
Adaptive Scheduling of Computations and Communications on

Distributed Memory Systems

Mayez Al-Mouhamed and Homam Najjari

Computer Engineering Department

CCSE, King Fahd University

Dhahran 31261, Saudi Arabia.

mayez,homam@ccse.kfupm.edu.sa

Abstract

Compile-time scheduling is one approach to extract paral-
lelism which proved to be effective when the execution be-
havior is predictable. Unfortunately, the performance of
most priority-based scheduling algorithms is computation
dependent. Scheduling by using earliest-task-first (ETF)
produces reasonably short schedules only when available
parallelism is large enough to cover the communications.
A priority-based decision is much more effective when par-
allelism is low. We propose a scheduling in which the de-
cision function combines: (1) task-level as global priority,
and (2) earliest-task-first as local priority. The degree of
dominance of one of the above concepts is controlled by the
available the computation profile such as task parallelism
and communication. An iterative scheduler (forward and
backward) is proposed for tuning the solution. In each it-
eration, the new schedule is used to sharpen the task-levels
which contribute in finding shorter schedules in next itera-
tion. Evaluation is carried out for a wide category of com-
putations with communications for which optimum sched-
ules are known. It is found that pure local scheduling (like
ETF) and static priority-based scheduling significantly devi-
ate from optimum under specific problem instances. Our ap-
proach to adapting the scheduling decision to computation
profile was able to produce near-optimum solutions through
much less number of iterations than other approaches.

1 Introduction

Deterministic scheduling can be profitable when the exe-
cution behavior can be made predictable at compile-time.
The compiler determines the dependencies and estimates
the computation and communication requirements which
are used to produce a schedule that better matches the un-
derlying parallel hardware.

The problem of minimizing schedule finish time of com-
putations and communications is one NP-complete prob-
lem [1]. Different approaches have been proposed which can
be classified into the following categories: (1) search-based,

(2) task-duplication, (3) clustering, and (4) priority-based

scheduling.
Search-based methods like branch-and-bound [7], simu-

lated annealing [9], and genetic [2] were proposed for finding
good mapping and partitioning of computations. Schedul-
ing based on task duplication over idle processors was pro-
posed [5] to reduce the communication without excessively
increasing overhead in managing duplicated data.

Clustering over unbounded number of processors [8] con-
sists of partitioning the set of tasks into clusters of sequen-
tial tasks and reducing the number of clusters to the number
of processors by merging clusters. The dominant sequence

clustering (DSC) [11] is a low complexity clustering that ac-
cepts merging of a task to a cluster only if the length of the
dominant chain to which the task belongs to decreases.

The dynamic critical path (DCP) was proposed in [6].
The DCP is a chain of immediate tasks having zero mobility.
For each processor having a predecessor of a DCP task T , the
algorithm searches a vacant slot to fit T while allowing other
tasks to move within the limit of their mobilities. Processor
selection is based on looking for the potential start times of
remaining tasks on each processor which guarantees some
processor reservation for the most critical successor.

Example of priority-based scheduling that operate over
bounded number of processors are the dynamic level schedul-

ing (DLS) [10] and earliest-task-first (ETF) [3]. In ETF
task and processor selection are based on finding the ear-
liest startable task and its best suited processor. Its main
strategy is the knowledge of local task starting times which
are used to minimize processor idle times by trying to maxi-
mize the overlap between computation and communication.
In DLS, the largest sum of computations from a task to exit
is considered as static task-level. DLS evaluates a dynamic

task-level for each ready task as a function of static task-
level and task starting time. Task and processor selections
are based on selecting the task and processor for which the
dynamic task-level is the largest. Unfortunately, the evalu-
ation of static task-level for computations with communica-
tion times does not provide effective task priority because
the task-level strongly depends on mapping tasks to proces-
sors and their implied communications.

Our investigation reveals that ETF is capable of produc-
ing acceptable solutions with reasonable complexity when
there is enough task parallelism in the computation to hide

the communication. In other words, the performance of ETF
is sensitive to the ratio of available task parallelism over ef-
fective communication. ETF and DLS produce excessively
long schedules when task parallelism is not sufficient to hide
the communications. There is no performance guarantee for
these schedulings.

Our objective is to learn from the above algorithms and
to design a scheduling algorithm that adapt its decision
by using some profiling information from the computation.
This method will prove to be effective when performance
must be made insensitive to variation in parallelism and
communication. In other words, we propose an iterative
scheduling that smoothly adapts its decision function to
some profiling information. Two objectives are targeted in
each iteration which are: (1) producing a schedule based on
so far accumulated knowledge of computation and commu-
nication, and (2) instantaneously exploits the task assign-
ment to sharpen the knowledge. This approach primarily
applies to static scheduling but also provides useful infor-
mation for dynamic situations where no global knowledge of
computation is available. Analysis and evaluation will show
that adaptive scheduling produces near-optimum solutions
and contributes to a better understanding of the scheduling
problem. Its iterative nature is useful as a compiler opti-
mization approach.

