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Abstract

This paper presents a model-based vision recognition engine
for planar contours that are scale invariant of known models.
Features are obtained by using a constant-curvature crite-
rion and used to carry out efficient coarse-to-fine recognition.
A robust shape matching is proposed for comparing contour
fragments out of scenes with partial occluding. To carry
out early pruning of large portion of the models, hypothe-
ses are only generated for a sub-set of contours with enough
discriminative information. Poor scene contours are used
latter in validating or invalidating a relatively small set of
hypotheses. Recognition takes advantage of robust hypothe-
ses by categorizing the contour intersection points so that
hypothesis processing is driven by discriminability. Since
hypotheses are selectively verified, blocking is avoided by ex-
tending current matching by pairing of hypotheses, predic-
tive matching, and fetching next weighted hypotheses. This
avoids processing of a large number of hypotheses. Storage
is optimized by experimentally relating the bucket size to a
metric of discriminability for typical patterns. Evaluation
shows that the recognition time is nearly independent from
the number of hypotheses originally generated. The time in-
creasing due to increase in the model size is relatively small
as a result of selective processing and optimization of global
model effects.

1 Introduction

An effective model-based recognition system [1, 2] must be
capable of retrieving the best matched objects as well as car-
rying out massive pruning of inconsistent models. Modelling
objects by their local geometric features [1] takes advantage
of the coarse shape and enables quick indexing of object fea-
tures into the models in an attempt to reduce the complexity
of the search space.

The efficiency of the matching depends to a large extent
on the scalability [1, 3, 4] of the recognition operator which is
the ability to recognize whole contours as well as fragments
of contours. For this, the extracted features [5] must be local

and small enough to match wherever they are present but
must also be stable and discriminative. The features can be
used as searching keys in indexing/hashing schemes [6].

Model organization was studied by Califano and Mo-
han [4] which proposed the use of larger indices (multidi-
mensional indexing) to keep a relatively coarse bucket quan-
tization without scarifying selectivity. The synergy of the in-
dexing scheme must be small enough because all the models
are potentially involved in the initial search [7, 6]. Kalv-
ing et al. [8] used a hashing descriptor that is derived from
the relationships between lengths and relative orientation
of contour segments. Knoll and Jain [9] proposed a model
organization based on common features so that to index
into the model by recognizing features and further iterate to
narrow the object class down to the correct interpretation.
Grimson [3, 10] equally treats all the available features in
generating hypotheses on possible matches. This results in
tree-matching structure that is scanned by using depth-first
search. The search over the current sub-tree is abandoned
when enough inconsistent evidences are accumulated and
the next sub-tree is started.

Our objective is to optimize the model and the search so
that the recognition time would mainly depend on the scene
complexity. Our model and algorithm are designed so that
a small fraction of time is spent in global model processing.
The aim is to avoid early processing of fragments having
poor discriminative information. We selectively process the
most robust hypotheses which are validated further through
spatial and shape matching. Shape matching enables com-
paring whole and fragment of contours. Selective recognition
provides efficient pruning of large inconsistent hypotheses.
Thus the processing scheme is driven by discriminability.
Reducing the storage size without affecting the discrimina-
tion power is carried out by relating the bucket size to a
metric of discriminability.

This paper is organized as follows. Section 2 presents the
object modeling. Section 3 presents the recognition system.
Section 4 presents the evaluation. In Section 5 we conclude
about this work.
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Figure 1: A cutter and its fine and coarse models

2 Object modeling

Our approach uses the well known coarse-to-fine matching
concept. We use an angle-length model that provides scale,
rotation, and translation invariant properties.

Edge detection allows extracting the shape of object by
detecting the presence of an edge at some pixel. For this
an approximate of the gradient magnitude is evaluated and
used with the sign of the Laplacian to determine whether
a given edge pixel is located on the background or on the
object side of the edge. To reduce the sensitivity to noise the
sobel operator is used for averaging the gradient over larger
pixel neighborhood. An edge is detected when the gradient
magnitude exceeds some threshold that is experimentally
determined.

