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Abstract

Operating a robot from a distant place using haptic and
visual feedback gets enormous applications in various sit-
uations. But due to time-delay in the communication, an
tele-operator sometimes has to go for a move-n-wait strat-
egy. However, the problem can be minimized by using Aug-
mented Reality (AR) concepts of superimposing virtual ob-
jects onto the real video image of the remote scene to create
a simulation plan in the local machine. Operator can make
trial and error to finalize his plan. This increases task safety
and also reduces realtime network interaction by transfer-
ring only the finalized trajectory data. In this paper we have
presented a hierarchical design scheme for developing such
an AR system. At first a geometric model of a six Degree
of Freedom(DOF) robot arm is developed. Based on that
model state-of-art graphics system is used to model a 3D
graphical arm. Then the graphics is superimposed onto the
real image using accurate camera calibration and registra-
tion methods. Algorithms are also developed for activating
motion in the visualization system. A graphical user inter-
face is designed to facilitate the task simulation. The design
scheme is implemented and tested using Microsoft .NET
framework, visual C#.NET and Microsoft DirectX with a
stereovision system comprising of a PUMA-560 robot and
operating over a LAN.

Keywords: Telerobotics, augmented reality, stereovi-
sion, camera calibration, 3D graphics rendering.
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1. Introduction

Telerobotics is a modern technology of robotics that ex-
tends an operator’s sensing and manipulative capabilities to
a remote environment. A telerobotic system consists of a
master arm(workstation) and a slave arm(workstation) that
are connected through a computer network and a stereo-
vision system to provide 3D views of slave scene [see Fig-
ure 1]. Tele-operator is also provided with force feedback to
have a better sense of his task manipulation. Teleroboitcs is
now becoming very useful to be applied in many situations
specially in scaled down and scaled up situations, hazardous
and hostile situations and environment where human pres-
ence adversely affect the task operation.
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Figure 1. A typical telerobotic system

Telerobotics has enhanced the surgery through improved
precision, stability and dexterity. Stereo image guided tele-
robots allow surgeons to work inside the patient’s body pre-
cisely and without making large incision. Telerobots are
now routinely used for biopsy brain lesions with minimal
damage to adjacent tissue, for closed-chest heart bypass, for
shaping the femur to precisely fit prosthetic hip joint in or-
thopedic surgery, for microsurgical procedures in ophthal-
mology and for surgical training and simulation. Informa-
tion from various medical imaging sensors, such as CAT,
PET, and MNR scanners can be used to generate graphic
images of the interior of the human body. These images can
be super-imposed onto a live video image of the body us-



ing Augmented Reality(AR) tools, and seen in three dimen-
sions, providing a clear advantage of systems that use flat
two-dimensional displays. This will also provide the tele-
operator e.g. surgeon with the facility of making simulation
plan with probable rehearsal and corrections before going
for exact operation with patient’s body. Thus it will give ad-
ditional safety in telesurgery. This graphical overlaying will
also help to overcome the adverse effect of communication
delay and saving bandwidth by sending less frequently only
the finalized planned trajectory points.

AR is a system that combines real and virtual environ-
ment and which is interactive in real time and registered
in 3-D Area based stereo.A comprehensive survey on AR
is made in [1]which explored number of applications in-
cluding medical visualization, maintenance & repair, an-
notation, entertainment and military aircraft navigation &
targeting, interior design and many more. In robotics AR
lies between telepresence (completely real) & Virtual real-
ity (completely synthetic) and between manual teleportation
& autonomous robotics [2].

To apply AR on a telerobotic stereovision system re-
quires proper registration of real world i.e. robot workspace
scene data (e.g. patient’s anatomy in case of surgery) with
the graphics image data. Proper registration on the other
hand, requires accurate camera calibration technique to be
used to align graphic camera co-ordinate to the real video
camera co-ordinates. Camera calibration is the establish-
ment of the projection from the 3D world co-ordinates to
the 2D image co-ordinates by finding the intrinsic and ex-
trinsic camera parameters [3]. Intrinsic parameters includes
optical and electronic properties of a camera, such as fo-
cal length, lens distortion coefficients, image center, scal-
ing factors of the pixel array in both directions. While the
extrinsic parameters are the pose estimation (rotation and
translation) of the camera system relative to a user-defined
3D world coordinate frame [4].