The organization of this paper is as follows. Section 2
presents some background. Section 3 presents a model on
performance degradation. Section 4 presents the evaluation
of task-level. Section 5 presents the proposed scheduling.
Section 6 presents the evaluation. We conclude this work in
Section 7.

2 Background

A set of Γ(T1, . . . , Tn) of n tasks (T) with their precedence
constraints and communication costs are to be scheduled on
p identical processors so that their overall execution time is
held to a minimum. The computation can be modeled [3] by
using a directed acyclic task graph G(Γ,→, µ, C) where →,
µ(T), and c(T, T ′) ∈ C denote the precedence constraints,
the task execution time, and size of message sent from T to
its successor T ′, respectively. The multiprocessor is denoted
by S(P, R) where p ∈ P is processor and r(p, p′) ∈ R is the
bandwidth of data path between p and p′ which is bound by
rmax. The reference time to the transfer of message c(T, T ′)
is c(T, T ′)× r(p, p′), where p and p′ are the processors run-
ning T and T ′, respectively. Local message transfer has zero
cost (r(p, p) = 0).

Let T be a task and denote by Pred(T) the set of prede-
cessors of T . The earliest-starting-time (est(T, p)) of T on p
is the earliest time the latest message from the predecessors
arrives to p(T):

est(T, p) = max
T ′∈Pred(T)

{ct(T ′, p′) + c(T ′, T)× r(p, p′)} (1)

where ct(T ′, p′) is the completion time of T ′ on p′. Note
that est(T, p) is nil for each p if T has no predecessors.

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5 3 3.5 4

A
v.

 P
er

ce
nt

 D
ev

ia
tio

n

Av. Arc Communication / Av. Task Computation

ETF compared to optimum

Par = 2.5
Par = 3.0
Par = 4.0
Par = 5.0

Figure 1: Percentage deviation of ETF schedules from opti-
mum solutions

There exists at least one processor p∗, that is free at time
t(p∗), for which T can start at the earliest est(T, p∗) among
all the available processors:

est(T, p∗) = minp{max{est(T, p), t(p)} } (2)

The est(T, p) provides an objective function for minimiz-
ing processor idle times by selecting tasks and processors
according to earliest-task-first (ETF) [3]. ETF uses Gra-
ham’s list-scheduling [1] in which the scheduler tracks the
increasing sequence of processors’ completion times by using
a global time. Thus the starting times of successively sched-
uled tasks form a non-decreasing sequence in time. This
enables finding a worst-case bound [3] on schedule length.

Evaluating static task priority for computation with com-
munication times is difficult because the sum of communica-
tion along directed paths cannot be determined without the
knowledge of task-processor mapping. Thus, on-line task
and processor selection in ETF is one advantage because it
eliminates the need for any static pre-processing like off-line
computation of task priority. ETF schedules gave acceptable
deviation from some known solutions as reported in [10, 6].
Some anomalies were also reported. For example increas-
ing parallelism or reducing communication always improves
ETF schedule length. The average running time of ETF
appears to be reasonable [6] when compared to other well
known algorithms.

To minimize overall schedule finish time ETF locally
minimizes processor idle time by searching opportunities
to overlap computations with communications. However,
the efficiency of this strategy drops when: (1) there is not
enough inherent task parallelism to hyde communications,
or (2) there is excessive communication that cannot be hid-
den anyway. Task parallelism is the average number of par-
allel tasks per processor.

ETF schedules suffer from an important flaw. Figure 1
shows the percentage deviation of ETF schedules from op-
timum solutions versus the communication granularity and
the inherent parallelism. Different performance levels are
obtained depending on computation profile. Specifically,

2

ETF is capable of generating reasonably good solutions only
when there is sufficiently large parallelism to hyde the com-
munication. In this case, no guaranteed performance can
be advised. Our objective is to find a strategy that smooths
out the variations in performance by adapting the scheduling
decision to the amount of communication and parallelism.

In the next section we present analytical explanation for
the performance degradation of ETF which will be used lat-
ter as the basis for the design of an adaptive scheduling al-
gorithm. In the next section we establish a relation that can
be used to predict the deviation from optimum of an ETF
schedule as function of communication and parallelism.

3 Modelling the algorithm degradation

In his study of multiprocessor anomalies, Graham [1] showed
that the sum of all idle times in a schedule with no commu-
nications is bounded by the sum of all computations along
some chain of tasks. The bound was adapted later in [3] to
incorporate non-zero communication times. The main result
is that the sum of all idle times in a schedule generated by
ETF is bounded by the sum of enough computations and
communications along one specific chain of tasks. We use
this idea to show how the schedule length can be affected
by the communication and parallelism. For this we first
shortly review the derivation of the bound on the idle times
and then introduce the effect of average communication and
parallelism.