The contour is encoded by using the pixel direction cod-
ing [11] which consists of encoding each border pixel by its
direction with respect to previous border pixel. For this
a conventional 8-direction convolution mask is used. Each
chain of connected contour pixels is represented by a chain
of directions with one reference point at starting pixel.

A segmentation algorithm is used to build fine angle-
length model of contour by breaking down the contour into
a sequence of straight segments. The algorithm repeatedly
picks a group of contour pixels, located next to current seg-
ment, and compare their average direction to that of current
segment. The size of each group of pixels is 2k, where k is
a small integer. A threshold is used to detect the presence
of a coarse breakpoint whenever the difference between the
above directions exceeds some threshold. The fine break-
point is searched within a neigborhood formed by the last
2k − 1 pixels of current segment and the coarse breakpoint
pixel. We carry out binary splitting of the above neigbor-
hood and the direction of each split pixel (fine breakpoint)
is matched to the updated direction of current segment. As
validation, the average direction of the 2k pixels following
the current fine breakpoint must exceed that of current seg-
ment by the same threshold.

Each segment is associated its length and its angle with
respect to the previous segment. Formally, the kth segment
Dk is formed by a pair of breakpoints bk = (xk, yk) and

bk+1 = (xk+1, yk+1). The length sk of Dk is sk = (∆x2
k +

∆y2
k)1/2, where ∆xk = xk+1 − xk and ∆yk = yk+1 − yk.

The angle θ(sk) between segments Dk−1 and Dk is eval-
uated as the exterior angle which is defined by θ(sk) =
cos−1((∆xk−1.∆xk + ∆yk−1.∆yk)/(sk−1.sk)). The correct
sign of θ(sk) can be found by examining the coordinates of
bk−1, bk, and bk+1.

Segmenting of the contour enables building a fine angle-
length model of contour, denoted by F = {(θ(si), si)}, which
consists of an ordered set of segment lengths si and their
geometric angles θ(si). Figure 1 shows the correspondence
between the contours of a cutter (left part) and its fine angle-
length models Fc and Fo which are associated to a closed
and open cutter, respectively. The mapping from contours
to the plots Fc and Fo are marked by numbers. Chang-
ing the initial orientation produces fine models that differ
in their starting segment. Note that long straight segment
of contours are associated horizontal straight segments in
the angle-length graph. A sequence of segments that corre-
sponds to a constantly curved contour can then be associ-
ated one coarse segment with constant slop.

2.1 Coarse segmentation

The fine angle-length model is inefficient to directly extract
geometric features out of fine-grain segments. Too simple
features may occur in many models which make the search
inefficient. Too complex features have two drawbacks: 1)
cannot be observed from partial contours, and 2) lead to
linear search across the model. The features should con-
tain enough discriminatory information to order to provide
efficient and accurate indexing of candidate models.

Thus we need to build a sketch of the contour or coarse
model (C) by clustering fine segments having constantly
curved contours into coarse segments linked by inflection
points. In the angle-length plan, non-horizontal segments
represent constantly curved contours and horizontal seg-
ments correspond to straight contours. We present a method
to build stable local shape features.

A fragment of contour that is constantly curved is rep-
resented in the fine model by a sequence of small segments
{θ(si), si}, where si is the length of ith straight segment
and θ(si) is the exterior angle between segment si and its
neighbor si−1. Segment si is a linear approximation of a
small contour region, thus the ratio hi = θ(si)/si can be
considered as an approximation of the curving for the corre-
sponding contour for small si. Segmenting of the fine model
consists of clustering all neigboring segments for which the
signed ratios θ(si)/si are nearly constant along a given se-
quence of segments.

