
JOURNAL OF LATEX CLASS FILES 1

Design of A Multi-threaded Distributed Telerobotic
Framework

Mayez A. Al-Mouhamed1, Onur Toker2, and Asif Iqbal3

Abstract— A telerobotic system consists of master (client)
and slave (server) stations which are usually connected by
a computer network. A reliable real-time connection between
master and slave systems is proposed using Distributed Com-
ponents (.NET Remoting). This has a number of benefits such
as software reusability, ease of extensibility, debugging, and
data encapsulation. It is based on most advanced software tools
like .NET Framework that promise definite advantages over
DCOM (Distributed Component Object Model) and RPC (Remote
Procedure Call), previously used for distributed applications. The
components communicate with each other using .NET Remoting
and SOAP (Simple Object Access Protocol) that automatically
handle the network resources and data transfer while isolating
the components from network protocol issues. This enhances the
data security as well as facilitates easy deployment. Implementing
telerobotics using the proposed approach gives the advantage of
a multi-threaded execution needed to effectively realize multi-
streaming of force, command and stereo data over a LAN.
Keywords: DCOM, Distributed Application Framework, Force
Feedback, Stereo Vision, Telerobotics.

I. INTRODUCTION
Telerobotic technology [1] is enhancing minimally invasive

surgery (MIS) through improved precision, stability, and dex-
terity. The surgeon moves a dexterous master arm (client) that
is scaled down to a slave arm (server) inside the patient’s body.
Reliable and secure real-time streaming of force feedback and
stereo vision are critical in many telerobotic applications

In [2] a telerobot is implemented using TCP/ATM in which
two LANs are connected to an ATM backbone. Specification
of Quality-of-Service (QoS) includes application timing, crit-
icality, clock synchronization, and reliability. This is accom-
plished by using a constant bit rate (CBR) ATM connection
allowing a tightly constrained transmission delay which is
suitable for real-time applications. Random delays in the robot
closed loop control affect stability and performance.

Real-time network and protocol transmission delays, jit-
ter [3], and processing times need to be optimally reduced
to ensure guaranteed quality of service for robot commands,
stereo vision, and force feedback. In a computer network,
the communication delays and traffic capacity vary with flow
direction and irregularly change with traffic conditions.

(1) Department of Computer Engineering, College of Computer Science
and Engineering (CCSE) King Fahd University of Petroleum and Minerals
(KFUPM), Dhahran 31261, Saudi Arabia. mayez@ccse.kfupm.edu.sa

(2) Department of Systems Engineering, CCSE, KFUPM, Dhahran 31261,
Saudi Arabia. onur@ccse.kfupm.edu.sa

(3) Department of Systems Engineering, CCSE, KFUPM, Dhahran 31261,
Saudi Arabia. iqbal@ccse.kfupm.edu.sa

Real-time operating system VxWorks is used to compute
a scattering transformation to guarantee state stability. A
distributed component based design for telerobotics using
DCOM/ActiveX approach [4] is proposed to integrate web
technologies and telerobotics together with environmental con-
straints. Operator views 3-D model, control paths, and issue
commands through supervisory control.

We propose a reliable real-time connection between master
and slave stations using .NET based Distributed Components.
For this we designed various telerobotic components, interac-
tion methods, and secure communication support while isolat-
ing the components from network protocols. These distributed
components use SOAP as a way to communicate with each
other and implement data remoting for real-time updates of
sensor data and process statuses.

Although Java has been used in many telerobotic systems
but we choose .NET Framework because of the following
reasons:

1) We target to use the proposed framework on a commod-
ity LAN where Microsoft technologies give optimized
performance [5]. Java is recommended for Internet-
based cross-platform environments.

2) .NET components can be easily deployed to work across
firewalls.

3) CLR (Common Language Runtime) used by .NET
Framework is similar to JVM (Java Virtual Ma-
chine) because it also compiles the source code into
platform-independent bytecode [6].

