
Performance Evaluation of Scheduling

Precedence-Constrained Computations on Message-Passing

Systems

M. Al-Mouhamed and A. Al-Maasarani

Abstract

Scheduling precedence graphs with communication times is the theoretical basis
for achieving efficient parallelism in message-passing machines. The lack of global
information on the tasks, due to communication, has lead to develop local scheduling
heuristics such as the Earliest-Task-First. Using knowledge on computation, com-
munication, and system topology, a class of global priority-based scheduling heuris-
tics called Generalized List Scheduling is proposed. The task-level is evaluated by
backward scheduling the computation over the multiprocessor by using the best local
heuristic. This leads to realistic measurement of the task priority for use in forward
GLS scheduling.

Experimental evaluation of local and GLS heuristics is carried out using extensive
random graph generation and altering over the communication, inherent parallelism,
and system topology. Analysis shows that local heuristics rely on locally maximiz-
ing the processor efficiency and gives acceptable deviations only when the inherent
parallelism is large enough to cover the effective communication. This leads the local
heuristics to achieve bounded speedup.

GLS scheduling is based on combining two strategies: 1) differentiate critical com-
putation and communications from others by scheduling critical paths first, and 2) im-
plement effective management of processor utilization in order to increase the speedup.
GLS scheduling maintains acceptable relative deviation versus change in parallelism,
communication, and multiprocessor topology. The time complexity of GLS heuris-
tics is O(pn2) , where p and n are the number of processors and that of the tasks,
respectively.

Keywords: Bounds, Distributed Processing, Heuristics, Performance,
Scheduling.

1 Introduction

A fundamental result of scheduling theory is the introduction of the list scheduling [1, 2]
and the establishment of its performance guarantee. Graham’s List-Scheduling is based
on: 1) evaluation of the task level or length of the shortest path from starting a task to
completion of the computation, and 2) minimizing the processor idle time by scheduling the
ready task with the highest level on any idle processor. Empirical testing of scheduling [3]
deterministic and stochastic computations has proved that list-scheduling is near optimum
as the finish time deviates by at most 4% from the optimum solution that is measured
using Fernandes-Bussel’s [4] lower bound. The success of list-scheduling is due to the
use of task-level to differentiate critical from non-critical tasks and the simplicity of the
model for which the inter-task communication overhead is negligible compared to the
computation. The assumption on the communication has been largely based on shared
memory architectures. But due to significant communication overhead, this assumption
cannot be justified [5, 6] for message-passing architectures. Therefore, the need to handle

1

the communication and the multiprocessor topology in designing effective scheduling for
message-passing systems.

Linear clustering [7] has been applied for iteratively merging the most communicating
paths as an attempt to optimize the computation time. After multiple refinements the
resulting graph is mapped onto the target multiprocessor using graph theoretic approach.
Another method based on clustering immediate tasks [8] has been proposed for minimizing
the critical path length over infinite number of processors. When the minimum critical
path is found, merging operations are performed in order to match the clusters with the
number of processors. Methods based on branch-and-bound [9] and simulated annealing
[10] have also been used as heuristics for mapping and partitioning computations. These
approaches either minimize objective functions other than the computation finish time or
lack global evaluation because only sub-problems are investigated. We focus on low cost
compact scheduling heuristics that can be applied to regularly and irregularly connected
network of processors.

A set of Γ(T1, . . . , Tn) of n tasks (T) with their precedence constraints and communica-
tion costs are to be scheduled on p identical processors so that their overall execution time
is minimum. The computation can be modeled [11, 12] by using a directed acyclic task
graph G(Γ,→, µ, c) where → , µ(T) , and c(T,T’) denote the precedence constraints, the
task execution time, and the number of communication messages (volume of data) that
are sent from task T to its immediate successor T ′, respectively. The multiprocessor is de-
noted by S(P,R) where P is a set of processors and R is the the interconnection network.
The time to transfer a unit of message from a processor p(T) to processor p(T ′) is denoted
by r(p(T), p(T ′)), therefore the time to transfer c(T, T ′) messages is c(T, T ′)r(p(T), p(T ′)),
i.e. the communication media is assumed to be contention free. System S(P, R) enables
modeling loosely-coupled, regularly and irregularly connected multiprocessors.