The coarse segmentation algorithm is based on the fol-
lowing two steps. The first step consists of selecting break-
points among the fine segments corresponding to strong
change in the direction which is equivalent to thresholding
the derivative of the gradient. The above breakpoints are
temporarly linked by straight coarse segments in the angle-
length plane. This is shown in the transformation from Fc

to Fc1 of Figure 1. The second step consists of creating
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additional breakpoints when the maximum distance from a
new coarse segment to fine contour exceeds some threshold
as shown on the plot of Fc2 of Figure 1. In this case, the
segment edge of the fine contour that is the fartest from
current coarse segment is added as a new breakpoint. This
results in the coarse model Cc having 10 segments that is
shown on Figure 1. The stability of breakpoints needs to
be improved because of the effects of digitization, rotation,
shadows, and lighting.

We attempts to correct a situation where a coarse polyg-
onal segment may be subject to some fragmentation during
the initial segmentation because of noise in the fine model.
In this case, neigboring segments having close orientation
angles are fused into one single coarse segment that must
have bounded orientation error compared to the originally
fragmented fine segments (validation). On the other hand, a
fragmented contour formed by three initial neigboring seg-
ments Si−1, Si, and Si+1 can be represented by a corner
if the following three conditions are met. First, we have
to make sure that Si−1 and Si+1 are not nearly parallel
which causes some loss of accuracy if the above segments
are modified by extending Si−1 and Si+1 until their inter-
section. Second, the length of Si−1 and Si+1 must largely
exceeds that of Si in order to avoid confusing a corner with
a true fragmented contour. Third, the relative orientations
of Si−1 and Si+1 with respect to Si must be of oposite sign.
This is needed to make sure that the corner does not form
an inflection point. When all three conditions are met the
polygonal approximation of Si−1, Si, and Si+1 is modified
by cancelling Si and extending Si−1 and Si+1 to their inter-
section.

The coarse model C is defined by the resulting collec-
tion of segments in which each segment Sk is characterized
by three parameters that are: 1) the initial angle θinit(Sk),
2) the total angular change ∆θe(Sk), and 3) the segment
length Sk. Note that Sk denotes a coarse segment and its
length. The initial angle θinit(Sk) is the exterior angle be-
tween segments Sk−1 and Sk that is the turning angle from
Sk−1 or its tangent if Sk−1 is curved and Sk or its tangent
if Sk is curved. The total angular change ∆θe(Sk) is the
turning angle from the tangent to Sk at its start point to
the tangent to Sk at its end point. Formally, the coarse
model C is an approximation of the original contour by
means of an ordered set of constantly curved segments, i.e.
C = {Sk = (θinit(sk), ∆θe(sk), sk)}.

2.2 Feature extraction

A recognition system must exploit the local geometric fea-
tures carried by the contour fragments in order to classify
these fragments and link up sub-set of segments in an at-
tempt to find a complete scene interpretation. Features
must be simple enough to be locally present and completely
observed on relatively short contours. They must also be
coarse enough to discriminate models and be able to limit
potential matching to a sub-set of the model where they can
be present.

Figure 2 shows seven possible configurations of two suc-
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Figure 2: Features and their associated types from 1 to 7

cessive segments from the coarse model that are linked with
each other. Each vertex v of the coarse model which links
up two successive segments s1 and s2 can be associated a
tuple (h1, shift, h2) where h1 and h2 are the curving factors
of the left and right segments s1 and s2 and shift denotes
the angle between the tangent to s1 and the tangent to s2

at the intersection point v. The tuple (h1, shift, h2) is a
simple feature of the coarse model because h1 and h2 are
simply the curving rate of segments s1 and s2 and shift is
the angular shift between them. Each tuple (h1, shift, h2)
from the scene contour defines a feature which can be clas-
sified by its type (1 to 7) as shown in Figure 2. This Figure
also shows the corresponding seg-shift-seg representation in
the angle-length plan in front of each type. A feature dis-
criminates the curving factors of connected segments as well
as the actual angular shift between them.

Figure 2 shows the contour which corresponds to each
type of features. Note that feature (h1, shift, h2) is inde-
pendent from the length of segment s1 and s2.