Registration referes to the proper alignment of the virtual
object with the real world. The accuracy of registration is
mostly dependant on the accuracy of calibration [3]. Two
kinds of registrations are: Static and dynamic [4]. In sta-
tic registration user and the objects in environment remain
still. It is done at initialization with the help of Human Op-
erator. Dynamic registration is done while the viewpoint
starts moving to automatically update the registration data.

In [2] a telerobotic AR system is discussed that imple-
ments 3D view in the monitors. It uses position tracking
through mechanical and optical sensors for camera calibra-
tion. Gomez, S.R et. al. [5] develops a virtual environment
for teleoperation using OpenGL. Herve, J. Y. et. al. [4]
proposed a model based camera calibration and registration
for AR where camera moves. Abdullah, J. et. al. [3] de-
scribed a pinhole camera model with weak perspective pro-
jection, correction for radial distortion of lens and display

on monitors for telerobotic AR applications. Heikkila, J.
[6] proposed a geometric camera calibration using circular
control points that gives calibration accuracy up to 1/50 th
of a pixel size. Marin, R. et. al. [7] proposed an Internet
based high level telerobotic framework using Java3D and
CORBa. Iqbal, A. [8] developed multi-threaded distributed
telerobotic framework over LAN with video frame transfer
rate of 17 fps. They used a fiducial frame of reference based
calibration for drawing a small red ball in the most current
position of the gripper to show the AR effect.

In this paper we have presented a design strategy for
augmenting a telerobotic system with graphical overlays.
A mathematical model of robot arm is developed which
is then drawn and animated at first in graphic system and
then seamlessly overlayed on the stereo-video received at
the client side.

The organization of this paper is as follows. In Section
2 design strategy is described. Implementation aspect is de-
scribed in Section 3. Performance of the system is discussed
in Section 4 followed by conclusion in Section 6.

2 Design

Our design strategy for augmenting the stereovision sys-
tem by overlaying graphics will be discussed in this section.

2.1 Design Methodology

The design methodology of our augmentation of the tele-
robotic stereo vision system is discussed as follows. Figure
2 shows the important steps.

• Developing the Mathematical Model of the Robot: A
set of geometric equations are developed to build the
mathematical model of the robot.

• Drawing Graphic Robot Arm and Other Graphical Ob-
jects: Having chosen the graphics software that will
allow exchange of data into and out of the model, the
next step is to build the graphic robot arm model and
other graphic objects.

• Animating the Graphical Objects for Simulating Task:
Having constructed the graphic model, codes are then
inserted to enable manipulating the graphics with the
interface by handshaking and exchanging data to and
from the model and interface. Algorithms are devel-
oped for the movements.

• Interfacing to the Telerobotic Stereovision System:
Graphics sub-system is interfaced with the stereo-
vision system..
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Figure 2. Hierarchy of Design Abstraction

• Identification of Camera Calibration Technique and
Superimposition of Graphic Model into the Real Im-
age: Appropriate camera calibration and image reg-
istration techniques is determined to perfectly super-
impose the graphic model into real video image cap-
tured in server PC and received in client PC through
network.

• Augmented Tele-manipulation: Once the methodol-
ogy of data transfer is stabilized, tapping of all neces-
sary data is implemented to perform the AR telerobotic
manipulation.

• Evaluating the Design:Lastly, the full integration is
tested.

2.2 Mathematical Model of the Robot Manipula-
tor

PUMA 560 robot is an industrial robot with six degree
of freedom i.e. there are six independent variables (or co-
ordinates) to completely specify the configuration of its the
mechanics. There are six links namely, Trunk or Base,
Shoulder, Upper Arm (the Inner Link), Fore-arm (the Outer
Link), Wrist and Gripper in this robot. Links are connected
as a serial chain.

