
A Pattern Recognition System Driven By
Discriminability

Mayez Al-Mouhamed ∗

Abstract

This paper presents the design of a model-based vision recognition engine for
planar contours that are scale invariant of known models. Features are obtained
by using a constant-curvature criterion and used to carry out efficient coarse-to-fine
recognition. A robust shape matching is proposed for comparing contour fragments
out of scenes with partial occluding. Model organization and indexing schemes are
optimized in a manner that reduces the dependency of the recognition time over the
model size. To carry out early pruning of large portion of the models, hypotheses
are only generated for a sub-set of contours with enough discriminative information.
Poor scene contours are used latter in validating or invalidating a relatively small
set of hypotheses. Recognition takes advantage of robust hypotheses by categorizing
the contour intersection points so that hypothesis processing is driven by discrim-
inability. Since hypotheses are selectively verified, blocking is avoided by extending
current matching by pairing of hypotheses, predictive matching, and fetching next
weighted hypotheses. This has the advantage of avoiding brute force processing of
a large number of hypotheses. Storage is optimized by experimentally relating the
bucket size to a metric of discriminability for typical patterns. Evaluation shows
that the recognition time is nearly independent from the number of hypotheses
originally generated. The time increasing due to increase in the database size is rel-
atively small as a result of selective processing and optimization of global database
effects.

Keywords: Database, indexed search, matching, pattern recognition, seg-
mentation

1 Introduction

An effective model-based recognition system [1, 2, 3] must be capable of retrieving the
best matched objects as well as carrying out massive pruning of inconsistent models.
Modeling objects by their local geometric features [4] takes advantage of the coarse shape
and enables quick indexing of object features into the models in an attempt to reduce
the complexity of the search space before carrying out finer pattern matching. Neural

∗Computer Engineering Department, College of Computer Science and Engineering, King Fahd Uni-
versity of Petroleum and Minerals, Box 787, Dhahran 31261, Saudi Arabia. mayez@ccse.kfupm.edu.sa

1

networks were also used for finding the final interpretation by using the features as inputs
to a neural network [5] that is trained to classify objects based on subset of features.
Hierarchical object modeling partitions the object contour in a collection of fragments so
that each fragment is a set of features which are selected as invariant under translation
and rotation [6, 7].

The efficiency of the matching depends to a large extent on the scalability [1, 8, 9] of
the recognition operator which is the ability to recognize whole contours as well as frag-
ments of contours while reducing the combinatorics of the search. For this, the extracted
features [10, 11] must be local and small enough to match wherever they are present but
must also be stable and discriminative. Global features are inadequate when contours are
partially observed. Methods for partitioning and representing contours can be found in
many research papers such as [4, 12] where in most cases the features are used as search-
ing keys in some quick indexing/hashing schemes. To find stable partitioning criterion,
curved contours suggest the use of sharp convexities, deep concavities, or straight seg-
ments as reference points [2, 11, 13] in finding the boundary between different geometric
features. Curvature maxima has also been used as segmentation points and straight lines
as primitives in [14]. However, the above approach cannot be applied to regularly curved
shapes because of boundary ambiguity. Decomposing smoothed contours at extreme of
negative curvature has been also investigated in [15]. Detection of significant changes in
curvature [16] has been applied for encoding geometrical signatures like smooth join, cor-
ner crank, etc. Decomposing contours by using constant curvature criterion was proposed
by Wuescher et al. [17] and used in other proposals. This provides means for partitioning
contours of planar objects by using particular features that can be linked together for
building the model.

Model organization was studied by Califano and Mohan [9] which proposed the use of
larger indices (multidimensional indexing) to keep a relatively coarse bucket quantization
without scarifying selectivity. To gain selectivity, intuitive reduction of the bucket size
may cause loss in overall discriminability. For this efficient object modeling requires es-
tablishing some theoretical and experimental relationships that tells how discriminability
is affected when adjusting the bucket size.

The synergy of the indexing scheme must be small enough because all the models
are potentially involved in the initial search [4, 12, 18, 19]. Kalving et al. [20] used a
hashing descriptor that is derived from the relationships between lengths and relative
orientation of contour segments. Knoll and Jain [21] proposed a model organization
based on common features so that to index into the model by recognizing features and
further iterate to narrow the object class down to the correct interpretation. Turney,
Mudge, and Voltz [18] used a model organization based on identification of salient model
features which are use as keys to index into the model. Grimson [13, 22] equally treats
all the available features in generating hypotheses on possible matches. This results in
tree-matching structure that is scanned by using depth-first search. The search over the
current sub-tree is abandoned when enough inconsistent evidences are accumulated and
the next sub-tree is started. Though this organization allows pruning many inconsistent
sub-tree interpretations, the number of visited sub-trees is large even for simple scenes.

Our objective is to optimize the model and the search so that the recognition time

2

would mainly depend on the scene complexity without explicit dependence on the database
size. For this, the generation of hypotheses follows a different approach compared to
previously proposed approaches. An approach to the generation of robust hypotheses is
proposed for efficiently reducing the dependency of the recognition time over the size of
the model. In other term, the model and the algorithm are to be designed so that the
recognition spends a small fraction of time in global database processing while keeping the
rate of correct classification as high as possible. Our aim is to avoid early processing of
contours having poor discriminative information. The early generation of a large number
of hypotheses would necessarily increase dependency over the size of the models. Such
poor contours will be used in latter stages in validating or invalidating a relatively small
set of robust hypotheses.

To keep on pruning of inconsistent hypotheses we propose an efficient shape match-
ing for comparing whole contours as well as fragments. Our approach is intended to
avoid brute force processing of a large number of hypotheses that must be processed re-
gardless of discriminability. For this we propose a processing scheme that is driven by
discriminability in which blocking is avoided by extending the matched contours through
predictive matching and pairing of hypotheses. Reducing the storage size without af-
fecting the discrimination power is carried out by relating the bucket size to a metric of
discriminability.

This paper is organized as follows. Section 2 presents the low-level contour modeling
and the generation of detailed and coarse object descriptions. Section 3 defines the features
and their extraction from the model. Section 4 presents the database organization and
the associated indexing. Section 5 presents a demand-driven recognition algorithm and its
associated tools such as shape matching, pairing of hypotheses, and predictive matching.
In Section 6 we evaluate the proposed scheme with respect to storage requirements, effect
of database size, and compare to other approaches. In Section 7 we conclude about this
work.

2 Object modeling

Our approach uses the well known coarse-to-fine matching concept. For this we propose
modeling objects by using a coarse and a fine polar representations which are used for
implementing our coarse-to-fine recognition system. The polar model is used because it
provides scale, rotation, and translation invariant means. In this Section we study the
salient aspects in the design of these models, their relationships, and their characteristics.
describes the method used to obtain

The binary image is processed by using the gradient operator and contours are ob-
tained by using the direction coding that links up the border pixels on each contour.
Contours associated to partially occluded scenes produce multiple intersecting segments
which requires that all directions are scanned and encoded as chains with reference to
intersecting pixels. Segmentation of the chains produce a set of linked polygon-based
contours which are represented by using the length-angle (polar) representation that is
one choice to obtain geometrical features which are invariant with respect to translation
and rotation.

3

1 2 3 4 6 7 8 9

5

5

8

Angle

Length

Fc

Cc

Fo

1
23

4

5

6

7

5

8

1

2
3 4

7
8

9

9

Figure 1: A cutter and its fine and coarse models

Every segment Dk is formed by a pair of points bk and bk+1, where a point bk is defined
by its coordinate bk=(xk,yk). The length sk of Dk is defined by sk = (∆x2

k+∆y2
k)

1/2, where
bk+1 − bk = (∆xk, ∆yk). The angle θ(sk) between segments Dk−1 and Dk is evaluated as
the exterior angle which is defined by θ(sk) = cos−1((∆xk−1.∆xk +∆yk−1.∆yk)/(sk−1.sk)).
The correct sign of θ(sk) can be found by examining the coordinates of bk−1, bk, and bk+1.