Also it should be noted that in a typical scenario when
both client and server use .NET based components with TCP
channels, highly optimized data transfer is obtained [7].

The organization of the rest of the paper is as follows.
Section 2 presents our distributed framework. In Section 3
we compare our approach to others. We conclude in Section
4.

II. A MULTI-THREADED DISTRIBUTED FRAMEWORK
In this section we describe the server and client telerobotic

components and their interactions with each other in a dis-
tributed application.

A. Server Side Components

The server components are: (1) PUMA Component, (2)
Force Sensor Component, and (3) Decision Server Component.
In addition to these components, we also have three interfaces
known as (1) Proxy Robot Interface (2) Force Sensor Interface,



JOURNAL OF LATEX CLASS FILES 2

PUMARobotUnimationControllerMSCommunicationControlPUMAControlPublicMethods PublicProperties
PublicEvents RS-232

PUMAComponent
Fig. 1. Block diagram of PUMA Component

and (3) Decision Server Interface The details of the function-
alities of these components and interfaces will be discussed in
the following sub-sections.

1) PUMA Component: PUMA component acts as a soft-
ware proxy of the robot for which commands are issued to
the component as they are issued to the robot. Whenever robot
changes its states, the component updates itself automatically
to reflet these changes. A block diagram of the PUMA
component is shown in Figure 1.

Some important public methods exposed by PUMA compo-
nent include ConnectRobot that connects server to slave robot,
InitializeRobot sends a program to robot that repeatedly moves
the robot in either joint or cartesian space in an incremental
fashion which reduces the communication data payload.

A command for an incremental joint motion ∆θ(a 6 × 1
vector) is sent directly to robot. A command for an incremental
cartesian motion is specified in hand frame translation vector
∆X (3 × 1) and orientation matrix ∆M (3 × 3). PUMA
computes the new robot hand position Xnew = G(θP ) + ∆X
and orientation matrix Mnew = MP .∆M , where G(θ) is the
direct kinematic model of slave arm and MP is the current
robot hand orientation matrix. PUMA computes the inverse
kinematic for Xnew and Mnew and finds the corresponding
joint vector ∆θ which is sent to robot.

The PUMA component accepts a user defined tool
frame of reference as (1) robot base frame (world), (2)
robot wrist frame, or (3) robot tool frame. Robot statuses
are (1) connection to Robot is not detected or Robot not
initialized, (2) Robot is connected but not initialized, (3)
initialization is pending, (4) robot is ready to receive a
motion parameter, (5) robot is moving, etc. The events
invoked by PUMA component include: (1) Data received
from PUMA, (2) some error occurred with PUMA, (3)
Robot moved to a new location, and (4) PUMA status
changed.

2) Force Sensor Component: The force sensing component
(FSC) reads the robot wrist force sensors and creates a stream
of reflected force feedback directed to the master station.
Similar to the PUMA component shown in Figure 1. FSC
is implemented as a separate thread, the priority of which can
be adjusted during runtime to allow for the management of
CPU usage.

A new instance of FSC creates a new thread with a default

Sensors RobotForce SensorComponent PUMAComponentDecisionServerUser InterfaceHigher LevelCommands SystemFeedback
PhysicalLayerSoftwareLayer ISoftwareLayer IIUI Layer(HumanInteraction)

Local loop
Fig. 2. Component Hierarchy on the Server Side

normal priority and waits until the sensing is triggered. After
the reading has started, it continues sensing the force informa-
tion at a pre-specified, alterable, default frequency. The public
properties exposed by FSC are: (1) SensorThreadPriority used
to set the thread priority that is one out of five OS levels. (2)
TimerValue used to set a time interval between two successive
readings.