All the six joints of PUMA-560 robot arm are revolute
joints. Each of the links connected with revolute joint is at-
tached with a frame of reference,Ri(xi, yi, zi) to describe
its position and orientation. LinkLi+1 in Figure 3-(c) ro-
tates with respect to linkLi when frameRi+1 rotates with
respect to either axes ofxi, yiorzi. The end pointOi+1

 

Figure 3. Two rotational links attached with
frame of references

of Li+1 can be associated a vectorOiOi+1 which is de-
noted byOiOi+1,i to indicate that the vector is observed in
frameRi. M i+1

i = [Xi+1,i, Yi+1,i, Zi+1,i] is the transfer
matrix from frameRi+1 to Ri, which represents the rota-
tion between linksLi andLi+1. Therefore, the link vector
OiOi+1,i can be expressed as follows:

OiOi+1,i = M i+1
i .OiOi+1,i+1 (1)

whereOiOi+1,i+1 denote the vectorOiOi+1 observed
in frameRi+1.

Now the position and orientation ofOi+1 with respect to
Oi−1 can be expressed as:

Oi−1Oi+1,i−1 = Oi−1Oi,i−1 + M i+1
i−1 .OiOi+1,i+1 (2)

Similarly we can express the position and orientation of
gripper or the end effector with respect to the base frame
of reference which is kept fixed. Therefore, the geometric
model of robot manipulator can be expressed as the follow-
ing expression which provides the position and orientation
of each of the n (here six) links given the n (here six) joint
anglesθ.

G(θ) = O0On,0(θ), Mn
0 (θ) (3)

where

Mn
0 = M1

0 .M2
1 .M3

2 ...Mn
n−1 (4)

O0On,0 = O0On−1,0 + Mn
0 .On−1On,n (5)

On the other hand inverse geometric model of the robot
manipulator can be expressed as following which provides
us new value of the joint angles given the new position and
orientation of the end effector.

θ = G−1(Xnew,Mnew) (6)

The details of our geometric and inverse geometric
model of PUMA 560 robot manipulator is described in [9].
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Figure 4. The kinematic model of the PUMA
560 robot arm

2.3 Building Body Shapes Around the Skeleton of
the Graphical Arm

The mathematical model developed so far gives us the
skeleton of the Robot arm as shown in Figure 4. To develop
a solid robot arm body we need to draw polygonal shapes
around the skeleton to look like real PUMA 560 robot.

The base, shoulder and the wrist part of the robot are
almost cylindrical. The upper arm and the forearm are
somewhat trapezoidal. Since for telerobotic manipulation
our main focus is on the gripper or end-effector’s middle
point( between two openings) we have simplified the model
by drawing the upper arm and forearm as cylindrical. We
have modeled the gripper with rectangular shapes that can
be opened or closed by changing the distance between the
openings. We have also made simplification in making con-
nection of link2 and link3. We have ignored the horizon-
tal shift in both cases and hence those two links have be-
come aligned vertically. But we were cautious about the
end points of the polygons specially of the base cylinder so
that we can match our graphic robot with the original ro-
bot’s image in the stereo space.

Cylinders can be drawn as finite element representation
[see Figure 5]. Increasing the number of segments or ele-
ments will improve the quality of view but it will increase
the complexity of the computation. To draw a cylindrical
shape, we need to specify the number of segments. The
more segments there are, the smoother and rounder the
cylinder will appear.

We have alternatives of primitives to be used for draw-
ing the segments of the graphical arm such as line list, line
stripe, triangle list, triangle stripe or triangle fan. We have
chosen triangle stripe for the side wall and triangle fan for
the to and bottom of the cylinder. Because among the alter-
natives triangle stripe and triangle fan are most memory ef-
ficient since they require less number of vertices to be spec-
ified.