To differentiate between critical and non-critical computation, one needs to define a
global task-level that accounts for the characteristics of the computation and the mul-
tiprocessor. The multiprocessor topology and communication costs strongly affect the
behavior of the computation, and therefore, knowledge on the multiprocessor is needed
in evaluating the task-level (l(T)). The task-level is defined as the length of the shortest
path from starting that task to any exit node such that all the precedence and commu-
nication constraints are satisfied. Unfortunately, the accurate evaluation of the lst(T) is
very difficult because: 1) the length of paths, in the task-graph, are differently affected
depending on the way each path is mapped onto the processors, and 2) by definition the
l(T) derive from the optimum solution that is obtained using infinite or finite number of
processors. To avoid these problems, only local scheduling heuristics have been proposed
such the earliest-task-first [12] and the largest-communication-first [13]. Discarding all the
communication aspects [14], or accounting for all of them, in evaluating the task-priority
leads to excessively inaccurate evaluations that fail specifying the degree of criticality of
the tasks with respect to the overall computation.

Our objective is to find configuration-dependent global scheduling heuristics by gener-
alizing the concept of task-level so that to incorporate the available knowledge such as that
of the computation graph, communication aspects, and multiprocessor topology. Using
the generalized task-level, a number of scheduling heuristics are proposed by combining
the task-level with efficient management of the processor idle times in defining a new
global task-priority concept. This methodology extends the list scheduling concept, that
has previously been applied to computation model G(Γ,→, µ), to a new approach called
Generalized List Scheduling (GLS) that is applied to schedule the computation model
G(Γ,→, µ, c) over system S(P, R). Experimental evaluation of local and GLS scheduling
is carried out using random generation of computation graphs and scheduling using dif-

2

ferent strategies, processor utilization techniques, and multiprocessor topologies. Analysis
of local and global scheduling outlines the relative merit of each heuristic with respect to
the task-selection strategy, amount of communication/computation, inherent parallelism,
and multiprocessor topology.

2 Evaluation of the global task-level

Let T be a task and denote by D(T) the set of predecessors of T . By considering only one
predecessor task, the earliest-starting-time est(T, p) of T for some processor p depends on
the finish time f(T ′) of the predecessor T ′ ∈ D(T), the number of messages c(T, T ′) sent
from task T to T ′, and the processor p′ on which task T ′ has been running:

est(T, p) = f(T) +

{
0 if p = p′

c(T ′, T).r(p′, p) otherwise
(1)

By considering all the predecessors of T , the est(T, p) is the earliest time the latest message
from the predecessors reaches processor p:

est(T, p) = max
T ′∈D(T)

{f(T ′) + c(T ′, T).r(p(T ′), p(T))} (2)

As the est(T, p) depends on the routing cost r(p, p′), then there exists a processor p∗ for
which task T can start at the earliest time (est(T)) among all the available processors:

est(T) = est(T, p∗) = min
p
{est(T, p)} (3)

The effective earliest-starting-time (est (T, p∗)) is the least time at which T can start on
some processor p∗ by considering the precedence of T and the current free time f(p) of
every processor p:

est (T, p∗) = minp{max{est(T, p), f(p)} } (4)

The earliest-completion-time ect(T) is simply est(T) + µ(T). The earliest-completion-
time provides a heuristic approach to measurement of the shortest path from starting
the computation graph to completion of task T such that all the precedence constraints
are preserved. The task-level of T is the length of the shortest path from starting T to
completion of any exit node of the task graph. A heuristic approach to evaluate the task-
level can be obtained by evaluating the earliest-completion-time of the tasks using the dual
task graph, i.e. the latest-starting-time of the tasks in the original task-graph. The dual
task graph is obtained by reversing all the arc direction in the original task graph. On the
other hand, applying Eq. 3 to the computation of the ect(T) may lead two different tasks
to occupy the same activity level of one processor, i.e. one processor is implicitly assumed
to evaluate more one task at a time. For this Eq. 3 does not lead to achievable evaluation
of the task-levels.

