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Abstract

Scheduling DAGs with communication times is the theoret-
ical basis for achieving efficient parallelism on distributed
memory systems. We generalize Graham’s task-level in a
manner to incorporate the effects of computation, data size,
and network latency. A new scheduling that uses the pro-
posed task-level to make early reservation of resources for
critical computation and communication is proposed. We
also propose an optimization called Iterative Refinement
Scheduling (IRS) that alternatively schedules the computa-
tion graph and its associated reverse. The task-level used in
some scheduling iteration is the task’s starting time that is
achieved in the very previous iteration. IRS enables search-
ing and optimizing solutions as the result of using more re-
fined task-level in each scheduling iteration.

Evaluation and analysis of the results are carried out for
different instances of problem granularities, parallelism, and
network latency such as the fully connected, hypercube, and
ring. The finish time obtained from two-iteration schedul-
ing outperforms those generated by other recently proposed
scheduling as well as the clustering approaches.

IRS allows exploring a space of solutions whose size grows
with the amount of parallelism and communication granu-
larity. Solutions generated by IRS largely outperform all
known approaches specially for fine-grain problems where
other approaches fail. IRS enables optimizing the solution
specially for critical instances such as fine-grain DAGs and
large parallelism. The time complexity of one IRS iteration
is O(pn2).

1 Introduction

Extracting parallelism out of large scale scientific computa-
tions is especially useful when the programs are repeatedly
executed over different data sets. Deterministic scheduling
can be profitable when the execution behavior is predictable
at compile-time such as the class of static dataflow compu-
tations. In that case, the compiler is capable of predicting
the computation and communication requirements as well
as the precedence relationships and volume of transferred
data between the various computation modules.

We study scheduling precedence-constrained computa-
tions on an arbitrary number of processors that are regularly
or irregularly interconnected. To incorporate the effects of
communication, a model of communication latency is used
to evaluate the cost of transferring data between the proces-
sors. Generally, the scheduling problem is NP-complete [5]
except for trees. Lower bounds [1] and worst case anal-
ysis [8, 1] have been proposed for scheduling precedence
computations with and without communication costs. The
objective is to find efficient nonpreemptive scheduling ap-
proaches that combine knowledge on the computation struc-
ture and target multiprocessor in order to minimize overall
finish time. Different approaches have been used for schedul-
ing computations with communication costs which can be
classified into the following categories: Searching, Cluster-
ing, Task-Duplication, and Priority-Based Scheduling.

Methods based on branch-and-bound [13] and simulated
annealing [15] have also been used as heuristics for map-
ping and partitioning computations. These approaches ei-
ther minimize objective functions other than the computa-
tion finish time or lack global evaluation because only partial
scheduling problems are addressed [9, 14]. Recently, genetic
algorithms [6] were also applied to scheduling without com-
munication times.

Linear clustering [9] has been applied for iteratively merg-
ing tasks along the most communicating chains in an at-
tempt to minimize the computation time. After multiple
refinements the resulting graph is mapped onto the target
multiprocessor using graph theoretic approach. Clustering
over unbounded number processors [14] consists of 1) parti-
tioning the set of tasks into clusters of sequential tasks, and
2) reducing the number of clusters by merging operations
until matching the number of processors. The Dominant
Sequence Clustering (DSC) [18] was proposed to enhance
the work reported by Sarkar and Hennessy [14]. DSC is a
low complexity clustering that accepts merging task T to a
cluster if the distance from some entry node to T decreases
as well as the current length of the dominant chain to which
T belongs. The time complexities compare as O(e(e + n))
[14] and O(log n(e+n)) [18], where n and e are the numbers
of tasks and communication edges, respectively.

By assuming that delays in communication are mainly
due to channel latency, scheduling based on Task Dupli-
cation (TD) over idle processors was proposed [10] to re-
duce the communication. Beside the time complexity of this
method (O(n4)) [10] the management of duplicated data
messages is another drawback. The impacts of task and
processor selection as well as the task duplication were ex-



perimentally studied by Pase [12] by evaluating the Hu’s
task-priority [7] as the sum of task times from the graph
bottom.