The main effect of breakpoint selection is the introduc-
tion of noise in the values of the shift parameter. However,
the noise due to selection of beakpoints has much less ef-
fect on types 1, 4, and 5 which have no shift parameter.
For types 2, 3, 6, and 7 we strognly reduce the effect of
breakpoint selection by creating features only when there
are enough evidences and confidence in the presence of dis-
tinct semgents. In other words, a feature is created only
when the two adjacent segments have distinctive curving
factors. Another alternative is to eliminate the shift pa-
rameter from the above types and then reduce the number
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of types to 4. Unfortunately this approach also reduces the
selectivity of the recognition because of the implied increase
in the number of entries in the resulting buckets. The selec-
tivity is improved by using the shift parameter especially
when the creation of a feature (types 2, 3, 6, and 7) is condi-
tioned by a shift value that exceeds some noise dependent
threshold which is experimentally determined for each type.

2.3 Model organization

There are seven distinct types of features and each type is
associated one common indexing scheme that results from
hashing the object models based on the value taken by each
of their features. Each feature f with some type is associated
a pointer value (fv) that results from concatenation of non-
zero values (by type) of its parameters h1, shift, and h2.
Indexing consists of a search procedure (Inx-type(fv)) that
takes a feature f with its type and generates all the model
objects which contain at least one occurrence of f .

The degree of sharing within each hashing scheme Inx-
type(fv) depends on the tolerance allocated to fv which re-
sults from the variance on the values of parameters h1, shift,
and h2. The upper bound on tolerance for each parameter is
experimentally found. Indexing allows establishing a map-
ping from an input feature into a group of model objects
that are associated to the corresponding range. Each model
object associated to the range of a given type has at least one
feature of that type whose parameters fall within that range.

3 The recognition system

Grimson [10, 12] equally treats all the available features in
generating hypotheses on possible matches which results in
tree-matching structure that is scanned by using depth-first
search. The search over the current sub-tree is abandoned
when enough inconsistent evidences are accumulated and
the next sub-tree is started.

Our approach consists of initially selecting a sub-set of
scene contours among those having the largest number of
features among all scene contours. In other terms, poor
contours are not processed in the early stages of our recog-
nition approach but used latter. Pruning and verification of
the initially generated hypotheses is done through applica-
tion of a low low cost spatial matching. Further refinement of
the previously verified hypotheses consists of carring out ac-
curate shape distance matching. At this level, the retained
hypotheses on the fragments represent a small fraction of
the original hypotheses. Clearly in our approach the match-
ing complexity increases but the problem size significantly
decreases as we move further in the recognition. In the fol-
lowing we present the detail of this approach.

3.1 Initialization

In our representation, a vertex is the intersection point of
contours or an end point of open contour. A contour that
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Figure 3: Partial occluding among 3 objects

links up a pair of vertices is called a line. At least three lines
intersect at each vertex in the case of connected contours.
A collection of lines that link up an arbitrary number of
vertices may or may not belong to the contour of the same
object.

We start by sorting the lines in the decreasing order of
the number of segments according to their coarse model.
The lines having the largest number of segments have richer
discriminative information than the others and used in in-
dexing the models to generate hypotheses on possible match-
ing. We retrieve a sufficient number of candidate lines from
a list sorted according to the principle of largest number of
features first. This represents some percentage of the total
number of lines.

Figure 3 shows an example of partial overlapping be-
tween three objects. There are 18 vertices labeled as (a, b,
. . . , q) and 26 lines labeled by the pair of vertices that di-
rectly connect. For example, vertices a and b directly con-
nect two contours that are labeled ab1 and ab2.

Initially all vertices are inactive. The features that be-
long to the initially selected lines are then used in the in-
dexed search which enables finding one or more matches for
each selected line. This allows lines be directly matched
to sub-sets of the model. Indirect matching of lines will
be described later. Matched lines are called fragments. In
the example, the set of fragments (27%) found following the
initialization step is {ab1, ef1, ei, jk1, kl, lm, oq} for which
each fragment has 3 features or more. These are indicated
by arrows in Figure 3.