An algorithm called GTT is proposed to evaluate generalized task-level or ect(T) as
obtained by scheduling the dual task-graph Gd(Γ,→, µ, c) starting with the entry nodes,
allocate them their ect(T) times, and propagate this process down to every task whose
predecessors in Gd have all been allocated their ect(T) times until the exit nodes. The
scheduling of Gd(Γ,→, µ, c) over system S(P,R) is performed using the best known local
heuristic that uses the earliest-task-first as defined by the effective earliest-starting-time in
Eq. 4. Algorithm GTL uses set B to store the tasks that have been allocated their ect(T)
and set A to store the tasks that have no predecessors or whose predecessors all belong
to B. Function f(p) denote the current finish time of processor p. We assume function
λd(T) is initialized to the number of predecessors of T . Algorithm GTL is the following:

3

(1) Obtain the dual task graph Gd(Γ,→, µ, c)
(2) Initialize: A ← {T : D(T) = ∅}, est(T, p) = 0

for each task and each processor.
(3) While |B| < n Do

Begin
(3.1) Select the task T ∗ ∈ A and processor p∗ that satisfy:

est(T ∗, p∗) = minT∈A{minp{est(T, p)} }
(3.2) Assign T ∗ on p∗ : p(T ∗) = p∗, ect(T ∗) = est(T ∗, p∗) + µ(T ∗),

f(p∗) = ect(T ∗), Remove T ∗ from A, Append T ∗ to B,
For each T ∈ A, update est(T, p∗) = max{est(T, p∗), f(p∗)}

(3.3) Repeat for each task T ∈ S(T ∗) : λd(T) = λd(T)− 1 ,
If λd(T) = 0 then
Update A : A ← A + {T},
Evaluate the effective est(T, p) for each processor p:
est(T, p) = max{maxT ′∈D(T){f(T ′) + c(T ′, T).r(p(T ′), p)}, f(p)}

End.

The output of LST is the list of task-level l(T) = ect(T) that represents an approx-
imation of the shortest path from task T to any exit node of G(Γ,→, µ, c). The main
loop of GTL is statement 3 that executes n times because one task is allocated for each
run of the body. Statement 3.1 executes at most pn times in order to select one task.
Statement 3.2 updates the parameters but its last statement executes n times. Operation
λd(T) = λd(T) − 1 in statement 3.3 executes O(n2) times but the condition λd(T) = 0
occurs only once for each task. The time complexity of GTL is then O(pn2).

3 Generalized List Scheduling

In this section we generalize the Graham’s list scheduling by defining global priority based
scheduling heuristics that incorporate the effect of inter-task communication and multi-
processor topology. The new scheduling is called Generalized List Scheduling (GLS). A
heuristic that belong to this class consists of two steps: 1) obtain the priority list of the
tasks by using algorithm GTL, 2) scheduling: among the ready-to-run tasks, select the
most prior task and assign it to run at the earliest. The second step of GLS heuristics can
be implemented using different strategies depending on how the task-priority is mapped
to the task level.

For GLS scheduling, there are two approaches to control the scheduling process:
Processor-driven (PD) and Graph-driven (GD). The PD approach consists of updating
the set of ready-to-run (RTR) tasks when any processor completes execution of some
task and becomes idle. The successors of those newly completed tasks are the only to
be involved in the updating process. This leads the PD scheduler to track the increasing
sequence of processor completion times. For example, algorithm [12] implements the local
strategy called earliest-task-first by using the PD approach.