Priority-based scheduling basically uses a selection crite-
rion in order to assign a ready task to a processor so that to
meet some local strategy as an attempt to minimize overall
finish time. The notion of task-level is one of fundamental
priority information because it allows differentiating critical
from non-critical tasks. Unfortunately, the evaluation of the
task-level [3] for precedence-constrained computations with
communication times is not tractable because the task-level
strongly depends on the way the tasks are mapped to the
processors and the implied communications. In other words,
the knowledge of the computation structure is not sufficient
to distinguish between critical and non-critical tasks. Dis-
carding the communication and network effects in evaluating
the task-level [10, 12], or pessimistically accounting for all
of them [17] leads to excessively inaccurate evaluations. To
avoid these problems, only local scheduling heuristics have
been proposed such as the principles of earliest-task-first [8],
largest-communication-first [2], etc. Local scheduling heuris-
tics minimize the processor idle time that is one strategy
towards minimizing overall finish time.

Our objective is to find efficient scheduling heuristics for
precedence-constrained computations with communication
times targeted to distributed memory systems. We general-
ize the notion of task-level in a manner to incorporate the
effects of computation, volume of transferred data, and net-
work latency.

Graham’s scheduling is based on fetching ready tasks
by idle processors. This concept has been widely used for
scheduling computations with or without communications.
Graham’s scheduling leads to uniform processor scheduling
and inefficiently utilizes the task-level in presence of commu-
nications. We propose a new approach called Computation-
driven scheduling which combined with our generalized task-
level enables early reservation of resources to critical com-
putations and communications. We further extend our ap-
proach by iteratively refining the generalized task-level while
exploring a space of “good” solutions. Analysis of the pro-
posed task-level, computation-driven scheduling, and itera-
tive refinement is presented. We carry out extensive exper-
imental evaluation for different instances of problem granu-
larities, inherent parallelism, and network latency. This pro-
vides additional insite for the characterizing of our schedul-
ing and its search space and enables comparisons with other
approaches.

The evaluation of task-level is developed in Section 2.
Section 3 presents the computation driven scheduling and
the proposed method for iterative refinement. Section 4
presents one computation-driven algorithm and its time com-
plexity. Section 5 presents the evaluation of iterative schedul-
ing over fully-connected, Hypercube, and ring topologies.
Section 6 compares our results to other approaches and Sec-
tion 7 concludes about this work.

2 The task-level

A fundamental result of scheduling theory [4] is the introduc-
tion of list-scheduling (LS) and its bound [5]. The objective
function is to minimize the execution time of precedence-
constrained computations with no communication times. LS
implicitly enforces the starting times of successively sched-
uled tasks be non-decreasing sequence in time which enabled

finding the worst case bound. The task-level is independent
from mapping the tasks to processors because of zero com-
munication.

A major issue in this work is the evaluation of task-level
in the case of non-zero communication which is not tractable
The task-level depends on the mapping of the tasks to pro-
cessors because the communication delays between the pro-
cessors are not identical.

A set of Γ(T1, . . . , Tn) of n tasks (T ) with their prece-
dence constraints and communication costs are to be sched-
uled on p processors so that overall execution time is min-
imum. The computation can be modeled [8] by using a
directed acyclic graph G(Γ,→, µ, C) where → , µ(T ) , and
c(T ′, T ) ∈ C denote the precedence constraints, the task ex-
ecution time, and the volume of data sent from task T ′ to its
successor T , respectively. The multiprocessor is denoted by
S(P, R) where P is a set of processors and R is the intercon-
nection network. The time to transfer one unit of data from
a processor p′ to p, through the interconnection network, is
r(p′, p), where p and p′ are the processors that are assigned
tasks T and T ′, respectively. Assuming that the communi-
cation media is contention-free, the time to transfer c(T ′, T )
messages is c(T ′, T )r(p(T ′), p(T )).

Let T be a task and denote by D(T ) the set of prede-
cessors of T . The earliest-starting-time est(T, p) of T for
processor p depends on: 1) the completion time ct(T ′, p′)
of predecessor T ′ on p′, 2) the number of messages c(T ′, T )
sent from T ′ to T , and 3) the cost of routing one unit of
messages from p′ to p:

est(T, p∗) = minp{ max
T ′∈D(T )

{ct(T ′, p′) + c(T ′, T ).r(p, p′)}}

(1)
where p∗ ia a processor that can start T at the earliest

time. Note that est(T, p) = 0 for every p if D(T ) = ∅.
est(T, p) depends on how tasks are mapped to processors as
well as the implied network latency.