The vertices connected to fragments become active as
fragments may be used to extend the matching to some of
their neighboring lines which are connected to active ver-
tices. In the example, the active vertices are (a, b, e, f, i, j, k,
l, m, o, q) which are shown on Figure 4-a that is obtained
after removing all inactive vertices and lines having poor
information.

In the next Section we show how one can find robust
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object and fragments

initial matching hypotheses which result from carrying out
gross-to-fine matching for the initial set of fragments only.

3.2 Spatial and shape matching

Each matching (<fx, fm>) from a scene feature fx to a
model feature fm represents a hypothesis that must veri-
fied. Assume a fragment of scene contour Ax has a set of n
features fx,1, . . . , fx,n which have been one-to-one matched
to features fm,1, . . . , fm,n of some model Om. The ordering
of fx,1, . . . , fx,n corresponds to their order on contour Ax

according to a given direction.
To consolidate the matching of Ax to the model we carry

out spatial matching which consists of comparing the relative
position and orientation of features fx,1, . . . , fx,n according
to their setting in the scene to that of matched features
fm,1, . . . , fm,n according to their setting in the model. For
this the position and orientation of each fx,i+1 is evaluated
with respect to some frame of reference attached to previous
feature fx,i. The above position and orientation are com-
pared to those of the matched features (fm,i+1 with respect
to fm,i) with the objective of validating or invalidating the
ordered matching <fx,i, fx,i+1, Om> based on matching pair
<fx,i, Om> and <fx,i+1, Om>.

The shape matching compares contour shapes after refer-
ing to spatially matched features in scene and model. This
enables further pruning and consolidation of the subset of in-
tial hypotheses. Shape matching consists of evaluating the
minimum possible area difference between scene fragment
Ax(s) and its matched fragment Am(s) versus all possible
vertical shift operations. The evaluation is carried out in the
corresponding fine angle-length model. The distance func-
tion is defined by da(m, x) = ΣN

i=1(Ax(i) − Am(i) + a)2si,
where N is the least number of length intervals in which
both Ax(s) and Am(s) are constant. da(m, x) is a convex
function [13] of the vertical shift parameter a that would
vertically translate Ax(s) in order to yield the least value of
da(m, x). The total length is being S = ΣN

i=1si, the min-
imum value of d(m, x) that minimizes a quadratic error is
then:

d(m, x) = ΣN
i=1[Ax(i)−Am(i)]2si− 1

S
[ΣN

i=1(Ax(i)−Am(i))si]
2

In summary, spatial and shape matching enable power-
ful pruning of hypothesized models. The result is a set of

robust hypotheses that will be extended in next Sub-Section
through inter-fragment matching and predictive matching
which enables moving forward and reaching a global inter-
pretation.

3.3 Selective processing

An active vertex has at least one fragment and a number
of lines. Each fragment g of some active vertex is paired
with a line l for possible matching. This consists of ap-
pending the line to g in the angle-length plan and com-
paring (g, l) to the models that match g. In the exam-
ple of Figures 3 and 4-a, the fragments ab1, ef1, and jk1

could not be matched to their neighboring lines. The pair-
ing <ei, ef2, il>, <lk, kj2>, <lm, il, mn>, and <oq, op, qr>
succeeded and the newly matched lines become fragments
and their connected vertices are then considered as newly
active vertices. By transitivity, the matched chain of frag-
ments and lines is extended such as in the case of chain
(fe, ei, il, lm, mn) as more vertices become newly active like
(n, p, r). Repeating the above matching process enables
extending the previous matching to new chains that are
(gf, fe, ei, il, lm, mn, np1) which can now be combined with
chain (np1, po, oq, qr, rh). An intermediate step of combin-
ing matched chains is shown in Figure 4-b where most of the
contours that belong to the top object are discovered. The
newly active vertices (h, g) enables matching hg to the pre-
vious chain thus identifying the top object. Other combined
chains can also be matched at this level such as (ij, jk, kl).
Removing of the top object leaves all the lines and fragments
that are shown on Figure 4-c.