Assume a schedule generated by applying earliest-task-

first as scheduling heuristic and let ω be the finish time of the
schedule. The set of time points in (0, ω) can be partitioned
into two subsets A and B that consist of all the time points
for which: (1) all processors are busy (A), and (2) at least
one processor is idle (B). B is the disjoint union of q open
intervals B = ∪1≤i≤q(bli , bri

) and bl1 < br1
< . . . < bli <

bri
< . . . < blq < brq . The earliest-task-first scheduling

allows finding a chain of tasks X : TL → TL−1 . . . T2 → T1

that entirely covers B, where T1 is among the tasks that
complete last in the schedule. The principle of earliest-task-
first enforces the starting times of successively scheduled
tasks be a non-decreasing sequence in time. This in turn
allows finding a bound on the sum of all idle time intervals
(µ(φ)) in the schedule:

∑

φi∈Φ

µ(φi) ≤ (p− 1)

L
∑

j=1

µ(Tj) + prmax

L−1
∑

j=1

c(Tj+1, Tj) (3)

where the left-hand sum covers all idle times (µ(φi)).
Consider a chain of immediate tasks (Xlarge) whose sum
of computations accumulates the largest value among all
other chains. Since

∑L

j=1
µ(Tj) ≤

∑

T∈Xlarge
µ(T), then

idle times
∑

φi∈Φ
µ(φi) are bounded by:

p

k

(

1 + rmax

1
L−1

∑L−1

j=1
c(Tj+1, Tj)

1
L

∑L

j=1
µ(Tj)

)

∑

T∈Xlarge

µ(T) (4)

where k is the largest integer satisfying k×
∑L

j=1
µ(Tj) ≤

∑

T∈Xlarge
µ(T). To identify some general features of ETF

we need to consider a class of computations G for which µ(T)
and c(T, T ′) are uniformly distributed within some specified
ranges. A given computation graph G ∈ G can be charac-
terized by means of two parameters: 1) the communication

granularity (α), and 2) the degree of parallelism (β). Param-
eter α is defined as the ratio of average communication (c)
to average computation (µ) that is:

α =

1
nedge

∑

T→T ′∈G
c(T, T ′)

1
n

∑

T∈Γ
µ(T)

(5)

where n and nedge are the number of tasks and the num-
ber of non-zero communication edges, respectively. The
graph parallelism is the average number of tasks that can
be made ready to run at the same time. This can be mea-
sured by using the ratio of the sum of all computations over
the sum of computations along the longest chain that is
(
∑

T∈Γ
µ(T))/(

∑

T∈Xlarge
µ(T)). We define the degree of

parallelism β as the graph parallelism over the number of
processors:

β =

∑

T∈Γ
µ(T)

p
∑

T∈Xlarge
µ(T)

(6)

In other term, β is an indicator of the average number of
tasks that compete for scheduling on each processor. Let’s
αmax be an upper bound on the communication granularity
for a given computation. Since the communications are uni-
formly distributed then average communication along par-
tial chains is also bounded by αmax. Then the bound given
in Equation 4 becomes:

∑

φi∈Φ

µ(φi) ≤

(

1 + rmaxαmax

kβ

)

∑

T∈Γ

µ(T) (7)

This indicates that (1+rmaxαmax)/kβ is an upper bound
on the percentage of idle time in the schedule. The schedule
finish time ω is the sum of all computations and all idle
times ω×p =

∑

T∈Γ
µ(T)+

∑

φi∈Φ
µ(φi), then the schedule

finish time is bound by:

ω ≤
1

p

(

1 +
1 + rmaxαmax

kβ

)

∑

T∈Γ

µ(T) (8)

The length of optimum solution ωopt always satisfies
∑

T∈Γ
µ(T) ≤ pωopt, then the schedule length becomes

ω ≤ ωopt

(

1 + 1+rmaxαmax

kβ

)

. This allows finding a bound
on the relative deviation of schedule length from length of
optimum solution:

ω − ωopt

ωopt

≤
1 + rmaxαmax

kβ
(9)

The sum of idle times due to precedence relationships
represents a fraction of schedule time that is bounded by
1/kβ. Thus large parallelism may completely hide the effects
of task precedence. The sum of the idle times due to non-
zero communication edges represents a fraction of schedule
time that is bounded by rmaxαmax/kβ. The finish time ω
increases at most linearly with increase in αmax and rmax.
This explain why the schedule finish time is near optimum

3

only when there is large amount of parallelism to hide the
communications. It is clear that a pure earliest-task-first

decision will cause degradation when rmaxαmax/kβ is large.
In this case, only a small fraction of communication can be
hidden by task execution and a better decision is to select
tasks that are followed by longer chain of computation and
communications, i.e. tasks with higher task-level. Thus
task and processor selection must include provision for both
earliest-task-first and highest-level-first.

The above bound and the experimental testing (Figure 1)
shows that the above bound can be used to model the devia-
tion (1+rmaxαmax)/β) from optimum. The model allows to
predict possible schedule degradation when the parallelism
and communication are known.