The GD approach consists of updating the set RTR following the starting of each task
and only the successors of this task are involved in the updating process. This anticipating
process promotes in-depth expansion of the task-graph compared to the rather horizontal
expansion in case of PD. These approaches will be investigated in the evaluation.

Depending on the how task-selection maps into the generalized task level and the
incurred processor idle time, we define the following GLS heuristics. Heuristic GD/HLF
is Graph-driven/ Highest-level-first, i.e. highest l(T) first. Heuristic PD/HLF uses the
processor driven approach. Selecting tasks according to the HLF criteria may lead to

4

increasing the processor idle time that precedes the starting of the highest level task.
Therefore, a heuristic that imposes a penalty function of the idle time that precedes its
starting time consists of defining the task-priority as l(T)−est(T), where l(T) is the length
of the shortest path from starting T to any exit node as achieved by heuristic GTL and
est(T) is the effective earliest-starting-time. This approach leads to define the heuristics
GD/HLETF and PD/HLETF that are called Highest-level-earliest- task-first. According
to the level function, the selected task T satisfies l(T) − est(T) ≥ l(Ti) − est(Ti) for any
RTR task Ti. In other words, we have: l(T)− l(Ti) ≥ est(T)− est(Ti), i.e. to select task
T the difference in levels between T and Ti should be higher than the amount of idle time
(est(T)− est(Ti)) that would be saved if Ti was selected first.

In the following we present algorithm GD/HLETF as one representative heuristic for
the GLS class. GD/HLETF uses the sets that have been defined for in algorithm LST. The
inputs to GD/HLETF are the task-graph and the list of ect(T) times that are generated
by LST. This heuristic consists of selecting a task T ∗ and a processor p∗ such that l(T ∗)−
est(T ∗, p∗) is the highest among all the RTR tasks. Following the scheduling of T ∗ on p∗,
the time at which p∗ becomes free is f(p∗) = est(T ∗, p∗) + µ(T ∗) is used to update the
est(T, p∗) for all the RTR tasks, i.e. est(T, p∗) ← max{est(T, p∗), f(p∗)}. The outputs
are the starting time st(T) of each task and the processor p(T) on which T is assigned.
Algorithm GD/HLETF is the following:

(1) Initialize: A ← {T : D(T) = ∅}, est(T, p) = 0 for each task T and each processor p,
B ← ∅, f(p) = 0 for each processor.

(2) While |B| < n Do
Begin
(2.1) Select the task T ∗ ∈ A and processor p∗ that satisfy:

l(T ∗)− est(T ∗, p∗) = maxT∈A{l(T)−minp{est(T, p)} }
(2.2) Assign T ∗ on p∗ : p(T ∗) = p∗, st(T ∗) = est(T ∗, p∗), f(p∗) = st(T ∗) + µ(T ∗),

Remove T ∗ from A, Append T ∗ to B,
For each T ∈ A, update est(T, p∗) = max{est(T, p∗), f(p∗)}

(2.3) Repeat for each task T ∈ S(T ∗) : λd(T) = λd(T)− 1 ,
If λd(T) = 0 then

Update A : A ← A + {T},
Evaluate the effective est(T, p) for each processor p:
est(T, p) = max{maxT ′∈D(T){f(T ′) + c(T ′, T).r(p(T ′), p)}, f(p)}

End.

Similar analysis to that of LST shows that the time complexity of GD/HLETF is
O(pn2). Our main concern is to promote the processor utilization for global-priority based
scheduling algorithm. An optimization technique that can reduce the processor idle time
is to attempt filling the idle time that precedes the starting of the most prior task T by a
less prior task T ′ provided that this operation does not lead to delay T whose scheduling
decision will be postponed without affecting its earliest starting time. If such task T ′ is
found, then updating the set RTR by eventually adding some successor T ′′ of T ′ cannot
cause any delay to T because l(T)− est(T) ≥ l(T ′′)− est(T ′′) because T ′′ ∈ D(T ′) implies
that l(T ′)−est(t′) ≥ l(T ′′)−est(T ′′). This method allows defining heuristics PD/HLETF ∗

and GD/HLETF ∗ that apply the above idle time optimization techniques. This approach
leads to only increasing the constant in pn2, thus leaves the time complexity as O(pn2).