At this point, we note that the active vertices can be
classified into two categories: 1) the vertices that connect
only fragments which we call completed vertices, and 2)
the vertices that connect fragments and lines which we call
blocking vertices. In the example completed vertices that
must remain active are (e, f, k, g, i, l, o, p, m, n) which ap-
pear on Figure 4-c. On the other hand, blocking vertices are
(a, b, g, h, m, n, o, p, q, r) as each of these vertices still have at
least one line.

3.4 Pairing of hypotheses

Pairing of hypotheses applies to active vertices that have
fragments which could not be matched to other contours of
the same vertices. For example, fragment ef1 (Figure 4-c)
could not be matched to any neighboring contours at vertices
e and f .

Assume two scene fragments g1 and g2 that are matched
to some contours denoted by g∗1 and g∗2 of the same model.
We compare the position and orientation of each pair of fea-
tures from g1 and g2 to those of the matched features from
the model. For this we choose two points (x1, x2) on g1 and
(y1, y2) on g2 so that any combination of three points out
of (x1, x2, y1, y2) is not co-linear. Based on previous fea-
ture matching with the models, choose x∗1, x∗2, y∗1 , y∗2 as the
points of g∗1 and g∗2 that correspond to x1, x2, y1, y2, respec-
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tively. Now the position and orientation of g2 with respect
to g1 can be matched to that of g∗2 with respect to g∗1 by
matching the distance between every pair of points (x, y) in
the scene to the corresponding distance in the model.

3.5 Predictive matching

Predictive matching is an advanced step in the recognition
because all contours having significant discriminative infor-
mation have already been hypothesized and there is still
some contours (lines) that must participate in making the
global interpretation.

Examining the geometric relationships between a frag-
ment g at vertex u (<g, Om>) and a line l at vertex v
enables extending the matching process to l, i.e. whether
<l, Om> holds or not. The question is how to efficiently
search for a scene line that can be present in many matched
models. For this we use: 1) vector matching, 2) orientation
matching, and 3) shape matching. It is possible to back-
track at each step to abandon the current search when any
mismatching occurs. For vector matching, we evaluate the
vector uv by selecting a vertex v that is the nearest unvis-
ited vertex to u. The vector is reported with respect to edge
u in each of model to which g is matched to. If the reported
vector points to some contour point w of the model, then
the relative orientation (tangential) of l with respect to g in
the scene is compared to the relative orientation of w with
respect to g in the model. The shape distance matching is
attempted only when vector and orientation matching suc-
ceed. Otherwise, the next model to which g is matched to
is taken and the previous steps are repeated.

Predictive matching (figure 4-c) allows fragments kl to
be matched to line mo, mo is matched to qa, and so on. This
results in matching the chains (kl, mo, qa, ab2, bc, cd, dr, pn),
(jk1, hd), and (jk1, gc) that each contains at least one ini-
tialization fragment.

3.6 Interpretation

During recognition, each fragment of contour g retains a
number of valid hypotheses that are processed every time g
is involved in some matching extension like the pairing of hy-
potheses or predictive matching. Now each matched model
of fragment g accumulates some vote that is the length of
all the fragments and lines which have been successfully
matched to g. The retained models are taken as those hav-
ing the highest vote when all possible matching have been
completed for the retained hypotheses. Each fragment is
hypothesized to one of its matched models that received the
highest vote which generally allow complete clustering of the
scene.

In some cases the originally generated hypotheses of some
fragment are not matched to any other scene fragment be-
cause the hypothesized contour is present in many models
and the selected hypotheses are incorrect. In this case these
hypotheses accumulate relatively very low vote. To avoid
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this blocking the algorithm backtrack into the originally gen-
erated hypotheses and retrieve the next highest hypotheses
which are incrementally matched with the currently running
hypotheses at all levels of the recognition.