In our approach we consider est(T, p) as an estimate of
the distance from entry to T and propose refining the esti-
mate through an iterative scheduling process based on for-
ward/backward passes. We first schedule the reverse graph
(Gr) over S = S(P, R) by using the principle of earliest-
task-first. The reverse graph Gr is identical to the original
computation graph G = G(Γ,→, µ, C) except that all edge
directions are reversed.

Following the scheduling of Gr, the primary task-level
(l(T )) is set to the achieved completion time (ct(T )) to be
used as task priority in the next forward scheduling. l(T )
provides an estimate of the shortest distance from starting
T to arbitrary exit node with respect to G. Note that l(T )
now incorporates the effects of the computation, communi-
cation, and network latency along any chain of immediate
tasks that starts at T and finishes at some exit node. This
forward/backward scheduling is repeated in an attempt to
minimize overall finish time.

In the next section, we discuss Graham’s method for con-
trolling the scheduling process and propose a new method,
called Computation-Driven, which combined with our heuris-
tic evaluation of the task-level will prove to be efficient com-
pared to existing scheduling approaches.
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3 The computation-driven

In list scheduling [5] when at least one processor completes
execution of T , the successors of T are examined in order to
find out whether some of them become ready-to-run. Only
the successors of those newly completed tasks are involved
in the updating process. We call this approach Processor-
Driven (PD) because the scheduler tracks the increasing se-
quence of processor completion times using a global time.
Mainly, PD leads to uniform scheduling of the processors
because the starting times of successively scheduled tasks
form a non-decreasing sequence in time. This strategy was
designed with a worst-case bound [5, 8] in mind. Examples
of PD scheduling are list-scheduling, the ETF heuristic [8],
and others [12, 16, 17].

We propose an approach called Computation-Driven (CD)
that differ from the PD by: 1) a dynamic decision function
d(T ) = F (l(T ), . . .) that is increasing function of the task-
level, 2) the task with the highest d(T ) is assigned to run at
the earliest, and 3) any successor of T , whose predecessors
have all been assigned to some processors but not necessar-
ily completed, is added to the set of ready-to-run. Tasks
with higher levels are scheduled in-sequence along chain of
immediate tasks until the priority is reversed to the benefit
of other chains which leads to out-of-sequence scheduling,
i.e. effect of processor reservation. This can be clarified by
the following theorems.

Theorem 1 The Computation-Driven scheduling does not
satisfy the worst case bound of processor-driven/earliest-task-
first.

Proof The set of time points in (0, ωcd) can be parti-
tioned into two subsets A and B that consist of all the time
points for which: all processors are busy (A), and at least
one processor is idle (B). B is the disjoint union of q open
intervals B = ∪1≤i≤q(bli , bri

) and bl1 < br1
< . . . < bli <

bri
< . . . < blq < brq . We prove that is impossible in gen-

eral to find a chain of tasks X : T1 → T2 → . . . → Tk such
that Tk completes at ωcd and chain X covers B. In other
terms ΣT∈Xµ(T )+ΣT,T ′∈Xc(T ′, T )rmax cannot always cov-
ers Σ1≤i≤q(bri

− bli), where rmax = maxp,p′{r(p, p′)}.
Consider a task T ∈ X such that its starting time s(T ) ∈

B. By definition of B, there exists a processor pε that
is idle in interval I = (s(T ) − ε, s(T )), where ε is some
positive number. Denote by T ′ a task that starts on pε

at s(T ′) ≥ s(T ). Consider the case where the latest mes-
sage for T reaches processor pε prior to time s(T ). In this
case, we have est(T, pε) ≤ s(T ). The reason for which T
was not started earlier (at time est(T, pε)) on pε could be
d(T ′) ≥ d(T ) and T ′ was scheduled on pε prior to schedul-
ing T on p even with est(T, pε) ≤ est(T ′, pε). CD scheduling
may leave interval (est(T, pε), s(T )) uncovered by the data
transfer from the predecessors of T . Therefore, interval I
cannot always be covered by µ(T ) and c(T ′, T )rmax.

For the processor-driven approach, the criterion behind
the bound is to locally minimize the processor idle time as
the main strategy toward minimizing overall finish time.
The bound is useful notion but one important question is
whether a heuristic that satisfies the bound is capable of
generating near-optimum solutions under critical problem
instances such as fine-grain or non-uniform network latency,
or both.