5

4 Experimental Evaluation

The objective is to compare performance of local scheduling heuristics and the proposed
approach that is based on pre-evaluation of the task-priority and generalized list schedul-
ing. For this we consider the local heuristic PD/ETF [12] and GD/ETF that is identical
to steps 2 and 3 of algorithm GTL. A heuristic called Random is used to randomly select
tasks and assigned them to run at their earliest starting times. This is useful to compare
the effect of random and deterministic task selections.

A random graph generator (RGG) is used for generating computation graphs with
few tasks hundred tasks and with task computation time ranging from 10 to 190 time
units. The average communication cost, number of level, and the number of processors
are indirectly controlled using the parameters: 1) the ratio (α = carc/µT) of average
communication carried by each edge (Carc) to the average task computation time (µT), 2)
the degree of parallelism (β = NT /NL.p) that is the average number of tasks (NT) over the
product of the average number of levels (NL) by the number of processors p, and 3) the
topology of the interconnection network that is the fully-connected (FC), the hypercube
(HC), and the ring (RG).

The studied ranges of α and β is [0 − 3] and [0.5 − 4], respectively. The variance on
Carc is set to 50% of the current average of Carc. Each graph has at least 6 levels and 70%
of the outgoing arcs from one level are incoming arcs to the next level and the remaining
30% reach arbitrary forward levels. For each instance of these parameters, the RGG uses
the uniform distribution in order to generate 500 random computation graphs that are
scheduled by each of the previously defined heuristics. The shortest finish time that is
achieved by some heuristic for a given task graph is denoted by (ωbest) and used as a
reference of the optimum solution.

4.1 Deterministic Versus Random Task Selection

Figure 1 shows the average percent deviation of the finish time as achieved by Random
over the FC topology. For low values of parallelism (β = 0.5 − 1), Random deviates the
least compared to its deviation at higher level of parallelism because at lower parallelism
the size of the set RTR is small anyway. Random task selection may increase the the
finish time up to 40% on the average. Therefore, deterministic task selection is needed
especially when the parallelism exceeds some threshold (β ≥ 2), i.e. there are at least two
tasks that compete for each processor on the average.

4.2 Global Priority and Processor-Driven

Heuristics PD/HLF and PD/HLETF generate finish times that significantly deviates
from ωbest with increasing parallelism and communications. Typically, PD/HLF and
PD/HLETF deviates by 60% and 9% on the average. Figure 2 shows the average devia-
tion for PD/HLETF with the HC topology that is qualitatively representative for those
obtained with the FC and RG. The reason for these significant deviations is that the PD
approach leads global priority-based selection to inefficient management of the processor
idle time. PD/HLETF with its task-priority definition l(T)− est(T) greatly improves the
performance of PD/HLF but still gives unacceptable deviation in the general case. The
PD approach is not adequate for global priority-based selection because of unfair balancing
between task-level and processor utilization.

6

4.3 Local Heuristics

Heuristics PD/ETF and GD/ETF have nearly the same average deviation from ωbest with
small advantage to GD/ETF (2%). The PD and GD approaches are identical within the
framework of local scheduling. However, the slight advantage of GD/ETF over PD/ETF
is due to the use of the effective earliest-starting-time in GD/ETF (Eq. 4) againsd the
theoretical one (Eq.3) in PD/ETF. Figure 3, 4, and 5 show the average deviation of
PD/ETF from ωbest for the FC, HC, and RG topologies, repectively. A deviation of 5% is
achieved by PD/ETF only when β/α ≥ εtop, where εtop is a topology dependent parameter.
Using the definition of α and β, we have:

NT

NL
.
µT

carc
≥ εtop.p (5)