4 The task level

We estimate the task-level based on how the scheduler maps
task computations and communications in a schedule. The
computed task-levels can then be used in the task and pro-
cessor selection of the same scheduler in the next scheduling
iteration. The task-level of a given task is computed by
using the assignment of predecessors and the implied com-
munication.

Consider a chain of immediate tasks Y : T1 → T2 →
. . . → T , where T1 is an entry task in G and T is any task
that is linked to T1 by a dependence chain. The assignment
of tasks of path Y in a given schedule depends on the number
of available processors, the inherent parallelism in G, and the
scheduling heuristic used. Given a schedule, we define the
longest activity path (lap(T)) of T as the largest sum of non-
overlapped time intervals during which some computation
and communication are carried out for some (immediate or
not) predecessors of T .

Intuitively, we must have lap(T) = 0 whenever T is an
entry node. A time interval ∆t should not affect lap(T) if
∆t occurs: (1) prior to the start of any predecessor of T , and
(2) following the completion of T . lap(T) may be affected
by ∆t that occurs between the starting of some Ti ∈ Y and
that of T . In the following we present a recursive evaluation
of task-level lap(T) which requires: (1) lap(T ′) for every
predecessor T ′ of T , (2) starting time st(T ′) and p′, and (3)
processor p on which T is assigned.

Definition 1 The activity interval act(T ′, T) from task T ′

to its successor T is the sum of all non-overlapped time in-

tervals ∆t ∈ (st(T ′), st(T)) during which some computation

µ(T) or communication c(T ′, T) are carried out by arbitrary

predecessors of T .

The activity interval accounts for all time points in
[st(T ′), st(T, p)] during which there is at least: one proces-
sor computing a predecessor of T , or one communication
link transferring data to enable starting of T . The decision
of scheduling T could have been delayed beyond time point
est(T, p) because some other tasks were more prior according
to the scheduling decision. Intuitively, we see that lap(T)
should not account for the delay st(T)− est(T, p(T)) which
indicates that lap(T) must not incorporate time points be-
yond: 1) the latest predecessor completion time or, 2) the

lmt(T1,T)

p(T1)

T2

T1

p(T2)

lmt(T2,T)

a - Activity sums up non
overlapped task activities.

act(T2,T)

act(T1,T)

p(T)

lmt(T1,T)

p(T1)

T2

T1

p(T2)

lmt(T2,T)

p(T)

b - Activity accounts once for
overlapped task activities.

act(T2,T)

act(T1,T)

p(T1)
T2

T1

p(T2)

p(T)

c - Activity does not account
for completely hiden activities.

lmt(T2,T) lmt(T1,T)

act(T1,T)

act(T2,T)

Figure 2: Task level as the sum of predecessors’ activities

latest predecessor message time. The lap(T) depends on the
largest sum of lap values that is carried by a predecessor Ti

and its activity interval act(Ti, T):

lap(T) = MaxTi∈pred(T){lap(Ti) + act(Ti, T)} (10)

Denote by T ′ an immediate predecessor of T that is
started at the earliest time among all other predecessors of
T . Denote by lmt(Tj , T) = st(Tj)+µ(Tj)+c(Tj , T)×r(pj , p)
the earliest completion time of Tj if pj = p, or the earli-
est time all messages c(Tj , T) from Tj reach processor p if
pj 6= p. The earliest time T can start on p is est(T, p) =
maxTj∈Pred(T){lmt(Tj , T)}. Notice that the actual starting
time of T always satisfies st(T, p) ≥ est(T, p). To evaluate
lap(T) we need to sort the predecessors Tj ∈ Pred(T) in the
decreasing order of their lmt(Tj , T) which facilitates evalu-
ation of activity intervals. Figure 2 shows the evaluation of
activity assuming a task T having T1 and T2 as predeces-
sors. We have lap(T) = max{lap(T1)+act(T1, T), lap(T2)+
act(T2, T)}. Figure 2-a shows that act(T1, T) must be en-
tirely included in act(T2, T) due to the non-overlap. Fig-
ure 2-b shows that act(T2, T) includes only a fraction of the
activities of T1. Figure 2-c shows that the activity induced
by T2 is completely covered by that of T1.

An O(n) algorithm to evaluate the Longest Activity Path

(LAP) of T is given below, where n is number of predecessors
of T . LAP assumes the predecessors Pred(T) are sorted in
decreasing order of lmt(Ti, T) and stored into a heap H. It
starts by evaluating the current lap (current lap) of T and
current activity (current act) induced by the predecessor
with the largest lmt. At each step, it removes the next pre-
decessor T ′ from H, if lmt(T ′) ≤ st(prev task) then there
is no overlap between the previously accumulated activity
and that induced by T ′ which is ∆t = lmt(T ′) − st(T ′).
current lap should then be increased by ∆t as shown in
Figure 2-a. Otherwise, there is some overlap between the
previously accumulated activity and that of T ′. Here the
activity induced by T ′ is ∆t = st(prev task)− st(T ′) which
can be positive (Figure 2-b) or negative (Figure 2-b). In
either cases, current lap = current lap + lap(T ′) + ∆t but
the accumulated activity is incremented only by positive ac-
tivity. Finally lap(T) is updated to current lap only when
current lap is the largest among all previous predecessors
of T .