By abandoning the strict enforcement of PD scheduling,
the computation-driven approach applies a balanced decision
function with respect to task criticality (task-level) and the
incurred processor idle time. Tasks with higher levels are
scheduled in-sequence along immediate chain of tasks until
the priority is reversed to other chains which leads to out-
of-sequence scheduling. We call this process the effect of
processor reservation which will be clarified by the following
theorems.

Theorem 2 The decision function of CD scheduling is a
decreasing function along any directed path (T1 → T2 →
. . . TL) in G or Gr.

Proof Consider two immediate tasks T and T ′ ∈ Pred(T )
in G at iteration k. Let pk and p′

k be the processors that
are assigned tasks T and T ′ at iteration k, respectively. We
need to prove that ctk−1(T

′) − estk(T ′, p′
k) > ctk−1(T ) −

estk(T, pk). As T ′ ∈ Pred(T ) and µ(T ) 6= 0, therefore,
we have estk(T, pk) > estk(T ′, p′

k) for any immediate tasks
of iteration k. Now consider the previous iteration k − 1
for which T is a predecessor of T ′ (T ∈ Pred(T ′) in Gr). In
this case, ctk−1(T

′) > ctk−1(T ) which can be combined with
estk(T, pk) > estk(T ′, p′

k) to give ctk−1(T
′)− estk(T ′, p′

k) >
ctk−1(T )− estk(T, pk) for arbitrary k.

By definition, the CD decision function dk(T ) is increas-
ing function of ctk−1(T ) at iteration k. Therefore, dk(T )
decreases long any chain (T1 → T2 → . . . TL) of immediate
tasks where T1 is an entry task and TL is an exit task in G.
The same proof applies to chains of Gr.

The computation-driven approach schedules a task at
each decision step. Denote by do(T ) the decision order of T
that satisfies: 1 ≤ do(T ) ≤ n for n tasks.

Theorem 3 The decision function d(T ) is non-increasing
function along any increasing sequence of decision orders.

Proof We need to prove that the decision function d(T )
always satisfies d(T ) ≥ d(T ′) whenever do(T ) < do(T ′). As-
sume T is scheduled at some decision order do(T ), we nec-
essarily have d(T ) ≥ d(T ′) for any ready task T ′. Consider
task T ′′ ∈ Succ(T ′) as any successor of T ′. In this case,
we necessarily have d(T ′) ≥ d(T ′′) as shown in Theorem 2.
Therefore, d(T ) is a non-increasing function along any in-
creasing sequence of decision orders because d(T ) ≥ d(T ′) >
d(T ′′) whenever do(T ) > do(T ′) and T ′′ is any successor of
any unscheduled but ready task T ′.

In the following we introduce the notion of dominant
chain of tasks that can only be defined with respect to a
given schedule because the distance from starting a task to
completion of the computation is dependent on processor
assignment.

Let p and pi be the processors that are assigned tasks T
and Ti ∈ Pred(T ), respectively. Denote by lmt(Ti, T, p) the
earliest time the last-message c(Ti, T ) for task T reaches
processor p. Formally, we have lmt(Ti, T, p) = ct(Ti) +
c(Ti, T )r(pi, p) but if p(Ti) = p then lmt(Ti, T, p) will be
reduced to ct(Ti) as zero messages are sent from T ′ to T
within p. Following the selection of a task T , Hcd always
assigns T to run on some processor p that can start T at the
earliest time among all the processors.
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By definition of est(T, p), T cannot start earlier than
the largest lmt(Ti, T, p) among all its predecessors and pro-
vided that processor p is free. CD scheduling guarantee that
the selected task is scheduled at the earliest time among all
free processors. Since, T is scheduled by some Hcd on p,
it should be that est(T, p) = max{maxT {lmt(Ti, T )}, t(p)},
where t(p) is the earliest time p has to become free when T
was assigned to p.

Definition 1 For an arbitrary CD schedule, a predecessor
T ′ of T is said to be dominant with respect to T if its last-
message time for T is the highest among all predecessors of
T : lmt(T ′, T, p) = maxTi∈Pred(T ){lmt(Ti, T, p)}.