A fine angle-length model of contour is represented by means of an ordered set of
segment lengths si and their geometric angles θ(si) that is F = {(θ(si), si)}. Differ-
ent positions and orientations of the contour shape leads to different segmentations but
the shape characteristics of the corresponding length-angle plots are fundamentally pre-
served. Due to the effects of noise and digitization one can obtain some level of stability
but overall effects of these variations depends on how this representation is used in the
recognition process. Figure 1 shows the correspondence between the contours of a cutter
(left part) and its fine polar models Fc and Fo which are associated to a closed and open
cutter, respectively. The mapping from contours to the plots Fc and Fo are marked by
numbers. The effect of noise and digitization on fragments (1, 2, 3, and 4) of the cutter
are fundamentally identical in Fc and Fo by differ in their details. Corner 1 has sharp
angular change on Fc but smoothly represented on Fo. Corner 5 in Fc is broken into two
corners (5 and 6) in Fo. The total contour length of Fo is slightly longer than that of Fc

due to the opening at 5 and 6 which indicates that global contours cannot be directly
compared. Note that the sequence of fragments (2, 3, and 4) in Fc and Fo can be easily
matched regardless of the opening. The same remark is also true for sequence (7, 8, and
9). Therefore a shape recognition scheme should only match contours that are not af-
fected by the non-rigid shape of objects. The polar plot gives information on the relative
orientation of the above sequences that depends on the opening angle. The remaining
contours have variable-geometry and must be associated some lower and upper bounds
based on their polar plots. The relative orientation between rigid sequences and the con-
straints on variable-geometry contours can then be used as complementary constraints to
shape matching.

4

Changing the object orientation produces different fine models F and F ′ but one can
be obtained from the other after a number of horizontal (length) shift operations over
the ordered set F = {(θ(si), si)}. The original angle or θ(0) is the reference angle of the
first segment with respect to some fixed orientation such as the horizontal axis. When
matching the polar models F and F ′, the effect of the original angle is that even with
proper horizontal shifting the values of θ(si) still differ regardless of i The reason is that
the effect of the starting segment angle produces a horizontal shift between models F
and F ′. The minimum area difference between two models F and F ′ provides a mean
for finding how similar two object contours are. This provides a metric that is useful for
shape matching. Arkin [23] et al. proposed a method for the efficient computation of the
above metric for entirely observed objects. However, the use of this metric in a recognition
system faces the problem of linearly searching all the models that any recognition system
is to avoid. In Section 5.2 we extend the above results to fragment of contours and show
how the minimum area difference can be computed regardless of the horizontal shift. We
will show that computing the minimum area difference for fragment of contours requires
horizontally shifting one of the polar models by some constant angle.

In the angle-length plan, long straight segment of contours are associated horizontal
straight segments regardless of the orientation of the corresponding object. A regular
circular shape is associated a sequence of small horizontal segments (stair) in the fine
model that appear as a single segment with some constant slop depending on the curving
factor of the shape. In the polar plan, a sequence of segments that corresponds to a
constantly curved contour can then be associated one single segment with constant slop
which is basis for the coarse model.

The coarse model C results from clustering the segments of the fine polar F as a
method to obtain a sketch of the original object. This operation is based on grouping
constantly curved segments into longer segments with constant curving and linking the
resulting segments by a number of inflection points. For example, the fine polar model Fc

of the cutter is associated a coarse model Cc having 10 segments as shown in Figure 1. In
the polar plan, the non-horizontal segments of Cc represent constantly curved contours
and horizontal segments correspond to straight contours.

A fragment of contour that is constantly curved is represented in the fine model by
a sequence of small segments {θ(si), si}. Segmenting of the fine polar model consists
of merging of these small segments into one single long segment which can be achieved
when the signed ratios (θ(si)− θ(si−1))/si are nearly constant along the sequence. Such a
sequence is associated a curving factor h =

∑
θ(si)/

∑
si, where θ(si) and si are the angle

and length of the ith segment of the above sequence, respectively. The curving factor h is
the ratio of the total angular change (

∑
θ(si)) that the fragment of contour undergoes over

the curvilinear length of the contour (
∑

si). The sequence is maximal when its curving
factor significantly changes with respect to any extension of it to the left, to the right, or
both. A coarse polar model C can be defined as the collection of all the maximal sequences
which correspond to some fine model F . Formally, C = {(θb(s), θe(s), s)}, where θb(s)
and θt(s) are the angles at the beginning and end of the segment and s is the total length
the constantly curved segment.

This is equivalent to breaking up long contours into a number of fragments with

5

constant curvatures from a finite set of curving factors. Straight contours are represented
in C by means of horizontal segments. Contours with constant concavities or constant
convexities are associated single segments with slops that represent their curving factors.
Mainly, Cc is a polygonal approximation in the polar plan of some ideal polar model of
the cutter as shown in Figure 1. One may observe that sequence of fragments (2, 3, 4)
can be affected by noise and digitization but its corresponding coarse segments are much
more stable. The coarse model Cc provides a stable sketch of the object regardless of the
cutter scale or the original position and orientation. The geometric relationships between
the segments of Cc are invariant candidates and could then be used for recognizing objects
under partial occluding or in the case of open contours.

The benefit of approximating the original contour by using its coarse polar represen-
tation (sketch) is to use its parameters as searching keys over the library models which
is a critical ingredient to reduce the complexity of the recognition process. Conceptually,
similar methods have been proposed in the literature based on some level of abstraction
in modeling object contours by means of a set of local features. The latter are used in
pruning inconsistent matches prior to carrying out fine matching over a small number of
potentially matched objects. This approach uses the sketch of the object (coarse model)
for extracting local shape features which will be used in gross-to-fine matching of entire
contours, partially observed contours, and open contours. In the next section we present
our method to build stable local shape features out of the coarse polar description.

3 Feature extraction

The objective of the recognition system is to map parameterized instances of objects into
the model. Contour instances can be closed contours, fragment of contours, or intersect-
ing contours which result from partial occluding in the presence of noise. Open contours
may result from imperfect lighting, noise effects, object crossing the image boundary, or a
combination of the above. Partial occluding refers to situations where two object or more
overlap within the scene which lead to some intersection points. Under the above condi-
tions the global characteristics of the contour are no more observed and some fragments
of contour that are either open or intersecting become the only available information in
the scene.

A recognition system is to exploit the local geometric features that the contour frag-
ments carry on in order to classify these fragments and link up sub-set of segments in
an attempt to find a complete scene interpretation. For this the features must be care-
fully chosen so that they can be locally observed and be stable enough to carry on some
discriminative information. Features must be simple enough to be locally present and
completely observed on relatively short contours. In the same time, they must also be
coarse enough to discriminate models and be able to limit potential matching to a sub-set
of the model where they can be present. Under these conditions the features can consid-
erably contribute in reducing the combinatorics of the search and further matching can
then operate on few objects that have similar features to those present in the scene.

