client gets the buffer size (TCP stream), prepares the
bitmap buffer, receives the bitmap information header, copies
the bitmap data from the sockets into the buffer, requests for
new picture, and draws the 3D stereo picture.

In the double buffer scheme, concurrent transfer allows
pipelining the execution of video capturing and live video
transfer as shown in Figure 8. For this, two buffers are used,
one for each stereo frame on the server. When a picture
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Fig. 8. Live stereo video transfer using the optimized scheme

is received, the camera callback function is invoked which
accesses a variable shared by multiple threads indicating
whether the buffer was copied in the previous callback of
this very camera. The camera status is used to synchronize
the stereo frames for the left and right pictures. It is updated
after copying the data to the buffer. If both cameras are ready,
updating the buffer status enables the sending thread to transfer
the content of this buffer over to the client. In case the second
camera has not finished copying the picture to the buffer, buffer
status is not updated.

The sending thread is responsible for receiving requests
from the client. It checks the buffer status to determine the
buffer, creates bitmap headers, and retrieves the buffer size.
If the information has not already been sent to the client, it
is sent. Otherwise, the server continues with the sending of
buffer data only. The client proceeds in the same manner as
with single buffer approach except that it does not receives
the bitmap information header and buffer size with each stereo
frame. It retains the bitmap information header and buffer size
to properly display and read the required number of bytes from
windows sockets.

B. An augmented reality system for telerobotics

Augmented reality consists of overlaying the graphics on
real stereo images. A camera model is used to project 3D
points on 2D image plane. The full perspective transformation
between world and image coordinates is conventionally ana-
lyzed using the pinhole camera model and camera calibration
proposed in [24]. When scene depth is small as compared to
distance from camera to scene, the weak perspective projection
is a linear approximation model [25]. In this case image plane
coordinates and their pixel addresses can be related by an
affine transformation. A GUI was designed to support the user
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carrying out camera identification by pointing to four non-
coplanar reference points forming a frame of reference. This
allows finding left and right camera projection matrices. The
fiducial points should be 20 cm distance from frame origin
and camera set at no less than 1.5 m from the scene.

1) Superimposing graphics using DirectX API:The image
data retrieved from theStereoSocketClientcomes in bitmap
format. It can be displayed using theDXInterfacecomponent,
and HMD.DXInterfaceis designed usingDirectX Application
Programming Interface (API) [26]. Off-screen surfaces are
used to superimpose real or virtual images as well as drawing
and blitting. TheBackBufferservice ofDirectX Deviceallows
indexing and fast switching of primary and off-screen surfaces.
The Hardware Abstraction Layer (HAL) and graphics proces-
sor control flipping the addresses of front and back buffers.
Without image shearing or tearing, the next image drawn on
the HMD comes from the previous back buffer. While the
previous front buffer is now back buffer and is ready to be
used for the coming video frame. New image is acquired
from the network while the drawing of the current image is in
progress. In short, the stereo video is updated on local display
in a page-by-page format and not pixel-by-pixel which reduces
time delays.

2) Component framework:In this sub-section the AR stereo
vision client and server components are presented.

Client side components:Listed below are the components
providing stereo vision and AR functionality on the client side:

1) The StereoSocketClient generates compatible bitmaps
from the binary video and receives the live video transfer
sent by the vision server developed using MFC (Mi-
crosoft Foundation Classes) client-server setup.

2) IdentifyCamera computes camera projection matrices
using a set of four non-coplanar points as vector edges
of a frame [24]. The GUI uses the images provided by
StereoSocketClient in computing the left (Ml) and right
(Mr) projection matrices.

3) RobotModel locates the future position of the robot
gripper based on the current command.RobotModelacts
as a local proxy of the PUMA robot.

4) DXInterface (Figure 9) handles (1) augmentation of real
video, (2) synchronization of real and virtual data, (3)
projection on video surface, and (4) page flipping.

Server side:Server side acquires and sends the stereo image
data through windows network sockets. However, only the
client side is responsible for the major AR functions. The
server side for the stereo video client-server framework is used
in the AR framework.

3) The complete augmented reality system:All of these
components have been combined together to form a complete
AR system on the client side. The system provides the AR
functionality through the following steps:

1) Read operator motion using theMasterArmcomponent.
2) MasterArm provides motion parameters toIDecision-

ServerandRobotModelcomponents.
3) IDecisionServerexecutes the incremental move com-

mand on remoteDecisionServer.
4) RobotModelprovides the new 3D position of gripper to

DXInterfacecomponent.
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Fig. 9. An overview of DXInterface Component
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Fig. 10. Block diagram of complete AR system on client side

5) DXInterface acquires a frame of remote scene from
StereoSocketClientas well as two projection matrices
from IdentifyCameraat the system initialization.

6) DXInterfaceprojects a ball at the gripper position in 2D
image and sends both images to HMD display controller.

7) When theIDecisionServerreceives theOnMoveevent
from the remote side, the angular position of the robot
is sent to theRobotModelto update the local model.

An architectural overview of the AR system present on the
client side, is given in Figure 10.

It is important to update the local robot angles upon the
invocation of OnMove event from the server side because
there may be some differences between the move command
arguments and the current position of robot due to mechanical
and mathematical round off errors. Also it is to be noted that
theIDecisionServeruses.NET remotingfor network streaming
of component data and force data while Vision Server and
StereoSocketClientuse raw windows sockets to live transfer
of binary stereo video data.