Figure 5. Finite element representation of a
cylinder used as body shape of graphical arm

2.4 Data Structure Design

To design an efficient data structure we must fist con-
sider types of data and nature of manipulation. The robot
structure developed in Section 2.2 reveals that PUMA 560
robot is an object of variable geometry where one portion of
the object is connected with other portion. Since each link
of the robot are represented by position and orientation ma-
trices, movement to a new position or orientation involves
multiplication of two3 × 3 matrices and one3 × 3 matrix
with one3× 1 vector. And we have to perform these com-
putations for each point/vertex of the graphical robot. And
in Augmented Telerobotic systems robot arm has to be dy-
namically updated quickly and accurately.

Although modern computers’ CPU performance is very
high, CPU execution time is very crucial in the field of tele-
manipulation as the CPU has to deal with some network as-
pect, data acquisition and display as well. To reduce the ex-
ecution time, we must reduce the computations which even-
tually necessitate choosing efficient data structure to store
vertex data. If we store all the vertex data of the whole
robot arm in one array then we need to perform all the com-
putations even if we change a small portion of the robot
arm. An efficient approach would be to keep geometry data
of each link of the robot apart from the other link. In that
case, for making change in any link, it will be sufficient to
re-compute data of that link and only of those follow it.

We should also be careful about the flexibility and gen-
erality of the application such that the data structure can be
used for drawing different type of robots.

To meet the above objectives we have modeled each link
as a different object with properties required to represent
the link [see Figure 6. Thus geometric data of each link is
kept apart from the other link but each one is linked with
its upper and lower links. The configuration data such as
number of links, number of segments in cylinder etc are
kept in separate data file. and vertex data of each link is
associated with separate vertex buffer.
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Figure 6. Data structure to represent the links

2.5 Displaying the Graphical Arm

Given the graphical arm structure in its model space to
display it on the screen we need to specify the following.

2.5.1 Scene layout setup

Appropriate transformation matrices are defined to setup
the scene. World transformation matrix is used to define the
relative position of the objects. Camera position, target po-
sition and viewing angle are defined to project the graphic
object accurately. A material with the diffuse and ambient
color and a directional light its direction and finally an am-
bient light that scatters and lights all objects evenly are also
defined to setup lighting.

The drawing can be represented using wire-frame model
or solid model. The psychological studies and the perfor-
mance studies in telerobotic system of show that there is
no significant differences in using different viewing models
[10]. But the aircraft simulation studies of [11] suggest that
there should be an effect of different viewing models and
[2] reports some advantages of using wire-frame model in
real-time animation system specially by reducing the occlu-
sion of graphics with real stereo image.We like to provide
the user with a choice to select the most appropriate alter-
native.

2.5.2 Rendering

Since we are not interested to photo-realistic image qual-
ity, we have chosen polygon-based rendering for projecting
the 3D models onto a 2D image plane. We have used Di-
rect3D’s scanline rendering technique as it is faster than ray
tracing rendering. It works on a point-by-point basis rather
than polygon-by-polygon. To deal with hidden surface de-
termination, we have used Z-buffering algorithm. This tech-
nique employs an extra buffer to store the depth of the ren-
dered value at each pixel. If the depth of the polygon that
is currently being rendered at that pixel is less than the z-

buffer value at that pixel, the output pixel is overwritten,
otherwise nothing is drawn.

A sample view of the displayed graphical arm in solid
and wire-frame model with 50 segments in each cylinder is
shown in Figure 7.

Figure 7. 3D PUMA 560 robot structure using
cylindrical body shape. (a) Solid model(left)
(b) Wire-frame model(right)

2.6 Algorithms for Moving the Graphical Arm

A robot is controlled in the joint space, whereas most of
the tasks are done in the Cartesian space. The robot end ef-
fector is represented by position vector and orientation ma-
trix in 3D space. Therefore, a point in the joint space can
be converted to a position and an orientation in the Carte-
sian space. Transformation functions relate the position and
orientation of the end effector coordinate system to the base
coordinate system. Therefore, we can either use the joint
angles as our desired position or we can issue a movement
command in the cartesian space coordinates. More specif-
ically, we can either give an increment in angular position
of the robot or we can issue an incremental command in
Cartesian space to move the robot from current position to
the desired one. Algorithms for moving the real robot that
we have used is described in [8]. Here we will describe
the algorithms that govern the movement of graphical robot
arm in the joint and Cartesian space.