Our objective is to use a coarse sketch of contour fragments from the scene in a primary
search in order to avoid linearly searching across the models which would considerably

6

Type 1: (0 , 0 , h)

(s1,l1)
a2

shift

Type 2: (0 , shift , 0) Type 3: (0 , - , h)

shift

a1

Type 4: (h , 0 , 0)

a1

Type 5: (h , 0 , h)

a2

a1

shift1

Type 6: (h , shift , 0)

a1

Type 7: (h , shift , h)

shift

(s2,l2)

(s2,l2)

(s1,l1) (s2,l2)

(s1,l1)

(s1,l1)

(s2,l2)

(s2,l2)

(s1,l1)

(s2,l2)

(s1,l1)

(s1,l1)

(s2,l2)

Figure 2: Features and their associated types from 1 to 7

slow down the recognition process. For this we need to define a set of features that should
be extracted from the coarse representation and be used later as searching keys. Each
feature fx from the scene will be matched to some features fm from the database model
so that each match (<fx, fm>) generates a hypothesis stating that the object scene of fx

and the model object of fm could be identical. Hypotheses need to be verified later for
the geometrical relationships among each set of scene features that are matched to one
common model which allows finding whether these hypotheses are consistent or not. In
the other hand, identification of the matched model is also useful in finding the location of
each occurrence of f in the model and therefore enables finer matching such as comparing
the inter-relationships between scene features and model features.

The features should contain enough discriminatory information to order to provide
efficient and accurate indexing of candidate models from the database. Too simple features
may occur in many models which make the search inefficient because all database models
will be hypothesized. Too complex features have two drawbacks: 1) cannot be observed
from partial contours, and 2) lead to linear search across the database. We therefore need
local features that contain enough discriminatory information.

7

Figure 2 shows seven possible configurations of two successive segments from the coarse
model that are linked with each other. Each vertex v of the coarse model which links up
two successive segments s1 and s2 can be associated a tuple (h1, shift, h2) where h1 and h2

are the curving factors of the left and right segments s1 and s2 and shift denotes the angle
between the tangent to s1 and the tangent to s2 at the intersection point v. The tuple
(h1, shift, h2) is a simple feature of the coarse polar model because h1 and h2 are simply
the curving rate of segments s1 and s2 and shift is the angular shift between them. Each
tuple (h1, shift, h2) from the scene contour defines a feature which can be classified by its
type (1 to 7) as shown in Figure 2. This Figure also shows the corresponding seg-shift-seg
representation in the polar plan in front of each type. A feature discriminates the curving
factors of connected segments as well as the actual angular shift between them. The
feature encode geometric information in the neighborhood of generalized inflection points
that link up the coarse model. Figure 2 shows the contour which corresponds to each type
of features. Note that feature (h1, shift, h2) is independent from the length of segment
s1 and s2. This is useful because of two reasons: 1) the segment may not be entirely
observed in the scene which poses a problem if indexing require full knowledge of lengths,
and 2) the curving factors and the shift angle are fundamentally local information.

The proposed features are stable enough if we account for the digitization noise, the
variance on the contour due to change in position and orientation, and other possible
distortions. For example in Figure 1 the fine model Fc will be associated different se-
quences of small segments versus changes in position or orientation in the scene but the
fundamental shape of Fc remains preserved. The coarse model Cc tolerates change in the
detail of Fc and capture only the general shape of Fc so that change in Cc due to the above
effects are generally small. Effect of distortion of parametrized features will be studied
will be studied in the evaluation.

The use of these features will enable the implementation of some structural recogni-
tion scheme that is capable of propagating constraints in a coarse-to-fine fashion. The
coaresness of the above features and their stability is one critical aspect of this approach
especially during the early stages (coarse matching) of the recognition.

4 Database organization

The objective of building a database model of objects is to provide structural mapping of
scene features into object models at the coarse level as well as carrying out finer verification
and validation. There are seven distinct types of features and each type is associated one
common indexing scheme that results from hashing the object models based on the value
taken by each of their features. In order to carry on primary optimization of the storage,
features are classified by type and each set of features that belong to a common type must
share one single indexed storage. Indexed schemes allow scene features to be used as keys
in searching candidate objects from the database for the generation of all consistent model
matching. Each feature f with some type is associated a pointer value (fv) that results
from concatenation of non-zero values (by type) of its parameters h1, shift, and h2.

Indexing consists of a search procedure (Inx-type(fv)) that takes a feature f with type
(type) and generates all the model objects which contain at least one occurrence of f .

8

The degree of sharing within each hashing scheme Inx-type(fv) depends on the tolerance
allocated to fv which results from the variance on the values of parameters h1, shift,
and h2. The variance result from the noise, digitization, and lighting condition which
have different effects depending on the position and orientation of the object during the
initialization phase.

To find the tolerance on the range of each parameter the object’s contour is acquired
several times with different positions and orientations and the feature parameters are eval-
uated for each setting which allows experimentally finding the tolerance for each param-
eter. Based on the allocated tolerance, each searched feature value fv whose parameters
falls within some range is considered to occur within each of the objects associated to
that range. Formally, a feature f whose parameters h1, shift, and h2 fall within range
R = {(hl −∆h, hl + ∆h), (s−∆s, s + ∆s), (hr −∆h, hr + ∆h)} is matched to all model
objects that are associated with R, where hl, s, hr, ∆h, and ∆s are the curving factor
of left segment, the shift angle, the curving of right segment, tolerance on curving, and
tolerance on the shift angle, respectively. A model object that is associated with range R
has at least one feature whose parameters fall within the range of R. Therefore, searching
a matching between a scene feature f of some type consists of identifying a range of the
model in which the parameters of f fall into. Tuning of the size (or bucket size) for each
range is important to increase selectivity. Our approach to fine tuning of the bucket size
will be presented in the evaluation because of its dependence on selectivity and overall
discrimination power of the recognition system.

Indexing allows establishing a mapping from an input feature into a group of model
objects that are associated to the corresponding range. Each model object associated
to the range of a given type has at least one feature of that type whose parameters fall
within that range. For example searching a matching for feature f consists of finding a
cluster of objects so that Inx-type(fv) = {Ok : f ∈ Ok}. To access finer information,
each matched model object Ok has pointers to each occurrence of the matched features
which identify the location of these features within its coarse model. The coarse model
is represented by a set of ordered coarse segments and pointers are also used for each
coarse segment to indicate the start and end of the set of fine segments associated to it
within the fine model. The benefit of these pointers is that different scene features that
are matched through indexing to some object can be further processed by checking their
inter-relationships thus consolidating some interpretations and invalidating others.

This structured database organization has the advantage of searching the coarse shape
(features) to derive rough matching and then use finer scene information to refine the
interpretation over a small set of candidate models. The scheme avoids linearly searching
the models because all the features do not have to be considered at once in early stage of
the recognition. Pruning of incompatible interpretations is one important result because
at the time the finer features are used large portions of the search space would have
already been avoided through the indexed search.

9

5 A recognition strategy driven by discriminability

Grimson [13, 22] equally treats all the available features in generating hypotheses on
possible matches which results in tree-matching structure that is scanned by using depth-
first search. The search over the current sub-tree is abandoned when enough inconsistent
evidences are accumulated and the next sub-tree is started. Efficient tree searching and
updating transformations for consistency was first proposed by Faugeras and Hebert [24].
The inconsistency is detected when the verification of the inter-relationships between two
features is negative with respect to some hypothesized model. Though this organization
allows pruning many inconsistent sub-tree interpretations, the number of visited sub-trees
is large even for simple scenes.

Our approach follows a different method which consists of initially selecting a sub-
set of scene contours among those having the largest number of features among all scene
contours. The reason for this is that this choice allows pruning large portion of the models
and provide robust generation of hypotheses because it avoids handling contours with
poor discriminative information. Relatively large number of hypotheses would originally
be generated if all scene contours were hypothesized from the beginning. In other terms,
poor contours are not processed in the early stages of our recognition approach but used
latter in validating or invalidating a small set of hypotheses.