Algorithm Longest-Activity-Path LAP

4

Input: pred. sorted in decreasing lmts and stored in H
Output: longest-activity-path lap(T)
(1) Initialize: current act = 0, current lap = 0,

prev task = {}, st(prev task) =∞, lap(T) = 0;
(2) While (H 6= Ø) Do

Begin

T ′ ← get top(H);
If lmt(T ′) ≤ st(prev task) Then

∆t = lmt(T ′)− st(T ′);
Else ∆t = st(prev task)− st(T ′);
current lap = current act + lap(T ′) + ∆t;
If ∆t > 0 Then current act = current act + ∆t,

prev task = {T ′};
If lap(T) < current lap Then lap(T) = current lap;
H ← H − {T};

End.

5 The scheduling algorithm

In the following we present algorithm ADAPT which uses
set Ready and Assign to store ready-to-run tasks and as-
signed tasks, respectively. Initially, Ready contains all tasks
without predecessors. The processors’ free time t free(p) is
set to 0. For each ready T we set est(T, p) = 0 and let p0

be the processor on which T can start at the earliest.
ADAPT schedules one task in each iteration of state-

ment 2. In the first block, a tentative task Tt is lexico-
graphically selected among ready tasks. Tt can start at the
earliest on processor pmin(Tt). Next, all ready tasks which
can start at the earliest on pmin(Tt) are stored into a set H.
Tasks of H may compete with Tt for being assigned first on
pmin(Tt). All tasks of H are examined to find out possible
conflict.

If the running of some task T ∈ H does not overlap
with that of Tt, then T may precedes Tt or follow it without
conflicts. Figure 3-(a) and (c) show that though Tt and T
have their earliest startable times on the same processor but
they do not conflict. In Figure 3-(a) T can start and com-
plete prior to starting of Tt which means that T becomes
the tentative task. In this case, postponing the assignment
of Tt does not cause any degradation in the schedule, there-
fore T can be assigned earlier than Tt. This significantly
improves processor utilization that would otherwise be left
idle if Tt were assigned directly. In Figure 3-(c) Tt can start
and complete prior to starting of T which means that T will
be assigned at a later decision without causing any delay
over its earliest startable time.

If running some task T ∈ H at its earliest startable time
does conflict with the running of Tt, then the assignment
of one of these tasks causes the task other to be delayed
over its earliest startable time. In this case, the conflict is
resolved by assigning the most prior task and delaying the
other. Figure 3-b shows Tt and T have overlapped preferred
execution time (earliest starting time). In this case ADAPT
evaluates a decision function d(T) = lap(T) − κ × est(T, p)
and selects the task that has the highest d(T) among the two
conflicting tasks, were κ is evaluated as κ = kβ

1+rmaxαmax
.

The scheduler decision is then adapted to task parallelism
and communication. If parallelism is large enough to cover

T
Tt

a - T does not delay Tt, then T will

 be assigned regardless of its
 priority.

p(Tt)

st(Tt) ct(Tt)

st(T) ct(T)

prev.
T

Tt
p(Tt)

st(Tt) ct(Tt)

st(T) ct(T)

prev.
T

T

st(Tt) ct(Tt)

st(T)

prev.

ct(T)

b - Tt and T compete for p(Tt).

 The decision function must be
 used to resolve the conflict.

c - Assigning Tt does not cause

 any delay to T. Assigning T
 is delayed for a later decision.

Tt

Figure 3: Resolution of conflicts for the best processor

communication, then κ is large and an earliest-task-first will
be fine. Otherwise, κ is small and we use the most updated
value of task-level that is lap(T). The important thing is
to note that ADAPT will select T as long as d(T) ≥ d(T ′)
which means that:

est(T, p) ≤ est(T ′, p) +
1 + rmaxαmax

kβ
(lap(T)− lap(T ′))

In the second block, the final Tt is assigned on processor
p∗ = pmin(Tt) for which the earliest processor free time
t free becomes least ct(Tt). Next, ADAPT updates the
starting times of all ready tasks with respect to p∗. It also
finds a new least starting time for every ready task T that
has p∗ as the processor on which it could start at the earliest.
For any such a task T the earliest startable processor is
stored in pmin. Every time least st is modified the priority
function must be updated. Notice that the updated decision
function value is non-decreasing.

In the third block, we use an integer λpred(T) that is
initially set to the number of unscheduled predecessors of T .
Since now Tt is assigned, then λpred(T) must be decremented
for every successor T of Tt, i.e. Tt ∈ Succ(T). Such a
successor T may become ready to run if λpred(T) = 0 which
means that all predecessors of T have already been assigned.
For every newly ready task T , ADAPT evaluates its earliest
starting time for every processor and finds the least startable
time least st(T) and its processor pmin(T). Finally, the
decision function d(T) is initialized.