2.6.1 Movement in the Joint Space

Whenever a command is received to move incrementally
(∆θ) in the joint space new value of the angles are calcu-
lated by adding the increment to the current values(θi =
θi+∆θ). Then as shown in Figure 8, after checking whether
the new value is within specified bound, new position and
orientation of the joint point of the selected link and the
links above that are calculated using the updated angle val-
ues sequentially. The computation are performed according
the Direct Geometric equations based on BASEFRAME of
reference. where the value of the orientation matrix of one



link depends on the value of orientation matrices of some
previous links.
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Figure 8. Movement of Graphical Robot in the
joint space

Once the position and orientation of the end points or
skeleton points are calculated then we need to re-calculate
the top and bottom vertices of the body shape(i.e. cylin-
ders) as discussed in Section 2.3. Then the whole robot is
rendered using the updated vertices. Thus robot is moved to
a new location with expected position and orientation.

If the absolute values of joint space variables i.e.,
θrequired (instead of incremental values) are supplied to
move to a specified position then those angle values are
directly used for subsequent computation and re-draw the
robot as previous.

2.6.2 Movement in the Cartesian Space

To move the graphical robot in the Cartesian space we need
to take two parameters as input:∆X and ∆M , where
∆X holds the increments in position vector and∆M is
the change in the orientation matrix of the slave arm. At
any time t, we need to hold a copy of current position
vectorX(t), a (3 × 1) vector, and current orientation ma-
trix M(t), a (3 × 3) matrix. The new position vector

Xnew(t) and orientation matrixMnew(t) are to be calcu-
lated from{X(t), M(t)} and{∆X, ∆M} taking into con-
sideration the current frame of reference. Current frame
of reference can be BASEFRAME,WRIST FRAME or
TOOL FRAME.

OnceXnew(t) andMnew(t) are calculated, we can use
the Inverse Kinematic ModelG−1(Xnew,Mnew) of the
PUMA robot to find the joint space variablesθnew. This
new angle is used to compute position and orientation ma-
trices using Direct Kinematic Model. We also need to re-
compute the vertices of the body shapes(i.e. cylinders) of
each link. Then the whole graphical robot is rendered with
the updated vertices. The algorithm for moving the graphi-
cal robot arm in the Cartesian space.

To move the graphical robot to a specified position by
supplying the absolute values of a certain position vector
and orientation matrix i.e.,{Xrequired,Mrequired}, new
angular position is calculated from the supplied values us-
ing the Inverse Kinematic Model and the same procedure is
used to re-draw the robot in the specified position.

2.7 Acquisition of Real Video Image and 3D
Stereo-visualization

We have adopted the same Client-Server framework for
image acquisition and network streaming as used in [8, 12].
Real video image of the slave robot at the server side is
captured simultaneously by two video cameras. Then a re-
liable client-server connection is established and upon a re-
quest from the client a stereo frame comprising of two pic-
tures is sent over LAN through window sockets. A double
buffer, concurrent transfer approach is used to maximize
overlapped transfer activities between cameras, processor
and the network. On the client side after detecting and mak-
ing connection with the server pictures are received. Page
flipping technique is used for 3D visualization and HMD
is used as display device that gives the effect of 3D depth
perception. 3D view is also created with sync-doubling
technique to view on the monitor specially when interact-
ing with keyboard or mouse.