The initially generated hypotheses for the features are immediately refined with respect
to contours that carry these features. The refinement consists of carrying out low cost
spatial matching of the features of a given contour. Further refinement of the previously
verified hypotheses consists of accurate shape distance matching. At this level, the retained
hypotheses of fragments are only a very small fraction of the originally generated feature
hypotheses. Clearly in our approach as we move further in the recognition the matching
complexity increases but the problem size significantly decreases.

Now the task is to: 1) carry out pairwise matching of the retained hypotheses, and 2)
extend current hypotheses to contours that have not been originally hypothesized. For
the first case, the low cost spatial matching among hypothesized contours is involved only.
For the second case, contours that have not been originally hypothesized are selectively
verified for their membership of the reduced number of hypothesized models by first using
the spatial matching and second the shape distance matching. The natural behind this
method is to concentrate on rich contour shapes in generating the original interpretations
rather than considering all contours and wasting precious time wondering about poor
contour shapes and their vague hypotheses. In the following we present the detail of the
proposed approach.

5.1 Generality and initialization

In our representation, a vertex is generally the intersection point of contours of two objects
or more but can also be a simple end point of an open contour. An open contour may
result from the effect of lighting or noise. A contour that links up a pair of vertices is
called a line. The geometric shape of a line is arbitrary including curved shapes, polygonal
shapes, or a mixing of them. At least three lines intersect at each vertex in the case of
connected contours (non open). A continuous line that links up two vertices necessarily

10

a
b

c
d

e

f
g

h

i
jk

l

m

n

o
q

r

1

p

2

1
2

1

2

1
2

Figure 3: Partial occluding among 3 objects

belongs to the contour of one object. In other terms, vertices are the only way to sense
the overlapping of object contours or the case of open contours. A collection of lines that
link up an arbitrary number of vertices may or may not belong to the contour of the same
object. Answering the question of whether a pair of lines, linked by some vertex, belong or
not to the same object requires complex investigation involving the object library models.

The matching algorithm starts by evaluating the fine and coarse polar representations
of each line that appear in the scene. It sorts the lines in the decreasing order of the number
of segments according to their coarse model. The lines having the largest number of
segments necessarily possess richer discriminative information (inflection points) than the
others and must then be used in indexing the models to generate hypotheses on possible
matching. Indexing with lines having too few number of segments leads to generate large
number of potential matches as many models may include varieties of simple features.
This has the effect of slowing down the whole recognition process due to the combinatorics
generated when comparing many possible matches among the lines. A better method is to
retrieve a sufficient number of candidate lines from a list sorted according to the principle
of largest number of features first. This may represent some percentage of the total number
of lines.

Figure 3 shows an example of partial overlapping between three objects. In this
example, we have 18 vertices labeled as (a, b, . . . , q) and 26 lines labeled by the pair of
vertices that directly connect. For example, vertices a and b directly connect two contours
that are labeled ab1 and ab2 which are shown on the above Figure by using only their
numeric identifier (1 and 2).

Initially all vertices are inactive which means that they do not require any processing
until they change their state and become active. The features that belong to the initially
selected lines are then used in the indexed search which enables finding one or more
matches for each selected line following spatial matching and shape distance matching
of the features that will be described in the next Section. This allows lines be directly

11

a
b

q

m
o

l k
j i

f
e

1

1

1

a - Initialization set

a
b

f

ijk
l

n p
r

1

1

1

b - Extending intialization c - Removing top object

a
bd

c
r

q

h
g f

eij
k

l
m

n

o
rp

1

1

1

2

22

Figure 4: Steps in extending the initialization set to top object and fragments

matched to sub-sets of the library model. Indirect matching of lines will be described
later. Directly or indirectly matched lines are called fragments. In the example, the set
of fragments (27%) found following the initialization step is {ab1, ef1, ei, jk1, kl, lm, oq}
are those having 3 features or more and are marked with arrows on Figure 3.

The proposed pattern matching approach is vertex-driven. The vertices connected to
fragments become active as fragments may be used to extend the matching to some of
their neighboring lines which are connected to active vertices. In the example, the active
vertices are (a, b, e, f, i, j, k, l, m, o, q) which are shown on Figure 4-a that is obtained after
removing all inactive vertices and lines which are contours having poor information.

In the next Section we show how one can find robust initial matching hypotheses which
result from carrying out gross to fine matching for the initial set of fragments only.

5.2 Spatial and shape matching

The features associated to each scene contour (Ax) are generally individually matched to
features that belong to a relatively large number of models. Each matching (< fx, fm >)
from a scene contour feature fx to a model feature fm represents a hypothesis that must
verified. Since the number of hypotheses is relatively large, it becomes critical to prune
the maximum number of inconsistent hypotheses by using the least costly checking. The
reason is that sophisticated verification of all the originally generated hypotheses would
dramatically increases the recognition time making it linear in the model size.

Assume a fragment of scene contour Ax has a set of n features fx,1, . . . , fx,n which have
been one-to-one matched to features fm,1, . . . , fm,n of some model Om. The ordering of
fx,1, . . . , fx,n corresponds to their order on contour Ax according to a given direction. To
consolidate the matching of Ax to model we first check the geometric matching between
these features which is, in turn, consolidated by the accurate distance matching.

The geometric matching consists of comparing the relative position and orientation of
features fx,1, . . . , fx,n according to their setting in the scene to those of features fm,1, . . . , fm,n

according to their setting in the model. For this the position and orientation of each fx,i+1

is evaluated with respect to some frame of reference that is attached to previous feature
fx,i. The above position and orientation are compared to those of the matched features

12

fx,i
fm,i

fx,i+1
fm,i+1

Error

vector of fm,i+1
 relative to fm,i

vector of fx,i+1
 relative to fx,i

Figure 5: Geometric matching of features

(fm,i+1 with respect to fm,i) with the objective to validate or invalidate the ordered match-
ing <fx,i, fx,i+1, Om> based on pair <fx,i, Om> and <fx,i+1, Om>.

Figure 5 shows two scene features fx,i and fx,i+1 which are matched to two model
features fm,i and fm,i+1, respectively. The relative position and orientation vector of fx,i+1

is evaluated with respect to fx,i for the scene features and compared to vector fm,i+1 that
is observed with respect to fm,i. Geometric matching consists of a low cost operator that
evaluates the error vector ε(i) which is simply the difference between the above vectors.
The error vector measures how different are the relative positioning of the scene features
from their corresponding model features. A global measure of relative positioning can be
defined by adding up the squares of the error vector εx,m = Σi=n−1

i=1 ε(i)2 that is associated
to the error between fx,1, . . . , fx,n and fm,1, . . . , fm,n. In other term, εx,m is the spatial
matching error for <Ax, Om>.

The advantage of this approach is the ability to carry out additional model pruning at
low cost processing because the number of originally generated hypotheses is still relatively
large. Three important characteristics contribute in the efficiency of geometric matching.
First, only those contours that with enough discriminative information participate in the
original geometric matching. Second, the relative position and orientation of features
within the model are pre-computed and need no further processing. Third, the relative
position and orientation of the scene features are evaluated once and used in pruning all
inconsistent hypotheses among contours having enough connected features. The process
of geometric matching allows carrying out low cost verification of the most probable
hypotheses that are directly produced by the indexed search. The low cost of geometric
matching and the organization of the storage to this effect is one important issue in
reducing the dependency between recognition time and size of the database. Verifying the
most probable hypotheses by using low cost geometric matching is an essential refinement
step prior to applying the more costly shape matching which is described below.