Definition 2 For an arbitrary CD schedule, a chain of im-
mediate tasks (directed path) X : T1 → T2 . . . TL is said to be
dominant if ct(TL) = ωcd and for every task T ∈ X such that
Pred(T ) 6= ∅ there exists at least one dominant predecessor
for T in X.

For any CD heuristic, each sequence of increasing deci-
sion orders is necessarily a non-increasing sequence of task-
levels. The strategy of computation-driven is to schedule
tasks along dominant chain of tasks until the task-level drops
(Theorem 3) below that of some ready tasks in which case
scheduling switches to the next chain. Dominant chain of
tasks with substantially higher task-levels are sequentially
scheduled in an attempt to make early processor reserva-
tion, i.e., non-uniform task scheduling. The above tasks
are implicitly assigned by CD to the most suited cluster of
processors with the lowest network latency because the se-
lected tasks are assigned to run at the earliest time. The
scheduling process switches to other paths when the value
of the decision function has decreased up to the level of those
unscheduled but ready tasks in which case the reservation
process is restarted for another chain.

CD scheduling becomes uniform with respect to proces-
sor selection and ready tasks only when the remaining com-
putations (distance to exit) for all ready tasks are nearly
identical. The computation-driven scheduling tends to re-
duce the difference in task-level between unscheduled tasks
prior to switching to uniform scheduling.

The processor-driven always proceeds in uniform schedul-
ing because this is the best strategy in the absence of infor-
mation to differentiate dominant from non-dominant chain
of tasks. The CD approach exploits the task-level as an
indicator of remaining distance along each chain of tasks
and performs non-uniform scheduling for dominant chains
in an attempt to equalize the remaining computation and
communication.

The objective of CD scheduling is to minimize the fin-
ish time based on the estimated task-levels and the incurred
processor idle time. The iterative refinement exploits the
available completion times of the tasks in one iteration in
order to yield some refinement by using the achieved com-
pletion times as task-levels for the next iteration.

Consider a dominant chain of tasks X : T1 . . .→ Tu−k →
. . . Tu that belongs to the schedule generated by some iter-
ation and let X ′ be any non-dominant chain. Using defini-
tions 1 and 2, a number of terminal tasks of X (Tu−k →
. . . Tu) finish later than the terminal task (Tw) of X ′. Due
to dependence over the processor assignment, a dominant
chain in one iteration may become non-dominant in another
iteration. One of the reasons for which non-critical chains
may become dominant is the accumulated delays along the
starting of its tasks due to inaccurate task-level.

In the next iteration, the dependence edges are reversed
and the ready tasks include both Tu and Tw at the starting
of the scheduling. The effect on the next iteration is that
up to some level k the value of the decision function for the
tasks of X exceeds that of Tw, i.e., d(Tu) > d(Tu−1) > . . . >
d(Tu−k) > d(Tw). Some starting tasks of chain X are im-
plicitly given priority over non-dominant chains. The result
is that sub-chain Xtop : Tu → . . . Tu−k is non-uniformly
scheduled with the least delay because there is no sharing
with other chains.

Processors that are not used by Xtop can be used later for
other chains at higher decision orders. The starting times
of successively scheduled tasks are not constrained by any
order under the computation-driven scheduling. In the fol-
lowing we consider two typical cases.

If the impact of giving sub-chain Xtop more priority leads
another chain X ′ to become dominant, then, chain X was
given excessive priority compared to X ′ and some correc-
tion is needed. The same reasoning leads chain X ′ to be
given more priority in the next iteration in order to correct
the condition for which X ′ was delayed by giving excessive
priority to X.

Now assume Xtop and X ′ both become dominant and,
consequently, the difference between their task completion
times is not large enough to trigger in-depth non-uniform
scheduling for either one. In this case, both chains will be
uniformly scheduled in the subsequent iteration and the pro-
cess will be continuously repeated.

The iterative refinement process continues in either cases
until finding a balancing between the present chains that
corresponds to some steady solution. We expect this cor-
rective process to explore a space of “good” solutions that
allows sharpening the finish time generated by simple appli-
cation of CD scheduling.