2.8 Virtual Image Superimposition

As mentioned in Section 1, for proper superimposition of
graphics on the real video we need to we need to combine
all local coordinate systems centered on the devices and the
objects in the scene in a global coordinate system . For
this, camera calibration and registration are performed. Al-
though manufacturers provide a partial set of intrinsic cam-
era parameters, we need to find them as they are not accu-
rate enough. Besides, some of these parameters may vary
from time to time, while some of them may be calibrated
once for all, depending on the stability of the mechanical



and optical construction of the camera. Also in many situ-
ations the source of the images is not known, which means
that the camera’s internal parameters are also not known.
In some cases, it is desirable to change a camera midway
through an image application which also require that the in-
ternal parameters of the camera can only be extracted from
the images themselves [13]. We also need to find the posi-
tion and orientation of the camera(s) i.e. the extrinsic cam-
era parameters.

We have used Heikkilas calibration [6] method imple-
mented in MATLAB Camera Calibration tool box to find
out the intrinsic and extrinsic camera parameters. It shows
accuracy up to 1/50 of the pixel size. Pinhole camera model
with perspective projection and least-square error optimiza-
tion is used. The intrinsic parameters that can be found by
this tool are: focal length (fc), principal point(cc), skew co-
efficient (alphac) and distortions co-efficient(kc).

MATLAB Calibration Toolbox stores the focal length in
pixels in a2×1 vectorfc whose elementsfc(1) andfc(2) are
the focal distance (a unique value in mm) expressed in units
of horizontal and vertical pixels. The aspect ratio(τ) is the
ratio of the pixel height and width and generally calculated
according to Eq. 7.It can also be defined as the view space
width divided by height. It is sometimes different from 1 if
the pixel in the CCD array are not square.

τ = fc(2)/fc(1) (7)

If XX=[X,Y,Z] is the co-ordinate of P in grid, then the
co-ordinate of P in camera reference frame can be expressed
as

XXc = Rc ×XX + Tc (8)

where, translation vectorTc is the co-ordinate vector of
O in camera reference frame and the rotation matrixRc is
the surface normal vector of the grid plane in the camera
reference frame. External camera parameters are expressed
in terms of these two vectors.

We like to use perspective projection. So we need to
specify the amount of perspective, or “zoom”, that the resul-
tant image will have. This is done by specifying the angle
of the viewing cone, also known as the viewing frustum.
The viewing frustum is a rectangular cone in three-space
that has the from-point as its tip, and that encloses the pro-
jection rectangle, which is perpendicular to the cone axis.
The angle between opposite sides of the viewing frustum is
called the viewing angle.

2.9 3D Visualization with Virtual Object Super-
imposed

During each flipping operation a complete stereo image
is sent down to the HMD. This image is acquired from the

network video stream and copied in a surface, say frontSurf
while the drawing of the current image on graphics screen
is in progress in the another surface, say augSurf. Aug-
Surf is copied to the primary surface used to display(say,
backSurf). Left and right camera image is displayed on two
different view-ports on the monitors. Thus the stereo video
is updated on local display in a page-by-page format and
not pixel-by-pixel. This provides a great benefit in terms of
reducing time delays.

2.10 GUI Design

Graphical User Interface (GUI)s are designed for both
server and client end. The server side GUI forms described
in [8] provide user the facility of connection and initializa-
tion of the real robot.

The client side GUI is designed to give the user op-
tions for connecting to the server PC, master arm and HMD
and receiving and displaying the stereo video. It also takes
user’s input for movement of the real and graphical arm for
task simulation.

2.11 Graphical Tele-manipulation

In teleoperation,if the base link of the real robot remains
fixed relative to the video cameras, the base link of the
graphical arm will also remain fixed relative to the graph-
ical cameras. The end-effector of the graphical arm then
can be manipulated in the graphical coordinate space, rela-
tive to objects in the task space (keeping base link in same
location of real robot base).

The flexible algorithms used for movement of real and
graphical robot arm in joint and cartesian space by a fixed
or incremental value, lead to allow us using any of the input
devices such as master arm, joystick, keypad, mouse etc.