The finest step in verifying the matching <Ax, Om> consists of evaluating the polar
distance between Ax and the portion of contour (Am) of Om that is matched to Ax.
Geometric matching consolidate the positioning of the sequence of features from scene

13

Am(0)

s1 s2 s3 s4 s5 s6 s7 s8 s9

Ax(0)

Ax(s)

Am(s)

0 s

Am(0)+a*

s1 s2 s3 s4 s5 s6 s7 s8 s9

Ax(0)

Ax(s)

Am(s)+a*

0 s

(a) (b)

Figure 6: Initial (a) and least (b) Distances between Ax(s) and Am(s)

to model but does not tell how similar are the contour details. The functions Ax(s) and
Am(s) denote the polar models as function of the contour length s. Figure 6-a shows the
fine polar models of Ax(s) and Am(s) that will be used here to evaluate a shape similarity
function.

Ax(s) is a set of k polygonal segments with a total length S and Am(s) has equal
length but with L segments. In Figure 6-a k = 6 and L = 5. The interval [0, S] is divided
into N intervals so that in every interval i functions Ax(s) and Am(s) are constant over
the length si of that interval. The total length satisfies S = ΣN

i=1si. Since the effect of
the scene instance on Ax(s) appear as a vertical shift in the polar plan when compared
to the model instance. The shift is due to the original orientation of objects with respect
to horizontal. The polar distance is meant to be the minimum possible area difference
between Ax(s) and Am(s) versus all possible vertical shift operations. In other terms, the
distance function is defined by da(m,x) = ΣN

i=1(Ax(i) − Am(i) + a)2si which is a convex
function [23] of the vertical shift parameter a that would vertically translate Ax(s) in
order to yield the least value of da(m,x).

To find the minimum value of da(m,x) one needs to find a vertical shift value a∗ that
minimizes da(m, x) which must be the least possible value of da∗(m,x) = d(m,x) among
all possible vertical shifts. For this we differentiate da(m,x) with respect to a which gives
δda(m, x)/δa = 2ΣN

i=1(Ax(i) − Am(i) + a)si. Since da(m, x) is convex function of a the
optimum value of a corresponds to δda(m,x)/δa = 0 which gives a∗S = ΣN

i=1(Am(i) −
Ax(i))si. By substituting a∗ into da(m,x) = ΣN

i=1(Ax(i)− Am(i) + a)2si we obtain

d(m, x) = ΣN
i=1(Ax(i)− Am(i))2si − 1

S
(ΣN

i=1(Ax(i)− Am(i))si)
2

The normalized distance d(m,x)/S allows finding the smallest area difference (shape
distance) between two fragments Ax and Am of equal length S that is determined by the
length of the scene fragment Ax. Figure 7 shows one scene contour (shape 1) and two
spatially matched model contour (shape 2) and (shape 3) whose horizontal shifts were
set based on feature matching over the length of shape 1. Though shape 1, shape 2,
and shape 3 have a number segments and corners, as shown on Figure 7-b, function
Min{d(shape 1, shape 3), d(shape 2, shape 3)} is several fold d(shape 1, shape 3).

14

shape 1

shape 2

shape 3

c1

c1

c1

c 2

c 2

c 2

(a) (c)

Polar 3

Polar 2

Polar 1

c1

c1

c1 c 2

c 2

c 2

(b)

shape 3

shape 1

shape 2

Figure 7: Shape matching: shapes (a), polar models (b), and distance (c)

In summary, the objective of geometric and shape matching is to operate on a subset
of hypotheses that are among those having most of the discriminative information so that
large pruning of hypothesized models is performed by progressively applying low-cost
gross matching to more costly fine matching. The result is a set of robust hypotheses
for a subset of scene contours that will be used in subsequent steps as the seed for the
generation of correct interpretations. Extending the current hypotheses through inter-
fragment matching and predictive matching is the next step to come up with a global
interpretation. This will be described in the next two sections.

5.3 Selective processing

An active vertex has at least one fragment and a number of lines which means that a
vertex becomes active only when at least one of its lines is matched to some model and
that line is called fragment (g). Processing of an active vertex consists of attempting the
matching of some of its lines to a subset of the models which have already been matched
to fragments connected to this vertex. Each fragment g of some active vertex is paired
with a line l for possible matching. This consists of appending the line to g in the polar
plan (g, l) and comparing it to the models that match the fragment g. In the example
of Figures 3 and 4-a, the fragments ab1, ef1, and jk1 could not be matched to their
neighboring lines. For example, the pairing <ab1, ab2> which are connected at vertex a
failed as well as the pairing with line aq because the models to which fragment ab1 is
matched to do not contain any of these combined contours.

Referring to Figure 3 the pairing <ei, ef, il>, <lk, kj>, <lm, il, mn>, and <oq, op, qr>
succeeded and the newly matched lines become fragments and their connected vertices
are then considered as newly active vertices. By transitivity, the matched chain of frag-
ments and lines is extended such as in the case of chain (fe, ei, il, lm, mn) as more vertices
become newly active such as (n, p, r). As a result of the previous matching some lines
become fragments and consequently these new fragments fetch inactive vertices to which

15

they are connected (if any) which become active as some processing can now be done
to extend the matching process further. Repeating the above matching process enables
extending the previous matching to new chains that are (gf, fe, ei, il, lm, mn, np1) which
can now be combined with chain (np1, po, oq, qr, rh). An intermediate step of combining
matched chains is shown in Figure 4-b where most of the contours that belong to the top
object are discovered. The newly active vertices (h, g) enables matching hg to the previ-
ous chain thus identifying the top object. Other combined chains can also be matched at
this level such as (ij, jk, kl). Clearly, the evolution of vertex-driven matching allows early
recognition of top intersecting contours including whole objects and long portion of top
contours. Removing of the top object leaves all the lines and fragments that are shown
on Figure 4-c.

At this point, we note that the active vertices can be classified into two categories:
1) the vertices that connect only fragments which we call completed vertices, and 2) the
vertices that connect fragments and lines which we call blocking vertices. A completed ver-
tex whose fragments were successfully matched pairwise does not provide any additional
information and can then be removed. None of the completed vertices of the example
can be removed. By keeping activation of a blocking vertex, poor contours can be fetched
in subsequent matching in order to examine potential pairing with other contour having
stronger hypotheses.

A completed vertex with at least one fragment that could not be matched across
this vertex to other fragments or lines must remain active or the algorithm blocks as no
further move can be done. In the example completed vertices that must remain active are
(e, f, k, g, i, l, o, p,m, n) which appear on Figure 4-c. On the other hand, blocking vertices
are (a, b, g, h,m, n, o, p, q, r) as each of these vertices still have at least one line.

The above blocking can be removed by extending the search through pairing of hy-
potheses and predictive matching which will be described in the next subsections.

5.4 Pairing of hypotheses

Pairing of hypotheses applies to active vertices that have fragments which could not be
matched to other contours of the same vertices. This situation is frequent in partial
occluded scenes. For example, fragment ef1 (Figure 4-c) could not be matched to any
neighboring contours at vertices e and f .

To extend further the matching, searching for fragment-fragment matching can give
fast result because strongly hypothesized contours of the same object have identical
matched model among those that received the highest vote following the indexed search.
Pairing of hypotheses can done by simply checking whether the currently unconnected
chains have some common model matching. For example, chains (lk, kj, ji) and (ef1)
for which the correct model to which they belong to is likely to be among the current
hypotheses. For this the algorithm picks up a matched model that is common for two
hypothesized chains and compares the relative position and orientation of these fragments
in the scene to that present in their hypothesized model. This task has low overhead be-
cause each of the fragments has previously been matched to a sub-set of features of the
same model and the costly shape matching has already been successful for each fragments
as previously described in Section 5.2.