3) Decision Server Component: Decision-
Server is a component that provides an
autonomous loop on the server to support supervisory
telerobotic control. The is a higher abstraction layer which
is used as an agent to implement local robot impedance
control and workspace scalability functions. This layer can
also accommodate the repeatability of a set of movement
commands. A block diagram describing the hierarchy of the
server system including DecisionServer is shown in Figure 2.
The human operator is at the highest level of hierarchy and
interacts with the system using a UI(user interface).

4) Server Side Interfaces and .NET Remoting: An interface
is a set of definitions of public methods and properties. It
servers as a contract for any component that implements this
interface. This scheme allows hiding the actual component
or assembly from the client which increases security from
potentially unsafe clients as well as gives the developers,
freedom to easily amend the logic of the server methods while
the interface remains unchanged.

In order to communicate with both the PUMA and Force
Sensor components, we define two interface named IProxy-
Robot and IForceSensor. IDecisionServer inherits both of these
interfaces. This allows defining a unified set of public members
(methods, properties and events) that are required to be imple-
mented in the form of DecisionServer component. Now .NET
Remoting is used to publish an instance of DecisionServer
component on the LAN that is identified to the client by a
unique object identifier. .NET Remoting enables us to access
objects using SOAP(Simple Object Access Protocol) which
isolates the network protocol issues from the development of
a distributed application.



JOURNAL OF LATEX CLASS FILES 3MS Comm.Control
ForceSensors
Robot PUMAComponent

Force SensorComponentEagle I/OCardIProxyRobot IDecisionServerIForce ServerApplication.NETRemotingSocketsLANstands forinheritance.
Fig. 3. Integrated Scheme - Server Side

ClientApplication.NETRemotingSocketsLAN MasterArm
Fig. 4. Integrated Scheme - Client Side

B. Client Side Components

The client contains the IDecisionServer interface to ref-
erence the server side component through .NET Remoting.
In addition to IDecisionServer, there are instances of .NET
Remoting and client GUI(Graphic User Interface).

1) Decision Server Interface: Decision Server interface
named as IDecisionServer contains all the definitions to
execute methods on PUMA and Force Sensor components.
Following the initialization of the client, the system carries an
empty un-referenced copy of IDecisionServer. Once a network
connection with the server is established, the client gets the
reference to the server side instance of DecisionServer. Now
IDecisionServer refers to the published instance of Decision-
Server and the client side can access the server side instance of
DecisionServer as a local component through IDecisionServer.

C. Integrated Scheme of Client-Server Components

The integrated scheme incorporating all the components on
client and server side is shown in Figures 3 and 4.

The DecisionServer is inherited from IDecisionServer and
in turn from IProxyRobot and IForceSensor interfaces. In order
to use an event handler on client side for any event invoked
by DecisionServer, we must provide DecisionServer, access
to the client assembly. This introduces severe deployment
limitations. To overcome this problem, we use shim classes as
intermediatory agents to forward DecisionServer events over
to the client or IDecisionServer interface. Shim classes are
thin assemblies visible to both the server and the client. A
diagram showing the events being forwarded with the help of
shim classes is shown in Figure 5.

D. A Multi-threaded Distributed Telerobotic System

The multi-threaded distributed telerobotic system (Fig. 6
and 7) allows simultaneous activation of many threads like

ServerAssembly ClientAssemblyShimAssemblyShimRobotMovedEvent HandlerRobotMoved Event ShimRobotMovedEvent ClientRobotMovedEvent Handler
Fig. 5. Events forwarding Using Shim Classes

Robot VisionServer LANDecisionServerServer UIPUMAComponentUnimationControllerForce Component
DigitalCameras Horizontal disparity = 6 cm

Fig. 6. Server side of the distributed framework

grabbing and transfer of stereo video data, reading force
sensors, sending and receiving robot control signals over the
LAN to one or more clients.

Two digital cameras generate stereo pictures which are
sent to the client. Both the stereo data and the distributed
component calls share the same LAN using different ports for
data transfer. The client uses the GUI as well as a 6 dof master
arm to issue commands to the slave arm on remote site. The
vision client receives the synchronized stereo data from the
LAN through windows sockets and provides a stereo display of
the remote scene to the operator using eye-shuttering glasses.