For graphical tele-manipulation, at first we need to con-
nect to the Real Robot Server (running on the server PC
connected with PUMA-560 slave arm). Then the Real Ro-
bot arm is initialized with specified or pre-defined conve-
nient position and orientation. The camera calibration pa-
rameters (intrinsic and extrinsic) computed earlier using
MATLAB Camera Calibration Toolbox are then loaded to
the program. Here we also need to specify the graphics
parameters such as viewing model ( solid or wire-frame),
display device ( HMD or monitors) etc. If Master Arm is
chosen as a tool for user interaction then we need to start the
process of engaging it i.e. communicating with the server
system. Then we need to be connected with the Vision
Server running on the Server PC to capture video images
through camera. If HMD is selected as displaying device
for 3D stereo view we need to connect it with the client
system, otherwise monitor can be used to display the stereo



using Sync-Doubling techniques ( displaying left and right
images up and down on the monitor screen).

Once we have real and virtual image ready to be dis-
played, we need to perfectly superimpose the graphics onto
the real video image by adjusting the camera calibration
parameters. Then for task simulation e.g. pick and place
operation we need to move the Graphics Robot first using
the algorithms described in Section 2.6. If the movement is
satisfactory it will be saved to be used while issuing com-
mand to the Real Robot. At the end of simulation before
exiting the program we need to disconnect the client system
from the Robot Server and the Vision Server running on the
Server PC.

3 Implementation

The proposed design scheme is implemented on a Mi-
crosoft .NET framework using MS Visual C.NET, MS Vi-
sual C++ and MS DirectX. Among the available alterna-
tives of 3D graphics API such as windows GDI, Direct3D,
Java3D and OpenGL, we have chosen Direct3D considering
its capability of hardware acceleration through it Hardware
Abstraction Layer [ see Figure 9]. It also allows running
application in full-screen and it perfectly macth with other
MS products used.

Windows Application

Direct3D API

GDI

Hardware Abstraction 
Layer(HAL)

Device Driver Interface(DDI)

Graphics Device

Figure 9. Dirct3D interaction to Hardware

The client system consists of six modules: robot client,
vision client, camera calibration, virtual object modeling
and DirectX interface. The first two are implemented to
take visual and force feedback. Camera calibration module
takes input from vision client to extract calibration parame-
ters. The virtual object modeling module defines the struc-
ture of the virtual objects( graphical arm and other objects

Figure 10. Main User Interface Form at Client
Side

etc) and handles the functions like movement of virtual ob-
jects.

DirectX Interface module is the core module of the client
application for displaying the augmented view. It takes in-
put from virtual object modeling module, camera calibra-
tion module video client and output the augmented video.
Thus it synchronies real and virtual data, make projection
on video surface and performs the page flipping for the use
with HMD.

Two GUI forms are designed in the client side to provide
users interacting with the system. On the main GUI form
[see Figure 10] buttons are attached for connecting with vi-
sion and robot server running on the server PC connected
with the real robot. It also takes user’s option for various
graphics parameters. The stereo form GUI [see Figure 11
can be accessed by pressing the ”View 3D Augmented Real-
ity Simulation” button. Stereo form shows the left and right
image to two separate monitors (or on the two eye sides of
the HMD). It also displays the control features to change the
joint angles of real and graphic robot arm, changing Carte-
sian position and opening or closing of gripper which may
be used for task simulation.

4 Performance Evaluation

The performance of the proposed system against the ren-
dering time and accuracy.Data was taken by averaging over
1000 samples and running both server and client systems
on PCs having 2-GHz Intel P4 processors with 1GB DRAM
and 512 KB cache memory and connected to a campus net-
work by using a 100 Mbps NIC card. The server PC is
interfaced to two Sony Handycam digital cameras using a
400 mbps FireWire PCI (IEEE-1394) card.