16

Assume two scene fragments g1 and g2 that are matched to some contours denoted
by g∗1 and g∗2 of the same model. For this, one may compare the position and orientation
of each pair of features from g1 and g2 to those of the matched features from the model.
Since each fragment can be formed by numerous features the cost of such a comparison
can be relatively high. A less costly approach is to consider the fragments as two arbitrary
contours and carry out the comparison by using a distance that constrain their relative
position and orientation. For this we choose two points (x1, x2) on g1 and (y1, y2) on g2

so that any combination of three points out of (x1, x2, y1, y2) is not co-linear. Based on
previous feature matching with the models, choose x∗1, x∗2, y∗1, y∗2 as the points of g∗1 and
g∗2 that correspond to x1, x2, y1, y2, respectively. Now the position and orientation of
g2 with respect to g1 can be matched to that of g∗2 with respect to g∗1 by comparing the
distance between every pair of points (x, y) in the scene to the corresponding distance in
the model. In other terms, we evaluate a distance error that characterizes the position
and orientation of these fragments in the scene and in the model. The distance error
d(g2/g1, g

∗
2/g

∗
1) is given by

d(g2/g1, g
∗
2/g

∗
1) =

2∑

k

2∑

l

|d(xk, yl)− d(x∗k, y
∗
l)|

Min{d(xk, yl), d(x∗k, y
∗
l)}

where Min(., .) is used to obtain a relative distance error which guarantees that d(g2/g1, g
∗
2

/g∗1) is a small percentage in case of correct matching. As each fragment is generally
hypothesized with few models the above testing can easily identify the model that provide
the best matching or more than one matching should be kept if the corresponding distance
errors are small. At this level, the presence of multiple possible matching implies that
each of these hypotheses must be checked in subsequent matching extension.

For the example shown in Figure 4-c the fragments (ij, jk, kl) and (ef1) is one exam-
ple of successful pairing of hypotheses. Pairing of fragments (jk1) and (ab1) is another
example. Successful pairing results in appending sparse chains together and we assume
that pairing is transitive operation for subsequent matching.

5.5 Predictive matching

Predictive matching is an advanced step in the recognition because all contours having
significant discriminative information have already been hypothesized and there is still
some contours (lines) that must participate in making the global interpretation. When
lines and fragments do not match at some vertices, there is need to attempt matching
distant fragments and lines because this situation is typical of partial occluding scene
and contours that are altered by noise and lighting. At this level of the recognition, all
the remaining vertices become active in order to attempt matching lines with previously
hypothesized chains.

Examining of the geometric relationships between a fragment g at vertex u (<g,Om>)
and a line l at vertex v enables extending the matching process to l, i.e. whether <l, Om>
holds or not. Since a line has poor discriminative information our approach narrow its
matching to small number of models {Om} for each neighboring chain. The question is
how to efficiently search for a line from the scene that is can also be present in one or
more of the matched models of some neighboring fragment g.

17

One method is to report l into each model Om that is matched to g and evaluate
the shape matching distance for the new postulated chain <g, l, Om> and repeat this
operation for all the scene lines that are likely to fall onto the model. This requires
repeatedly evaluating the shape matching distance for each scene line by shifting it in
the vicinity of g within model Om. Since the number of active vertices is still large, this
approach is computationally inefficient and there is need for a low cost matching operator
that must backtrack as soon as some inconsistency is detected. In other terms the cost of
verifying <g, l, Om> must initially be as low as possible and can be allowed to increase
in cost only when enough confidence is accumulated.

The method used consists of three ordered steps: 1) vector matching, 2) orientation
matching, and 3) shape matching. It is possible to backtrack at each step to abandon the
current search when any mismatching occurs. For vector matching, we evaluate the vector
uv by selecting a vertex v that the nearest unvisited vertex to u. The vector is reported
with respect to edge u in each of the models {Om} to which g is matched to. If the
reported vector points to some contour point w of the model then the relative orientation
(tangential) of l with respect to g in the scene is compared to the relative orientation
of w with respect to g in the model. The shape distance matching is attempted only
when vector and orientation matching succeed. Otherwise, the next model to which g is
matched to is taken and the previous steps are repeated.

The cost of vector matching is the lowest and involves simple access of the model
and evaluation of a distance because the model contains a sorted list for the coordinate
of the contour points. The cost of the second operator is also very low because the
polar representation directly gives the relative orientation (difference) between two polar
segments. Therefore, pruning many inconsistent matching (<g, l, Om>) can be done at
low cost.

Referring again to figure ref3over-c. Predictive matching allows fragments kl to be
matched to line mo, mo is matched to qa, and so on. This results in matching the chains
(kl,mo, qa, ab2, bc, cd, dr, pn), (jk1, hd), and (jk1, gc) that each necessarily contains at
least one initialization fragment.

5.6 Interpretation

During recognition, each fragment of contour g retains a number of valid hypotheses that
are processed every time g is involved in some matching extension like the pairing of
hypotheses or predictive matching. Now each matched model of fragment g accumulates
some vote that is the length of all the fragments and lines which have been successfully
matched to g. The retained models are taken as those having the highest vote when all
possible matching have been completed for the retained hypotheses. Each fragment is
hypothesized to one of its matched models that received the highest vote which generally
allow complete clustering of the scene.

Note that in some cases the originally generated hypotheses of some fragment may
not be matched to any other scene fragment because the hypothesized contour is present
in many models and the selected hypotheses are incorrect. In this case these hypotheses
accumulate relatively very low vote (sporadic). To avoid this blocking the algorithm back-
track into the originally generated hypotheses and retrieve the next highest hypotheses.

18

This backtracking has local effect because the newly fetched hypotheses are then incre-
mentally matched with the currently running hypotheses at all levels of the recognition.

6 Performance evaluation

In this Section we present analysis of the proposed modeling and recognition by evaluating
the proposed scheme with respect to storage requirements and effect of database size. We
finally compare our approach to other proposed approaches.

6.1 Storage requirements

Decomposing contours by using constant curvature criterion was proposed first By Wuescher
et al. [17] and latter used in other proposals. However our work differ from that of [17]
which directly use the curvature values to index into the model. In our approach we
used a 3-dimensional features that include at most two constant curving factors and a
shift angle which represents the basis for our multi-dimensional indexing. The problem
with [17] is that increasing selectivity by reducing the granule size of the bucket has the
effect of degrading the discriminability of the whole scheme because this reduction occurs
at the expense of the levels of noise that the system can handle. This effect has been
extensively studied by Cafifano and Mohan in [9] which proposed the adoption of larger
indices to keep a relatively coarse bucket quantization without scarifying selectivity.

Our approach consists of increasing the dimensionality of the indices (feature parame-
ters) as a method to increase selectivity. On the other hand, we have partitioned our 3-D
index space into seven distinct hashing tables in an attempt to decrease the number of
entries per table which has the effect of reducing the storage size of these tables without
affecting the discrimination power of the indexing scheme.

The maximum number of buckets in this approach is Nmax = Π3
i=1Ri/Π

3
i=12εi, where

Ri is allowable range of the ith parameter and εi is the overall variance on that parameter
due to various effects such as noise, digitization, and theresholding. In this case, Nmax =
R2

hRθ/(8ε
2
hεθ), where Rh, εh, Rθ, εθ are the range of the curving factor, its variance, the

range of the angular shift, and its variance, respectively. Since parameters εh and εθ are
global variances, therefore, it is important to optimize to bucket size by directly relating
the bucket size to discriminability.

For this we heuristically searched for the best possible bucket size by stepping the
size around the value of Rmin = 8ε2

hεθ, which is the smallest bucket size, after estimating
the values of εh and εθ based on known thresholding and repetitive acquisitions of fea-
tures by varying their position and orientation. We first study the storage required for
the indexing tables versus the bucket size for a 100-object database. To construct the
indexed tables, each object is scanned several time by randomly setting the position and
orientation. Table entries are created for the resulting parameters of the features which
include variances due to noise and digitization. This process affects the storage volume
as the same feature may create multiple entries due to: 1) current bucket size, and 2) the
variance on the feature parameters.