Therefore, to achieve acceptable deviation (5%) the inherent parallelism (NT /NL) and the
communication ratio (carc/µT) impose a bound on the number of processors used. The
local heuristics PD or GD/ETF require the parallelism to be higher than some threshold,
depending on the communication, in order to achieve acceptable deviation. We conclude
that local heuristics that are based on earliest-task-first rely on overlapping computation
and communication as a strategy to minimize the finish time through management of
the processor utilization. Therefore, these heuristics require increasing the parallelism,
or decreasing the number of processors, in order to achieve acceptable global finish time.
This effect appears clearly for connectivity-restricted topologies as shown on Figures 3, 4,
and 5.

4.4 Generalized List Scheduling

The heuristics GD/HLF, GD/HLETF, and GD/HLETF ∗ give acceptable deviation from
ωbest for low to average communication (0 ≤ α ≤ 1.5). To save the area of this paper, only
the plots of the average deviation for heuristic GD/HLETF ∗ are shown on Figures 6, 7, and
8 for the FC, HC, and RG topologies, respectively. While GD/HLF deviates by more than
8% for (α > 1.5), heuristic GD/HLETF has overcome most of the deficiency of GD/HLF
with respect to processor utilization because GD/HLETF slightly increases its deviation
with increasing communication. For all studied levels of parallelism, the peak deviation
of GD/HLETF is 4.5%, 6%, and 7.5% for the FC, HC, and RG topologies, respectively.
Heuristic GD/HLETF ∗ achieves the lowest average deviation that is nearly 2% for all
studied level of parallelism and communication. This shows a clear advantage of global
priority-based scheduling over the local approches. The slight deviation of GD/HLETF ∗

compared to those of GD/HLF and GD/HLETF indicates that the major issue is to com-
bine the task-level with efficient management of the processor idle times. This objective
seems to be achieved within heuristic GD/HLETF ∗ that maintains small deviation over
the studied range of communication, parallelism, and multiprocessor topologies.

4.5 Analysis of the Distribution

Analysis of the distribution is carried out for PD/ETF and GD/HLETF ∗ because these
heuristics are representative of local and GLS scheduling, respectively. Figures 9 and 10
show the boundary for the best 50% and 90% population of the finish times versus the
available parallelism (β) for PD/ETF and GD/HLETF ∗, respectively. Each point of the
boundary plots is taken as the maximum deviation for all levels of studied communications.

While the 50% boundary for PD/ETF is at the 10% deviation level, that of GD/HLETF ∗

does not exceed the 1.5% level. The 90% boundary is nearly about 18% for PD/ETF

7

against 4% to 7% maximum deviation for GD/HLETF ∗. Changing the topology from FC,
to HC, and to RG has the effect of increasing the communication requirements on the orig-
inal computation but the general shape of the distributions is nearly maintained. PD/ETF
is more sensitive to the inherent parallelism than GD/HLETF ∗. PD/ETF slightly reduces
its 50% deviation boundary versus increasing parallelism while GD/HLETF ∗ maintains
constant deviation at the same boundary level. The dependency on parallelism and topol-
ogy appears only at the 90% boundary level for GD/HLETF ∗.

5 Conclusion

Using knowledge on computation, communication, and multiprocessor topology, a class of
global priority-based scheduling heuristics called Generalized List Scheduling or GLS has
been proposed. Global task-level is heuristically evaluated by scheduling the dual task-
graph, that is used to model the computation, over the target multiprocessor. Using the
best known local scheduling, the task-level or length of the shortest path from starting
that task to exit node is approximated to the task completion time that is achieved in
scheduling the dual task graph. GLS scheduling operates on the forward task-graph by
using differential task-priority concept based on the generalized task-level and the incurred
processor idle time.

Experimental evaluation of local and GLS scheduling is carried out by stepping over
the communication and parallelism and by considering different multiprocessor topologies.
The communication media was assumed to be contention free. Analysis shows that local
scheduling rely on maximizing the processor utilization in order to minimize the finish
time. This strategy leads to acceptable deviation, from the best known solution, only
when the available parallelism is sufficient to cover the communications, and therefore,
leads to limit potential speedup.