4 Performance evaluation

Our approach consists of increasing the dimensionality of the
indices as a method to increase selectivity. We have parti-
tioned the 3-D index space into seven distinct hashing tables
to decrease the number of entries per table for reducing the
storage size without affecting discriminability.

The maximum number of buckets is Nmax = Π3
i=1Ri/

Π3
i=12εi, where Ri is the allowable range of the ith param-

eter and εi is the overall variance. In this case, Nmax =
R2

hRθ/(8ε2hεθ), where Rh, εh, Rθ, εθ are the range of the
curving factor, its variance, the range of the angular shift,
and its variance, respectively. Since parameters εh and εθ

are global variances, therefore, it is important to optimize
to bucket size by directly relating the bucket size to discrim-
inability.

For this we heuristically searched for the best possible
bucket size by stepping the size around the value of Rmin =
8ε2hεθ, which is the smallest bucket size, after estimating
the values of εh and εθ based on known thresholding and
repetitive acquisitions of features by varying their position
and orientation.

The current bucket size is Rh,θ = R2
hRθ = αRmin, where

α is the bucket size factor that is studied here in the range
0.25 ≤ α ≤ 2.25 by using steps of 0.25. The Storage Size
(S(α)) is defined as S(α) = st(α)Smin where Smin is the
minimum storage over the studied range of α and st(α) is
the storage factor. Figure 6 shows the plot of the storage
size and the normalized recognition time versus the bucket
size. The storage size decreases versus increase in the bucket
size around reference Rmin in the case of 100-object model.
The storage is likely to be constant when bucket size exceeds
Rmin because of non-uniform parameter distribution. When
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Figure 6: Percentage of errors in recognizing sets of 4 fea-
tures

the bucket size is below Rmin the storage linearly increases
with decrease in the bucket size because the feature param-
eters randomly fall into neighboring buckets thus creating
duplicate entries in the tables.

Our objective is to link the selection of the bucket size
to the ability to discriminate fragments which includes gen-
eration of hypotheses, cost of verifying them, and cost of
carrying out accurate distance matching. We relate the av-
erage time to classify these features to the bucket size with
the idea that minimum classification time corresponds to
maximum discriminability for the set of features. For this
we consider four features of the same type that appear on
the contour of some model object. Feature types with same
complexity are grouped into groups type-1&4, type-2, type-
3&6, type-5, and type-7. We randomly selected 10 sets of
these features, each set is taken from one model, and plotted
on Figure 6 their average recognition time versus the storage
factor st(α). The increase in the recognition time (fine-level)
for α > 1.4 is due to increase in the number of hypotheses
that result from selecting bucket size larger than the allow-
able range of its parameters. On the other hand, selecting
excessively small backets (left part of Figure 6) may also
increase the recognition time due to bucket fragmentation
and redundent processing.

Type-2 has two straight segments separated by some shift
used as searching key which explain why the recognition
time is linear function of model size (Figure 6). type-1&4
and type-3&6 have one straight and one curved segments
and differ only by the presence or not of the shift separator.
Their recognition time slightly favors a specific bucket size.
Finally, type-5 and type-7 have two curving factors and dif-
fer only by the shift separator. Here, the recognition time
is very sensitive to the bucket size. Feature-based search in-
volves a mixing of feature types, therefore, we need to find
a bucket size that is globally suitable. After examining the
average recognition time for feature types we decided that
the best discrimination corresponds to 1 ≤ α ≤ 1.75. Our
final setting was S(α) = 1.4Smin.

The discrimination associated to recognition of whole ob-

jects used in [4] is defined as Vc/Vw, where Vc is the votes
for the correct shape instance and Vw is the maximum votes
received for the incorrect shape instance. In our approach
we avoid excessively reducing the bucket size to gain selec-
tivity but instead the bucket size is selected to minimize the
recognition time of a sufficiently large number of features.
This exposes the recognition system to a finer-level recogni-
tion which is more relevant for partially occluded scene.