19

Figure 8: Storage size and recognition time versus bucket size

The current bucket size is Rh,θ = R2
hRθ = αRmin, where α is the bucket size factor

that is studied here in the range 0.25 ≤ α ≤ 2.25 by using steps of 0.25. The Storage
Size (S(α)) is defined as S(α) = st(α)Smin where Smin is the minimum storage over the
studied range of α and st(α) is the storage factor. Figure 8 is used to plot the storage
size and the normalized recognition time versus the bucket size. Figure 8-storage size
shows how the storage size grows versus increasing or decreasing the bucket size around
reference Rmin (Bucket size factor of 1 in the figure) in the case of 100-object database.

Because of the large number of features and the variety of object shapes the storage is
likely to be constant when bucket size (α ∈ [1, 2.25]) exceeds Rmin because of non-uniform
parameter distribution. When the bucket size (α ∈ [0.25, 1]) is below Rmin the storage
linearly increases when the bucket size decreases because the feature parameters randomly
fall into neighboring buckets thus creating duplicate entries in the tables.

The value of Rmin is just an indicator and the optimum bucket size results from many
superimposing effects that are difficult to model. One needs to link the bucket size with
the discrimination power in order to find an appropriate bucket size. One way to handle
the discriminability versus the bucket size is to consider the recognition time for a small
set of features, having identical type, which includes the time to generate hypotheses as
well as the verification time. For each experiment we consider a group of four features
that appear on the contour of some database object such that all four features have either
of the following types: type − 1&4, type − 2, type − 3&6, type − 5, and type − 7. The
grouping by type is meant to have equal feature complexity within each group. We relate
the average time to classify four features of a given type to the bucket size with the idea
that minimum classification time corresponds to maximum discriminability for the set of
features. Clearly, our discrimination function is inversely proportional to the recognition
time measured under different instances of bucket size. Features considered are similar to
those found in Figure 3.

20

Our objective is to link the selection of the bucket size to the ability to discriminate
fragments which includes generation of hypotheses, cost of verifying them, and cost of
carrying out accurate distance matching. This is likely to involve most of the recognition
system. However, there are different ways the recognition time of some features can be
affected by the bucket size. Due to their shape, features may have strong dependence
on bucket size when there is some potential similarities among group of features. Other
isolated features have recognition times that are much less sensitive to change in bucket
size. Therefore, we randomly selected a 10 set of 4 features, each set of 4 is taken from
one model, and averaged their overall recognition time which is shown on Figure 8 for
each type.

Type 2 has a two straight segments separated by some shift which the searching
key which explain why the recognition time is linear function of database size (Figure 8-
type−2). Types 3−6 and 1−4 have one straight and one curved segments and differ only
by the presence or not of the shift separator. Their recognition time slightly indicates
(the minimum) the need for a specific bucket size. Finally, types 6 and 7 have two
curving factors and differ only the shift separator. Here there is strong dependence of the
recognition time over the bucket size. Since generally, searching by using a set of features
and classification involve a mixing of all the feature types, therefore, we need to find a
bucket size that is suitable (minimum recognition time) for most of the above cases. After
examining the average recognition time for different sets of features we decided that the
best discrimination for this approach corresponds to 1 ≤ α ≤ 1.75. Our final setting was
S(α) = 1.4Smin.

By this approach we avoid excessively reducing the bucket size to gain selectivity
but instead we preferred setting the bucket size to some level so that to minimize the
recognition time for a sufficiently large number of random features. The discrimination
associated to recognition of whole object that is used by Califano and Mohan [9] is defined
as Vc/Vw, where Vc is the votes for the correct shape instance and Vw is the maximum votes
received for the incorrect shape instance. This function applies to whole object recognition
which incorporate the accumulation of evidences from many features. In this work, the
discrimination is applied to fragments of contours which exposes the recognition system
to a finer-level recognition that must be frequently carried out when recognizing partially
occluding situations. Another difference is that the discrimination used here incorporates
the generation of hypotheses, the cost of verification, and the distance matching. This
process definitely classifies the fragments, thus strongly reduces the remaining task of
linking the fragments to find globally correct interpretation.

6.2 Effects of the database size

One important issue in evaluating performance of recognition systems is the study of the
dependence of the recognition process on the number of database objects. Scenes of 4
objects with partial occluding are studied. The objects are mechanical items (tools, keys,
etc.) and flat plastic shapes. The number of features for these objects range from 8 to 20
per object. Thresholds used throughout the modeling were experimentally evaluated by
repeatedly tracing contours under different position and orientation which allowed setting
estimated tolerance parameters at each level.

21

Hypotheses pruning versus database (DB) size
DB size hypotheses Ranking 1 Ranking 2 Ranking 3 Recog. time % increase
10 61 16% 14% 25% 48 −
40 258 7.6% 6.2% 10.4% 51 6.25%
70 497 4.3% 3.8% 6.7% 53 10.4%
100 796 2.8% 2.5% 4.5% 55 14.5%
130 1172 2.1% 1.8% 3.25% 58 20.8%

Table 1: Hypothesis generation, ranking, and recognition time

Database setting for n-object is denoted by DBn and the studied instances of n are
10, 40, 70, 100, and 130. We started by setting up the model for database n = 10 by using
the 3 objects of the scene with other randomly selected objects. To build the database
with n = 30 we randomly selected 20 more objects and added them to DB10, and so on.
The recognition algorithm is run under each of the database settings for recognizing the
scene shown on Figure 3.

The indexed search provides hypotheses of the mapping from scene features to features
of the models. Note that a feature may be hypothesized more than once within the same
model because of possible parameter matching with distinct features. Each feature of some
scene object accumulates votes for matching with features of the models. The ranking
of a feature is taken as the minimum percentage of hypotheses generated which contains
the correct matching. The ranking of an object is the average of the ranking of all its
features. Table 1 shows the total number of hypotheses generated and the ranking for all
the three scene objects versus the size of the database. The reason for the large number
of hypotheses generated is that most individual features are found in many object feature
instances due to noise, digitization, thresholding, and bucket tolerance. This does not
poses a major problem as far as we do not retain all these hypotheses but only a very
small subset will be further processed. For example, object-2 received a ranking of 6.2%
under DB40 which indicates that, on the average, the number of votes received by each of
its features for the correct matching was among the top 6.2% among all the highly voted
matching. Though the number of total hypotheses generated is at least quadratic in the
database size, the algorithm spends a small fraction of the recognition time on processing
of these hypotheses because only a small fraction of these hypotheses are to be verified
and the remainder is pruned.

The fraction of hypotheses that are checked for their spatial relationships is slightly
larger than the percentages shown on Table 1 which depend on the database size. Checking
for the spatial relationships between pair of features has relatively larger overhead than
hypothesis generation but its global overhead is moderate because the set of potential
matching is small after the hypotheses pruning step. Spatially unmatched hypotheses are
further pruned prior to carrying out the accurate distance matching which has the highest
overhead. Overall recognition time of the three objects is shown on Table 1 together with
the percent increases in the recognition time over that obtained for DB10. The recognition
time is likely to be independent from the number of hypotheses originally generated. The
time increases is relatively small as the algorithm must spend only 20% extra time when
the database size becomes 13 fold that of DB10. By experimentally choosing the ranking

22

percentages of hypotheses, the number of retained hypotheses becomes nearly constant
regardless of the database size. Under this condition, the recognition algorithm would
likely depend only on the scene complexity without explicit dependence on the database
size.