4 Example of a CD heuristic

In the following we present algorithm CD/HLETF as one
representative heuristic for the CD class. CD/HLETF op-
erates as follows. Initialization consists of setting the task-
levels l(T ) as the completion times of the previous schedul-
ing iteration. The main loop repeats until there are no un-
scheduled tasks. The task T ∗ with the highest d(T ∗) =
l(T ∗) − est(T ∗, p∗) is assigned to some processor p∗ that
can run T ∗ at the earliest time. The earliest time p∗ be-
comes free is set to the earliest completion of T ∗ on p∗. At
the starting of T ∗ on p∗, the set of ready-to-run tasks is
immediately updated to include any successor of T ∗ whose
predecessors have all been assigned to some processors but
have not necessarily been completed

CD/HLETF has the task-levels {l(T )} as inputs and uses
set A and B to store ready-to-run tasks and assigned tasks,
respectively. Initially, A contains all tasks without prede-
cessors and B is empty. CD/HLETF consists of selecting a
task T ∗ and a processor p∗ such that l(T ∗) − est(T ∗, p∗)
is the highest among all the tasks of A. Following the
scheduling of T ∗ on p∗, the time at which p∗ becomes free
(t(p∗) = est(T ∗, p∗)+µ(T ∗)) is used to update the est(T, p)
for all tasks of A whose earliest-starting-time can only be
achieved on p∗. For each task T , an integer λ(T ) is ini-
tially set to the number of predecessors of T . Following
the scheduling of T , λ(T ′) is decremented for each successor
T ′ ∈ Succ(T ). If λ(T ′) = 0, then all the predecessors of T ′

have already been assigned and, consequently, T ′ becomes
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Figure 1: Example of DAGs

ready. Variable t(p) holds the earliest time processor p is
idle. The outputs of CD/HLETF are the completion times
{ct(T )} of the tasks and their processor assignment {p(T )}.
Algorithm CD/HLETF is the following:

Algorithm: CD/HLETF
(1) Initialize: A← {T : Pred(T ) = ∅}, B ← ∅

For each T and each p: est(T, p) = 0 and
t(p) = 0

(2) While |B| < n Do
Begin
(2.1) Select T ∗ ∈ A and p∗ :

l(T ∗)− est(T ∗, p∗) =
maxT∈A{l(T )−minp{est(T, p)} }

(2.2) Assign T ∗ on p∗ : p(T ∗) = p∗,
ct(T ∗) = t(p∗) = est(T ∗, p∗) + µ(T ∗)
remove T ∗ from A, add T ∗ to B
For each T ∈ A, update:
est(T, p∗) = max{est(T, p∗), t(p∗)}

(2.3) Repeat for each task T ∈ Succ(T ∗) :
λ(T ) = λ(T )− 1 ,
If λ(T ) = 0 Then update A :

XSA← A + {T},
evaluate est(T, p) for each p:
est(T, p) =
max{maxT ′∈Pred(T ){ct(T

′)+
c(T ′, T ).r(p(T ′), p)}, t(p)}

End

The main loop of CD/HLETF is statement 2 that ex-
ecutes n times because one task is scheduled in each run.
Statement 2.1 executes at most pn times in order to select
one task. Statement 2.3 updates the parameters but its last
operation executes n times. Operation λ(T ) = λ(T ) − 1
in statement 2.3 executes O(n2) times but the condition
λ(T ) = 0 occurs only once for each task. The time complex-
ity of is then O(pn2).

Using the DAG shown in Figure 1, Figure ?? shows the
schedules generated by: a) algorithm ETF [8], a) the first
iteration (backward) of IRS scheduling, c) the second it-
eration (forward) of IRS. Figure refsched shows the set of
ready-to-run tasks and decision order for the second itera-
tion (forward) of IRS scheduling in which lst denotes the
task level.
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scheduling

5 Evaluation of IRS

A random graph generator is used to generate graphs with
few hundred tasks with different computation and commu-
nication setting. The following three parameters are used
for setting the generated problems and multiprocessor. The
average communication to average computation is denoted
by α = ΣT,T ′c(T ′, T )rm / ΣT µ(T ) = carc/µT , where rm is
the least time to transfer a unit of data between two pro-
cessors (set to 1). The degree of parallelism (β = NT /pNL)
that is the average number of tasks (NT ) over the product
of the average number of levels (NL) by the number of pro-
cessors p. The topology of the interconnection network that
is the fully connected (FC), the hypercube (HC), and the
ring (RG). Note that low and high values of α corresponds
to coarse and fine grain computations, respectively.