Algorithm: ADAPT
(1) Initialize: Ready ← {T : Pred(T) = ∅}, Comp← ∅,

For each T ∈ Ready: est(T, p) = 0, pmin(T) = p0;
For each p ∈ P : t free(p)=0;

(2) While |Comp| < n Do

Begin

Select task Tt from Ready in lexicogra. order
Let H = {T ∈ Ready : p min(T) = p min(Tt)}
While (H 6= ∅) do

Begin

Pick T from H in lexicographic order;
If (least st(T) < least ct(Tt)) Then

If (least ct(T) ≤ least st(Tt)) Then Tt = T ;
Else if (d(T) > d(Tt)) Then Tt = T ;

Remove T from H;
End

Assign Tt on p∗ = pmin(Tt),
update t free(p∗) = least ct(Tt);

5

Remove Tt from Ready, add Tt to Comp;
Repeat for each T ∈ Ready:
est(T, p∗) = max{est(T, p∗), t free(p∗)},
If p min(T) = p∗ Then

Begin

Find least st(T) = est(T, p+), p min(T) = p+,
least ct(T) = est(T, p+) + µ(T);
d(T) = lap(T)− κ× least st(T);

End

Repeat for each task T ∈ Succ(Tt) :
Npred(T) = Npred(T)− 1
If Npred(T) = 0 Then

Begin

Add T to Ready, least st(T) =∞
Repeat for each p ∈ P :
est(T, p) = maxT ′∈Pred(T){ct(T

′)+
c(T ′, T)× c(T ′, T)r(p(T ′), p)},

est(T, p) = max{est(T, p), t free(p)},
If est(T, p) < least st(T) Then

least st(T) = est(T, p), least ct(T) =
est(T, p) + µ(T), p min(T) = p;

d(T) = lap(T)− κ× least st(T)
End

End

The main loop of ADAPT is statement 2 that executes n
times because one task is scheduled in each iteration. State-
ment 2.1 executes at most n times in order to select one
ready task. In statement 2.2, we perform the following three
operations. First, we update the parameters of the algo-
rithm. Second we evaluate the largest activity path of the
newly assigned task at a cost of O(n). A cost of O(n) is
needed for finding new least st and updating the priority
of some ready tasks. Overall cost of statement 2.2 is O(n).
Finally, in statement 2.3 we visit all successors of Tt but the
condition λpred(T) = 0 occurs only once for each task and
for each occurrence we evaluate est for all processors. The
global cost of statement 2.3 is O(pn2) which is also the time
complexity of ADAPT.

5.1 Iterative scheduling
ADAPT is used in an iterative scheduling which alterna-
tively operates on the forward and backward computation
graphs. It produces valid solution in each iteration. In it-
eration i, ADAPT evaluates lapi(T) for each newly sched-
uled task T . In iteration i, lapi(T) is meant to estimate
the achieved distance from entry to T . In iteration i + 1,
ADAPT uses a decision function di+1(T) = lapi(T) − κ ×
esti(T, p) and after scheduling T it evaluates lapi+1(T) to
be uses in iteration i+2, etc. The use of lapi(T) in iteration
i + 1 is meant to provide the scheduler with a measure of
distance from T to exit. In the evaluation we will study the
number of iterations needed to find the best solution which
is function of the size of search space.

Figure 4 shows: (a) a DAG, (b) scheduling steps of
ADAPT, and (c) ETF and ADAPT Gantt charts. Figure 4-
(b) shows ADADT steps in scheduling the second forward
iteration for which the laps are obtained from the first back-

Ready P1(T / est(T,P1)) P2(T / est(T,P2)) T(lap(T), est (T)) Scheduled
--
RDY(A, B, C) P1(A/0, B/0 ,C/0) P2(A/0, B/0, C/0) A(32-0) B(23-0) C(28-0) ---> A
RDY(B, C, D) P1(D/6) P2(B/0, C/0) B(23-0) C(28-0) ---> C
RDY(B, D, E) P1(D/6) P2(B/8, E/14) B(23-8) E(8-14) ---> B
RDY(D, E, F, G) P1(D/6) P2(E/14, F/13, G/13) D(23-6) ---> D
RDY(E, F, G) P1() P2(E/14, F/13, G/13) E(8-14) F(6-13) G(18-13) --->G
RDY(E, F, H, J) P1(E/17, F/20) P2(H/23, J/20) E(8-17) F(6-20) ---> E
RDY(F, H, J) p1() P2(F/21, H/23, J/20) F(6-21) H(3-23) J(9-20) ---> J
RDY (F,H) p1(F/22, H/28) P2=() F(6-22) H:(3- 28) ---> F
RDY(H ,I) P1(H/28, I/25) p2=() H(3-28) I(3-25) ---> I
RDY(H) P1(H/28) P2 =() H(3-28) ---> H

A/6 C/8B/5

G/8F/3E/5D/9

H/3 J/9I/3

9
9

9

9

8

8

5 9

5 6 7

77
34

a - Example of Directed acyclic graphs

b - Scheduling steps

c - Gantt chart for ETF, first bakward eteration, first forward iteration.