4.1 Effects of recognition errors

Now we evaluate the recognition errors for each type of fea-
tures as function of bucket size. For this the storage factor
α was given five values starting with 0.75 with a step of 0.5.
For each value of α we re-build our hashing tables using
data collected from 130 model objects. To study the error
rate for each feature type, we select model objects so that
each has at least one set of four features of the same type.
Each selected object is set with random orientation and its
four features (same type) are used to generate the initial
hypotheses needed to carry out the recognition. Thus, by
varying the type of selected features we can study the error
rates of each type as well as relating the error to the bucket
size. The error rates for each type of features are plotted on
Figure 7. Errors were different depending on the complexity
of the features. For this we gouped the features into types
(5, 7), (1, 3, 4, 6), and (2).

Generally the errors decrease with increasing bucket size.
Too small buckets increase the errors because indices can
fall outside the useful range which requires duplicate entries
(fragmentation) to reduce errors. Large buckets reduce the
errors but also increase the number of initial hypotheses
that must be processed. This increases the dependency of
the recognition time over the size of the models. Therefore,
the bucket size must be engineered with respect to error
rates, storage size, and recognition time. Intuitively one is
to adopt a coarse bucket quantization but traditional 1-D
hashing schemes do not behave well in the presence of un-
certainties, digitization noise, and saturation. By categoriz-
ing our features into seven types we expanded the indexing
mechanism beyond the 1-D table to 2-D and 3-D hashing
schemes. This approach lead to buckets having less denser
population than 1-D hashing which enables the use of coarse
buckets to reduce errors while keeping reasonable the num-
ber of initial hypotheses.

4.2 Effects of the model size

Here we study the recognition time as function of model
size. A model for n-object is denoted by Mn and the studied
instances of n are 10, 40, 70, 100, and 130. The bucket size
was set as S(α) = 1.4Smin. The recognition algorithm is run
under each of the model settings for recognizing the scene
shown on Figure 3.

Table 1 shows the total number of hypotheses generated
and the ranking for all the three scene objects versus the
size of the model. For example, object-2 received a ranking
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Hypotheses pruning versus model (M) size
M hypo. Rank-1 Rank-2 Rank-3 Time % ∆
10 61 16% 14% 25% 48 −
40 258 7.6% 6.2% 10.4% 51 6.25%
70 497 4.3% 3.8% 6.7% 53 10.4%
100 796 2.8% 2.5% 4.5% 55 14.5%
130 1172 2.1% 1.8% 3.25% 58 20.8%

Table 1: Hypothesis generation, ranking, and recognition
time

of 6.2% under M40 which indicates that, on the average, the
number of votes received by each of its features for the cor-
rect matching was among the top 6.2% among all the highly
voted matching. Though the number of total hypotheses
generated is at least quadratic in the model size, the al-
gorithm spends a small fraction of the recognition time on
processing of these hypotheses. Overall recognition time of
the three objects is shown on Table 1 together with the per-
cent increases in the recognition time over that obtained for
M10. The recognition time is likely to be independent from
the number of hypotheses originally generated.

5 Conclusion

We presented a coarse-to-fine recognition algorithm that se-
lectively processes robust initial hypotheses which are ex-
panded in the recognition course through predictive match-
ing and other neighborhood relational operators. This avoids
processing of a large number of initial hypotheses and allows
pruning large portion of inconsistent hypotheses. Tradition-
ally, coarse buckets lacks selectivity due to their dense pop-
ulation and saturation effects. To maintain high selectivity
we decided to split our indexing scheme into seven types
(features) and expanded its dimentionality to 3. Evalua-
tion shows that the recognition time favors a specific bucket
size. However, selecting large buckets was found to lower the
recognition errors but at the cost of increasing the recogni-
tion time and dependence over the size of the model. Eval-
uation of 100-object model shows that the recognition time
is nearly independent from the number of hypotheses origi-
nally generated.
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