The studied ranges of α and β is [0 − 3] with a step of
0.5 and [0.5, 1, 2, 2.5, 3, 4], respectively. For each instance
of α, β, and topology (126 instances), we use the uniform
distribution to generate 250 random computation graphs.

The finish time of the solutions found by the iterative re-
finement fluctuates but sharply tends to find solutions with
shorter finish time. The iterative process behavior can be
classified into four categories: a) converges to its best so-
lution ωbest (Figure 2-a), b) converges to a solution other
than ωbest (Figure 2-b), c) becomes cyclic over a number
of iterations (Figure 2-c), and d) does not converge (Figure
2-d). The behavior of the four types of iterative refinement
that are shown on Figure 2 is taken for the instance (α = 1,
β = 2, and FC) and heuristic CD/HLETF . Similar results
are obtained for the HC and RG topologies.

The average number of iterations (Ns) required to reach
any of the first three states a, b, or c is characterized by
1) Ns is nearly the same for states a, b, and d, and 2)
Ns strongly depends on the problem instances (α, β, and
network topology). The last type (d) may converge if the
iterative process is continued beyond Ns.

Increasing the communication requirements of a prob-
lem instance leads to increasing the effect of the scheduling
decision on the solution finish time because of increasing
the number of alternatives for scheduling immediate tasks.
Therefore, Ns increases with increasing the communication
parameter α. Coarse-grain computation (low α) requires
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Figure 3: Effect of increasing parallelism and communica-
tion on Nstable

the least value of Ns for any given instance of β and topol-
ogy. The network topology has similar effect to that of the
communication because assigning a task T to a processor p
implicitly affects overall finish time due to connectivity of p
and its associated communication costs.

Increasing parallelism leads to increasing the average num-
ber of tasks that compete for every free processor. This in
turn increases the effect on the overall finish time depend-
ing on the used task selection function. Therefore, increas-
ing parallelism implies increasing the number of iterations
required to reach any of the stable states.

Figure 3 shows the average number of iterations Ns ver-
sus increasing communication and parallelism for iteratively
scheduling CD/HLETF with the FC network topology. The
plot of function Ns = F (α, β) for the HC and RG topolo-
gies are fundamentally similar with some gradual shifting
due to increasing of the network communication penalties.
For each network topology, the quasi-linearity of function
Ns = F (α, β) enables finding analytical expressions based
on experimental data.

It might be thought that the improvement brought by
applying the proposed iterative refinement is due to arbi-
trary selection of ready tasks at each iteration. To investi-
gate this point, repetitive random scheduling was compared
to CD iterative refinement over the same number of itera-
tions. Although a repetitive Random scheduling was able to
produce better results than single-iteration, it was far from
delivering a good schedule. The experiments clearly indi-
cate that CD iterative refinement is a deterministic process
that searches in a space of solutions with highly probable
improvement over the finish time.

The performance function of the iterative refinement of a
heuristic Hcd is the shortest finish time ωcd(Ns) that is found
through the iterations. The iterative refinement is com-
pared to the the finish time generated following two-iteration
scheduling by using the formula (ωcd(2)/ωcd(Ns)− 1). This
enables measuring the average percent improvement due to
iterative scheduling. Figure 4 shows the average percent
improvement for the FC topology which is due to 20 refine-
ment iterations over two-iteration scheduling for heuristics:
1) PD/HLETF that is processor-driven and uses d(T ) =
l(T )− est(T ), 2) CD/HLF that is computation-driven and
uses d(T ) = l(T ), and 3) CD/HLETF that is computation-
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Figure 4: Improvement due to iterative refinement over two-
iteration scheduling

driven and uses d(T ) = l(T ) − est(T ). The iterative re-
finement achieves greater improvements in the upper part
(Iupper) of the studied range of communication α and par-
allelism β as well as for the HC and RG network topologies.
Iupper corresponds to the upper range of communication and
inherent parallelism in the studied problems which corre-
sponds to fine grain task graphs (2 ≤ α ≤ 3) and large
inherent parallelism (β = 4).

The iterative refinement is able to significantly improve
the solution generated by the two-iteration scheduling spe-
cially for fine grain tasks, relatively large communication,
and large inherent parallelism.