A/6 D/9
A/6

I/3

B/5 C/8 F/3
A/6

E/5 G/8 H/3 J/9

0 5 10 15 20 25 30 35 40

ETF

Hfor

P1

P2

P1

P2

P1

P2

Hbak
J/9 G/8 B/5

A/6
C/8

I /3 H/3 F/3 E/5 D/9 A/6

A/6
A/6

D/9 F/3
A/6

E/5
A/6

I/3 H/3

G/8 J/9B/5
A/6

C/8

Figure 4: (a) DAG, (b) ADAPT steps, and (c) Gantt chart

ward iteration (Gantt chart is shown last on Figure 4-(c)).
Figure 4-(c) shows: ETF finish time (41 units), ADAPT first
scheduling iteration (backward) (34 units), and ADADT sec-
ond scheduling iteration (forward) (30 units).

The iterative scheduling can be seen as a deterministic
evolutionary process [4] that has hereditary variation and
differential production. It changes through iterations such
that each new state (solution) is similar to previous state and
yet different. The similarity is present because the task-level
does not always significantly change, from one iteration to
another, to trigger a change in the decision function d(T).
Each state is evaluated through mapping of lap, local task
starting time, and computation profile. Inferior task assign-
ment are discarded because “excessive” task delay in cur-
rent state means that lap value associated to a task must
increase proportionally to the task delay in next iteration,
thus partially improves the local state (task). This process
continues until finding some balancing which corresponds to
some steady local minima.

6

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3 3.5 4

A
v.

 P
er

ce
nt

 D
ev

ia
tio

n

Av. Arc Communication / Av. Task Computation

ADAPT(S) compared to optimum

Par = 2.5
Par = 3.0
Par = 4.0
Par = 5.0

Figure 5: Percentage deviation of ADAPTS from optimum

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5 4

A
v.

 P
er

ce
nt

 D
ev

ia
tio

n

Av. Arc Communication / Av. Task Computation

ADAPT(1) compared to optimum

Par = 2.5
Par = 3.0
Par = 4.0
Par = 5.0

Figure 6: Percentage deviation of ADAPT1 from optimum

6 Performance evaluation

A random problem generator (RPG) is used to generate com-
putation graphs with few hundred tasks with uniform distri-
bution of computation and communication. The previously
defined communication granularity α and degree of paral-

lelism β are used for setting the generated problems and
number of processors. We use the RPG to generate com-
putation graphs for each instance of α and β. Each gener-
ated problem is scheduled by randomly selecting a task ran-
domly assigning it to some free processor. The random task
and processor selection are meant ot eliminate any possible
correlation between the above heuristics and the random
schedule. All idle times in the random schedule are filled
with additional tasks for which new dependence edges are
created so that to preserve as much as possible the original
setting of α and β. However, if the previous setting cannot
be maintained the graph and its optimum schedule are re-
jected. The result is a new computation graph for which we
know an optimum solution as its schedule has no idle times.

The studied ranges of α and β are [0−4] with a step of 0.5
and [1, 2, 2.5, 3, 4], respectively. For each instances of α and
β we use a uniform distribution to generate 30 computation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2 2.5 3 3.5 4

A
v.

 P
er

ce
nt

 D
ev

ia
tio

n

Av. Arc Communication / Av. Task Computation

ADAPT compared to optimum

Par = 2.5
Par = 3.0
Par = 4.0
Par = 5.0

Figure 7: Percentage deviation of ADAPT from optimum

0

10

20

30

40

50

60

70

0 0.5 1 1.5 2 2.5 3 3.5 4

A
v.

 n
um

be
r o

f i
te

ra
tio

ns

Av. Arc Communication / Av. Task Computation

Number of iterations for ADAPT(S), ADAPT(1), and ADAPT

APADT(S)
ADAPT(1)

ADAPT low par.
ADAPT high par.

Figure 8: Typical number of iterations for best solutions

problems.
We study performance of: (1) ETF , (2) ADAPT (S)

which uses d(T) = ctprev(T) − est(T, p), (3) ADAPT (1)
which uses d(T) = lap(T) − est(T, p), and (4) ADAPT
which uses d(T) = lap(T)− kβ × est(T, p)/(1 + rmaxαmax).
ADAPT (S) is intended to study the effect of using the
task completion time (ctprev(T)) achieved in the previous
scheduling iteration as task-level. By comparing perfor-
mance of ADAPT (1) to that of ADAPT we can study the
effects of weight kβ/(1 + rmaxαmax).