The system has the ability to remember the identification
of cameras and other projection related data across different
runs by preserving these values to the permanent memory in a
special format. So, the identification is required only when the
cameras or the objects have been moved from their previous
locations.

V. BRIEF RESULTS

Extensive performance evaluation and experimentation were
carried on for the propose telerobotic system. Brief results are



JOURNAL OF LATEX CLASS FILES 8

reported in this section.
Analysis of telerobotic delays through three campus routes

was carried out while streaming of video, force, and com-
mands. A sampling rate of 120 Hz is achieved for force
feedback and 50 Hz for operator commands. Stereo video
transfer operates at a rate of 17 fps. Total reference delays
for force and stereo are 8 ms and 83 ms, respectively. Overall
round-trip delay is 183 ms (5.5 Hz) when slave arm is operated
at 10 Hz. More details can be found in [27].

The effectiveness of the framework and concurrent exe-
cution of its various computing and communicating threads
has been assessed in the experimentation of the following
tasks: (1) peg-in-hole insertion, (2) assembly of a water pump,
(3) operating drawers, (4) pouring of water, and (5) wire-
wrapping. The above experiments [28] involve the complete-
ness, modularity and flexibility of proposed telerobotic frame-
work when rich and heterogeneous sensory data (video, force,
and command) was exchanged between client and server. A
summary of results is as follows: (1) teleoperation tools are
very effective and need to be developed, (2) advanced motion
coordination reduces teleoperation time and operator mental
effort, (3) active compliance at server station is more effective
than operator reaction using force feedback. More details can
be found in [29].

VI. COMPARISON TO OTHERS

Even et. al [30] describes a computer aided telerobotic
system as an integrated planning scheme including interactive
3D modelling, programming, and execution. The proposed
telerobotic framework may provide the above system a perva-
sive network connectivity and mobility as well as a structured
software framework for implementing real-time interactions.

In [31] a client-server framework is designed using VB
6.0 and custom protocol with TCP ActiveX controls. This
scheme exposes TCP read/write operations to application,
custom protocol, TCP ActiveX control, and Windows Sockets
etc. While in a distributed setup, the components directly
communicate with each other through windows sockets using
.NET remoting. This difference is achieved by using the
distributed component based approach in place of TCP based
custom protocols.

An object oriented distributed application (OODA) could
also use JAVA that provides RMI as remote calling function,
graphics services, and 2D and 3D support. Hu et. al.[9]
proposed JAVA for network interfacing and video as well
as the use of C++ for the robot controller for Internet-based
Telerobotic Systems. Ho[13] used Java-based framework for
frame grabbing as compared to the use of DirectShow in
our scheme. Compared to [12], .NET framework is directly
used for all GUI development as well as the core system
components making it a unified solution. This avoids the use of
middleware services like MS VM within the framework. JAVA
and CORBA are intended to be cross-platform environments
thus requiring lot of JIT (just-in-time) compilation and virtual
machines to interpret code on different operating systems.
In addition they provide no support for hardware-accelerated
graphics APIs that are critical for live video visualization on
PCs.

Compared to [15], the behavior in proposed telerobotic
framework is represented by the local position, force, and
active compliance loops and the planer is being the human
operator and AR system. Compared to [18], in proposed
framework the coarse correction made by the remote teleop-
erator adds to the competence of fine active compliance loop
during the period of contact with the environment. Compared
to [17], in proposed framework there are three servers and
three clients at any given time. Object interconnection is
implicitly done using .NET remoting.

We proposed an object-oriented distributed component
framework and .NET remoting for (1) remote procedure call,
(2) hiding details of network interface, (3) an automatic
notification and data messaging mechanism between client
and server. .NET does not require components registration
thus breaking the interdependency in the development phase.
To develop off-the-shelf components and programs we used
Windows 2000 because of support provided for hardware
accelerated graphics, .Net remoting, and thread scheduling and
the priority needed for multi-threaded execution. .NET may
be used for off-the-shelf real-time applications as it casts off
every possible overhead. .NET has embedded type signatures
which allow component debugging across different languages,
a missing feature in JAVA and CORBA. Process variables like
real-time sensor data and robot-states are relayed to the client-
side using implicit inter-component communication.

VII. C ONCLUSION

In this paper a real-timeDistributed Component Teler-
obotic Frameworkhas been described using object-oriented
distributed programming paradigm with Visual C #, .NET
remoting, DirectX, and TCP sockets. .NET remoting is used to
automatically handle the network resources and data transfer
while isolating the components from network protocol issues.
This approach frees the programmer from defining custom
protocols for client-server interaction. It also provides flexible
deployment environment without pre-registration of compo-
nents on host machine which is an advantage over DCOM. The
framework is implemented as a modular multi-threaded system
for live transfer of stereo video, transfer of master-slave com-
mands, and streaming of force feedback. The functionalities
of master and slave arms are independently designed. A multi-
threaded execution with DirectX graphical tools has been used
to promote concurrency in grabbing, transmitting, receiving,
processing, and displaying image data using HMD technology.
The client station provides components that support AR tools
like camera model identification, and graphical slave arm
components. The proposed framework is useful to enhance
man-machine interactions with 3D perception and AR, and to
serve as an integrated environment to develop telerobotics.
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