6 Comparison

Pase [12] experimentally studied 12 scheduling heuristics
(S1−S12) including the task duplication technique (O(pn2))
[10] and PD/ETF [8] (S2). The priority function (page 17
of [12]) is evaluated based on task computation times but
neither account for the communication edges nor the net-
work latency. He founds that S1 and PD/ETF are among
the best heuristics and both outperform the TD scheduler
of [10]. Our study indicates that the two-iteration schedul-
ing as well as the iterative refinement significantly outper-
forms PD/ETF versus change in communication, paral-
lelism, and network topology. All the scheduling heuristics,
including ours, fundamentally have identical number of steps
(O(pn2)).

The mobility intervals used as task-priority used by Wu
[17] (O(n3)) are too inaccurate because they incorporate all
the communication carried by the edges and do not address
the processor selection problem.

The heuristic called Dominant Sequence Clustering [18]
was proposed for scheduling DAGs on unbounded number
of completely connected (FC) processors. DSC scheduling
improves the clustering approach presented in Sarkar and
Hennessy [14] but slightly outperform (3.3%) PD/ETF as
reported by Yang and Gerasoulis [18] who studied schedul-
ing with the FC network. DSC (O(n log n)), PD/ETF, and
Sarkar clustering have been studied over an unbounded num-
ber of processors and their comparison is shown in the table
below. The second step of DSC is to merge clusters in order
to match the number of clusters with that of the processors.
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The second step is likely to increase the finish time that re-
sults from the use of an unbounded number of processors.
Therefore, the above table represents the best results of DSC
that can be compared to PD/ETF.

We compare the relative merit of IRS scheduling and
other approaches. The deviations shown in the table below
represent the average percent improvement of HX over HY

that is evaluated by (1− ωX/ωY )100 and each column rep-
resent the range for the ratio of average communication over
average computation:

Comm/Comp 0.1-03 0.83-1.25 3.3-10
DSC/ETF 0.06 3.3 2.36
DSC/Sakar 5.56 20.74 19.39

HLETF/ETF 2.8 3.27 6.97
IRS/ETF 5.73(5) 6.87(22) 12.02(37)

The additional numbers in the last row represent the
number of IRS iterations to achieve the result. DSC and
two-iteration CD/HLETF nearly achieve the same improve-
ment over PD/ETF in the low to medium communication
range (coarse grain) but CD/HLETF outperforms DSC for
fine grain tasks (3.3 ≤ α ≤ 10). The use of the iterative re-
finement with CD/HLETF significantly outperforms all the
above scheduling specially for problem instances (fine-grain)
where it is hard to find good solutions.

In the following we compare the time complexity of schedul-
ing heuristics. The time complexities of Kruatrachue’s [10]
and Papadimitriou’s [11] task-duplication scheduling which
are O(n4) and O(n3(nlogn + e)), respectively. The heuris-
tic presented by Sarkar and Hennessy [14] is O(n(n + e)).
Yang’s and Gerasoulis’s clustering [18] over unbounded num-
ber of processors has a time complexity of O((n + e)logn),
where e is the number of edges. Finally, Pase’s scheduling
[12], Hwang’s and others Earliest-Task-First [8], and our
proposed Computation-Driven Scheduling have O(pn2).

7 Conclusion

The task-level is fundamental to differentiate critical from
non-critical computations and communications. We gener-
alized the notion of task-level in a manner to incorporate the
effects of computation, volume of transferred data, and net-
work latency. The approximate task-level was set to the task
completion time that was obtained by backward schedul-
ing the computation graph. We proposed a new approach
called Computation-driven scheduling which combined with
our task-level enables early reservation of resources to crit-
ical computations and communications. The next step was
to use the task-level in forward scheduling.

The task-level can easily be improved through an itera-
tive refinement process that consists of alternatively schedul-
ing the computation graph and its associated reverse over a
number of iterations. Information on task-levels passes from
one iteration to another in order to refine the tasks-level and,
consequently, optimizes the solution.

We carried out extensive experimental evaluation for dif-
ferent instances of problem granularities, inherent paral-
lelism, and network latency for the fully connected, cube,
and ring. It is found that our two-iteration scheduling out-
performs all known scheduling heuristics for the studied lev-
els of granularities, parallelism, and network latency. The
iterative refinement scheduling was shown to explore a space

of solutions whose size grows with the amount of paral-
lelism and communication granularity. Solutions generated
by our iterative refinement largely outperform all known ap-
proaches specially for fine-grain problems where other ap-
proaches fail.
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