Figure 11. User interface form in stereo view
at client side

4.1 Speed of Rendering Graphics

We have computed the refresh rate of the output screen
displaying the graphics in term of frame per second. We
have tested the system for different environments- with or
without overlaying graphics over the real video. For each
environment we have recorded the refresh rate without any
drawing, with a cuboidal object and the robot arm, only ro-
bot arm with 8 segments per cylinder and only robot arm
with 50 segments per cylinder. As shown in Table 1, refresh
rate is proportional to the complexity of the drawings and
image acquisition time.

Environment Graphics Complexities Avg.
Refresh
Rate
(fps)

Only graphics

No drawing 273.36
With an object in the scene 243.74
Only robot with 8 segments in
each cylinder

253.59

Only robot with 50 segments in
each cylinder(solid view)

239.78

Graphics on video

Without any drawing 11.498
With an object in the scene 11.384
Only robot with 8 segments in
each cylinder

11.347

Only robot with 50 segments in
each cylinder (solid view)

11.325

Table 1. Refresh rate of the output screen.

Time required to render the whole robot with different
numbers of triangles in a cylindrical shape and different
views is shwon in Table 2. It is observed that there is not sig-
nificant difference in performance for using solid or wire-
frame model.

Environment Graphics Complexity
Rendering Time
(ms)
Wire-
frame

Solid

Only
Only robot with 8 segments in
each cylinder

64.088 64.283

graphics Only robot with 50 segments in
each cylinder

65.034 65.151

Graphics on
Only robot with 8 segments in
each cylinder

105.02 108.362

video Only robot with 50 segments in
each cylinder

105.37 109.037

Table 2. Time required to render the graphical
robot.

4.2 Accuracy of the System

The system is evaluated in terms of the accuracy of the
calibration method and the accuracy in movement. To eval-
uate the accuracy of our calibration method we have re-
computed the projection of grid points using our calculated
calibration parameters and re-projected onto the original
grid image. The errors are analyzed using MATLAB cal-
ibration Toolbox which gives result of re-projection error as
the standard deviation of the re-projection error (in pixel) in
both x and y directions respectively. The errors can be even
minimized (p to 1/50 of a pixel size ) by identifying the lo-
cation of the pixels that create larger errors and re-defining
the window size.

The accuracy of the movements of the graphical object
on the output screen mainly depends on the accuracy of the
calibration. But it also depends on the accuracy of the com-
putation of the graphics parameters. We have compared
the position of the graphic robot arm before and after the
movement and compared the difference with the real data
provided by the user through user interface.

5 Comparing Our Approach to Others

Iqbal, A. [8] augmented with only a small red ball at
the position of gripper in comparison to our whole graph-
ical arm. [8] used Faugeras [14] calibration with Kuno et.
al. [15]s affine frame of reference which led him to notice-
able mismatch with real error in the matching shown in his
figure. Whereas our computer vision-based calibration re-
duces error up to 1/50 of pixel size. J. Vallino [16] reports in
his PhD thesis refresh rate of 10 fps to be required for AR,
when we get above 11-17 fps after overlaying graphical arm
with live stereo video. Graphics rendering of our system is
faster than [8, 2, 7] for our use of Direct3D. Our system is
comparatively cheaper due to the use of commodity hard-
ware (PC) and software.



6 Conclusion

A hierarchical design strategy for augmenting a telero-
botic stereo vision system is described in this paper. It is
shown that by using hardware accelerated graphics rendi-
tion through Direct3D provides excellent refresh rate of the
output screen. It also implements a computer vision based
calibrations method giving accuracy up to 1/50 of pixel size.
A flexible and generalized data structure is proposed which
is suitable for telerobotic visualization. A user-friendly
graphical user interface is developed for simple manipula-
tion in the telerobotic AR system. It can be used as a base
framework for further research on virtual and augmented
telerobotic manipulations. As our future research we like
to provide an intelligent system to switch between VR and
AR modes of operation based on network delays to ensure
QoS. We also plan to use commercially available software
to extract exact 3D model of the workspace objects which
will facilitate more accurate task manipulation.
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