III. COMPARISON
Ho[8]’s JAVA based fame-grabbing software took 1 second

for camera-DRAM transfer with a video rate 0.33 Fps against
25 ms and 12 Fps using DirectX image acquisition.

Yeuk et. al [4] use MS VM (Microsoft Virual Machince)
to bridge the gap between JAVA and DCOM. However, the
proposed .NET Framework is used for development of all GUIs
and core system components thus freeing us from using any
intermediatory services like MS VM within the framework.

In the case of custom protocols like Al-Harthy’s[9] VB 6.0
and TCP ActiveX based client-server framework, the TCP
read/write operations are very slow because of the many
software layers involved such as Application, Custom protocol,
TCP ActiveX control, and Windows Sockets etc. While in the
proposed setup, the components directly communicate with
each other through windows sockets using .NET Remoting
providing shorter round-trip time. For example a command
takes 55 ms in the case of the cited framework as compared
to around 1 ms in our case.

.NET has embedded type signatures which allows compo-
nent debugging across different languages, a missing feature
in Java and Corba. .NET is highly recommended for mission-



JOURNAL OF LATEX CLASS FILES 4LAN VisionClientDecision ServerInterface Client UserInterface MasterArmComponent MasterArmStereoDisplay Eye-Shuttering Glasses
Fig. 7. Client side of the distributed framework

critical applications running under Windows. See [10] for
details on performance.

IV. ACKNOWLEDGEMENT
This work is supported by King Abdulaziz City for

Science and Technology (KACST) under research project
grant AR-20-80. We also acknowledge computing support
from KFUPM.

V. CONCLUSION
A reliable real-time connection between master and

slave systems is proposed using .NET Remoting based
Distributed Components. Our approach uses tools that auto-
matically handle the network resources and data transfer while
isolating the components from network protocol issues. This
liberates us from defining custom protocols for client-server
interaction. Also this scheme provides flexible deployment
environment in a sense that no pre-registration of components
is required on the host machines which is a clear advantage
over DCOM. In addition to providing a truly multi-threaded
environment, the use of .NET components on both client
and server sides guarantees fastest telerobotic interaction in
a closed environment like a LAN.

REFERENCES

[1] R. D. Howe; Y. Y. Matsuoka. Robotics for surgery. Annual Review of
Biomedical Engineering, pages 211–240, 1999.

[2] F. Goktas; J. M. Smith; R. Bajcsy. Telerobotics over communication
networks. IEEE Conference on Decision and Control, 3:2399–2404,
1997.

[3] X. Ning; T. J.Tarn. Action synchronization and control of internet based
telerobotic systems. IEEE Inter. Conf. on Robotics and Automation,
1:219–224, 1999.

[4] Y. E. Ho; H. Masuda; H. Oda; L. W. Stark. Distributed control for tele-
operations. IEEE/ASME Transactions On Mechatronics, 5(2):100–109,
June 2000.

[5] C. Sorensen. A comparison of distributed object technologies. Technical
Report# DIF8910, The Norwegian University of Science and Technology.

[6] J. Singer. JVM versus CLR: A comparative study. 2nd International
Conference on the Principles and Practice of Programming in Java,
2003.

[7] Microsoft. MSDN library. http://msdn.microsoft.com/default.asp.
[8] T. Ho. System architecture for internet-based teleoperation systems using

java. Master’s thesis, Department of Computing Science, University of
Alberta, Canada, 1999.

[9] A. Al-Harthy. Design of a telerobotic system over a local area network.
M.Sc. Thesis, King Fahd University of Petroeum and Minerals, January
2002.

[10] M. Al-Mouhamed; O. Toker; A. Iqbal. Performance evaluation of a
distributed telerobotic framework. ICECS’03, Sharjah, United Arab
Emirates, 2003. To be held in December, 2003.