6.3 Comparison to others

In the following we compare our approach to other model-based recognition that are
hierarchical in structure and scale citeart:ettinger.

In [6] all scene features participate in the generation of hypotheses that are ranked
by mutual support. This consists of reporting the matched models into the scene and
collecting supporting evidences whenever they map to similar locations. Due to the large
number of initially generated hypotheses, a massively parallel machine (CM5) is used
to parallelize the complexity of scene and each processor carry out verification of one
hypothesis. A confidence degree that is the percentage of total matched line segment
weighted by the line segment length is evaluated for each interpretation which allow
selecting the instance with the highest confidence. Results show that recognition time
mainly depends on scene complexity but with only secondary dependence on the model
size. As a result of parallelism the recognition time of few objects is about that of
recognizing one object. These results are partially due to the use of huge parallelism
which hide the cost of verifying many improbable hypotheses.

Our approach avoids generating large number of hypotheses by selecting contours that
have rich discriminatory information to generate initial hypotheses. Poor fragments are
questioned latter on the validity of current hypotheses. To prune large fraction of the
models a depth first hypothesis verification is carried on from gross spatial matching
among features to fine shape matching. To extend the current hypothesized matching
the scene vertices (intersecting fragments) are progressively activated to exploit contour
continuity between strongly hypothesized fragments and poor fragments. Objects on
top in the scene are rapidly recognized which facilitate predictive matching of contour
fragments that intersect with top objects. A global interpretation that leaves the least
percentage of uncovered contours is selected. Though a serial processing is used, the
fraction of the recognition time that is database dependent is a small percentage of overall
processing time.

7 Conclusion

In this paper we presented the design and implementation of a model-based pattern recog-
nition system based on coarse-to-fine matching. Shapes are modeled by using the polar
representation of contours for which we developed a metric for efficient shape matching
that can be used for comparing whole object contours as well as fragments of contours.

The aim of optimizing the model structure and the searching algorithm is to reduce
significantly the explicit dependence of the recognition time over the database size. To
enable early pruning of large portion of the models, only scene contours among those
having most of the discriminative information are selected for the generation of initial

23

hypotheses. This allows avoiding early processing of contours having poor discriminative
information which otherwise would increase the dependency over the model size. Such
poor contours are used latter in validating or invalidating a relatively small set of robust
hypotheses.

The generation of robust hypotheses enabled us categorizing the contour intersection
points with respect to discriminability. The result is some processing that is driven by
discriminability which can be extended to whole scene by using predictive matching and
pairing of hypotheses. The approach was intended to avoid brute force processing of a large
number of hypotheses that must be processed regardless of discriminability. Reducing the
storage size without affecting discrimination power was carried out by relating the bucket
size to typical recognition time. To increase selectivity, we used a 3-D index that is further
partitioned into several optimized indexed schemes in an attempt to decrease the number
of entries without loss of discriminability.

Evaluation shows that the recognition time is nearly independent from the number of
hypotheses originally generated. The time increase due to increase in the database size is
relatively small because the model and the algorithm are designed so that the algorithm
spends a small fraction of time in global database processing. This approach proved to
be efficient for a 100-object database.

References

[1] G. J. Ettinger. Large hierarchical object recognition using libraries of parametrized
model sub-parts. Proc of the IEEE Conf. on Computer Vision and Pattern Recogni-
tion, pages 32–41, 1988.

[2] T. Pavlidis. Algorithm for graphics and image processing. Comp. Science Press,
Rockville, Md., 1982.

[3] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee. Robotics: control, sening, vision, and
intelligence. McGraw Hill Inter. Eds., 1987.

[4] X. Chin and C. R. Dyer. Model-based recognition in robot vision. ACM Computing
Surveys, 18, No. 1:67–108, 1986.

[5] P. W. M. Tsang and P. C. Yuen. Recognizing of partially occluded objects. IEEE
Trans. on Systems, Man, and Cybernatics, 23, No 1:228–236, Jan-Feb 1993.

[6] L. W. Tucker, C. R. Feynman, and D. M. Fritzsche. Object recognition using the
Connection Machine. Proc of the IEEE Conf. on Computer Vision and Pattern
Recognitiopn, pages 871–878, Jun 1988.

[7] N. R. Corby. Machine vision for robotics. IEEE Trans. on Industrial Electronics, 30,
No 3:282–291, Aug 1983.

[8] W. E. L. Grimson and D. P. Huttenlocher. On the verification of hypothesized
matches in model-based recognition. IEEE Trans. on Pattern Recognition and Ma-
chine Intelligence, 13, No 12:1201–1213, Dec 1991.

24

[9] A. Califano and R. Mohan. Multidimensional indexing for recognizing visual shapes.
Proc of the IEEE Conf. on Computer Vision and Pattern Recognition, pages 28–34,
Jun 1991.

[10] N. Ayache and O. D. Faugeras. HYPER: A new approach for recognition and posi-
tioning of two dimensional objects. IEEE Trans. on Pattern Analysis and Machine
Intelligence, Vol. 8, No. 1:44–54, Jan 1986.

[11] B. K. P. Horn. Robot vision. The MIT Press, 1986.

[12] X. Bolles and R. A. Cain. Recognizing and locating partially visible objects: the
local-features-focus method. Inter. J. of Robotics Research, 1, No. 3:57–82, 1982.

[13] W. E. L. Grimson. On the recognition of curved objects. IEEE Trans. on Pattern
Recognition and Machine Intelligence, 11, No 6:632–642, Jun 1989.

[14] A. Rosenfeld and J. S. Weszka. An improved method of angle detection on digital
curves. IEEE Trans. on Computers, C-24:940–941, 1975.

[15] W. Richards, B. Dawson, and D. Whittington. Encoding contour shape by curvature
extrema. Journal of Optimization America A, 9, No 3:1483–1491, Sep 1986.

[16] M. Brady and H. Assada. Smoothed local symmetries and their implementation.
Inter. J. Robotics Research, 3, No. 3:36–61, 1984.

[17] D. M. Wuescher and K. Boyer. Robust contour decomposition using a constant
curvature criterion. IEEE Trans. on Pattern Recognition and Machine Intelligence,
13, No 1:41–51, Jan 1991.

[18] J. L. Turney, T. N. Mudge, and R. A. Volz. Recognizing partially occluded parts.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 7, No. 4:410–421, Jul
1985.

[19] Y. Lamdan, T. T. Schwartz, and H. J. Wolfson. On recognition of 3-D objects from
2-D images. IEEE lnter. Conf. on Robotics and Automation, Vol. 3:1407–1413, 1988.

[20] A. Kalving, E. Schonberg, J. T. Schwartz, and M. Sharir. Two dimensional model
based boundary matching using footprints. International Journal of Robotics Re-
search, 5, No 4, 1986.

[21] T. F. Knoll and R. Jain. Using features indexed hypotheses. Technical Report RSD-
TR-10-85, University of Michigan, Robot Systems Division, Center for Research on
Integrated Manufactiring, 1985.

[22] W. E. L. Grimson. The combinatorics of heuristic search termination for object
recognition in cluttered environments. IEEE Trans. on Pattern Recognition and
Machine Intelligence, 13, No 9:920–935, Sep 1991.

25

[23] E. M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kedem, and J. S. B. Mitchell. An
efficient computable metric for comparing polygonal shapes. IEEE Trans. on Pattern
Recognition and Machine Intelligence, 13, No 3:209–216, Mar 1991.

[24] O. D. Faugeras and M. Hebert. The representation, recognition, and locating of 3-D
objects. Int. Journal of Robotics Research, 5, No 3:27–52, 1986.

26