Even with approximate task-level, GLS scheduling maintains acceptable deviation from
the best known solution versus increasing parallelism, communication, and restricting
the multiprocessor topology. The efficiency and compactness of GLS scheduling makes
it very attractive for compile-time scheduling over regularly and irregularly connected
multiprocessor topologies.

Future extension is to find more refined evaluation for the task-level by using local
search or iterative pre-processing. The use of generic model for the interconnection network
to account for the communication delay is interesting to make the evaluation sharper
and more realistic. Finally, extension of this work to non-deterministic or incompletely
specified computation such as bounding the knowledge to just few task-levels is useful
generalization of GLS scheduling to dynamic environment.

References

[1] Coffman,E.G., and Denning, P.J., ’Operating Systems Theory’, (eds) Prentice-Hall,
1973.

[2] Coffman, E.G. at als, ’Computer and Job-Shop Scheduling Theory’, (Eds) John Willy
& Sons, 1976.

[3] Adam, T.L., Chandy, K.M., and Dickson, J.R., ’A Comparison of List Schedules
for Parallel Processing Systems’, Comm. of the ACM, Vol 17, No 12, Dec. 1974, pp
685-690.

8

[4] Fernandez, E.B., and Bussell, B., ’Bounds on the Number of Processors and Time
for Multiprocessors Opyimal Schedules’, IEEE Trans. on Comp., C-22, No. 8, Aug.
1973, pp. 745-715.

[5] McGreary, C. and Gill, H., Automatic Determination of Grain Size for Efficient
parallel Processing’, Comm. of the ACM, Vol. 32, No. 9, Sep. 1989, pp. 1073-1078.

[6] Pase, D.M., A Comparative Analysis of Static Parallel Schedulers where Communi-
cation Costs are Significant’, Ph.D. thesis, Oregon, Jul. 1989.

[7] Kim, S.J., and Browne, J.C., ’A General Approach to Mapping of Parallel Com-
putation upon Multiprocessor Architectures’, Proc. of the Inter. Conf. on Parallel
Processing, Vol. 3, Aug. 1988, pp. 1-8.

[8] Sarkar, V., and Hennessy, J., ’Compile-time Partitioning and Scheduling of Parallel
Programs’, Proc. of the SIGPLAN Symp. on Compiler Construction, Jul. 1986, pp.
17-26.

[9] Richard Ma, P.Y., Lee, E.Y.S., and Masahiro, T., A Task Allocation Model for Dis-
tributed Computing Systems, IEEE Trans. on Computers, Vol. C-31, Jan. 1982, pp.
41-47.

[10] Sheild,J., ’Partitioning Concurrent VLSI Simulated Programs onto Multiprocessor by
Simulated Annealing’, IEEE proceedings, No. 134, Jan. 1987, pp. 24-30.

[11] Rayward-Smith, V.J., ’UET Scheduling with Interprocessor Communication Delays’,
Report SYS-C86-6, Information Systems, University of East Anglia, Norwich, U.K.,
1986.

[12] Hwang, J.-J., Chow, Y.-C., Anger, F.D., and Lee, C.-Y., ’Scheduling Precedence
Graphs in Systems with Interprocessor Communication Times, SIAM Computing,
Apr. 1988, pp. 244-257.

[13] Al-Mouhamed, M., ’Analysis of Macro-Dtaflow Dynamic Scheduling on Non-Uniform
Memory Access Architectures’, To appear in IEEE Trans. on Parallel and Distributed
Systems, 1993.

[14] Sih, G.C., and Lee, E.A., ’Scheduling to Account for Interprocessor Communication
within Interconnection-Constrained Processing Network’, Inter. Conference on Prallel
Processing, Vol. I, 1990, pp. 9-16.

9