Each generated problem is scheduled by each of the above
heuristics. The length of optimum solution is denoted by
(ωopt). We plot the relative percentage deviation for each
heuristic h which is (ωh/ωopt − 1)100. Each plotted point
results from averaging the heuristic finish times for 30 gen-
erated problems. Figures 1, 5, 7, and 6 show the results.

ETF (Figures 1) can perform well when there is enough
task parallelism to cover available communication then ETF
provides good management of processor idle time which ef-
fectively minimize finish time. This effect is depicted in the
bound (ω − ωopt)/ωopt ≤ (1

kβ
+ rmaxαmax

kβ
). which predicts

the degradation when the available parallelism is relatively

7

low (term 1/kβ) or the amount of communication is rela-
tively large (term rmaxαmax/kβ).

ADAPT (S) uses a simple but more balanced decision
function (d(T) = ctprev(T) − est(T, p)) than ETF which is
greatly rewarded by noticeable improvement in performance
especially when the parallelism is low. ADAPT (S) deviates
on the average by at most 7% from optimum for all the stud-
ied cases. It was shown to be much less sensitive to compu-
tation profile than ETF. However, the number of iterations
needed for ADAPT (S) to achieve the above performance is
linear with the communication granularity (Figure 8).

ADAPT (1) differs from ADAPT (S) only by the task-
level. The use of lap(T) instead of simple task completion
time ct(T) as task-level enhanced the solution generated
ADAPT (S) by about 5%. Accurate evaluation of task-level
is also rewarded by noticeable improvement in performance
as near optimal solutions were generated by ADAPT (1) for
all the studied cases. Also ADAPT (1) needs much less num-
ber of iterations to find its best solution than that needed
for ADAPT (S) (Figure 8).

Finally, ADAPT with a decision function that combines
task-level with the concept of earliest-task-first in a manner
that is adapted to the computation profile. A task T is
selected if for all t′ that compete for the same processor we
have:

est(T, p) ≤ est(T ′, p)+ (
1

kβ
+

rmaxαmax

kβ
)(lap(T)− lap(T ′))

Low ratio of communication to parallelism (rmaxαmax/kβ)
leads to earliest-task-first decision. Large ratio of communi-
cation to parallelism brings task-priority to decide whether
earliest-task-first should be taken or not. Thus, the use of
task-priority occasionally breaks the earliest-startable-task
order. Thus, successively scheduled tasks do not form non-
decreasing sequence in time which means that Graham’s
bound does not hold any more. In fact this happens only
where assigning prior tasks is more important towards min-
imizing schedule length than earliest-task-first discipline.

ADAPT achieves on the average about 2% deviation
from optimum solution. Comparing ADAPT and ADAPT (1)
we can see that setting up the weight kβ× /(1+ rmaxαmax)
in d(T) enables adapting the scheduler to the computation
profile specified by α and β. This was rewarded at two lev-
els: (1) producing near optimum solutions (Figure 7), and
(2) shortening the number of iterations for finding the best
solution (see Figure 8 for low and high parallelism).

7 Conclusion

We presented a compile-time adaptive scheduling that in-
corporates two fundamental concepts: global task priority
and minimization of processor idle time. Task and processor
selection uses the above concepts in a weighted manner de-
pending on task parallelism and communications. An itera-
tive scheduling was proposed as a deterministic evolutionary
process that has hereditary variation and differential pro-
duction. It changes through iterations such that each new
schedule is similar to previous schedule and yet different.
Our approach to adapting the iterative scheduling decision

to computation profile was able to produce near-optimum
schedules with reasonable number of iterations.

8 Acknowledgments

The authors would like to acknowledge support from the
Research Committee at King Fahd University of Petroleum
and Minerals (KFUPM), Dhahran, Saudi Arabia.

References

[1] R.L. Graham. Bounds on multiprocessing timing
anomalies. SIAM J. on Applied Mathematics, 17:416–
429, 1969.

[2] N. Hou, E.S.H. Ansari and H. Ren. A genetic algorithm
for multiprocessor scheduling. IEEE Trans. on Parallel

and Distributed Systems, 5, No 2:113–120, Feb 1994.

[3] J.-J. Hwang, Y.-C. Chow, F.D. Anger, and C.Y. Lee.
Scheduling precedence graphs in systems with interpro-
cessor communication times. SIAM Computing, pages
244–257, Apr 1989.

[4] Ralph Michael Kling and Prithviraj Banerjee. ESP:
Placement by simulated evolution. IEEE Trans. on

Computer-Aided Design, 8, No 3:245–256, Mar 1989.

[5] B. Kruatrachue. Static task scheduling and grain pack-
ing in parallel processing systems. Ph.D. Thesis, De-

partment of Computer Science, 1987. Oregon State Uni-
versity.

[6] Yu-Kwong Kwok and Ishfaq Ahmad. Dynamic critical
path scheduling: an effective technique for scheduling
task graphs onto multiprocessors. IEEE Trans. on Par-

allel and Distributed Systems, 7, No 5:506–521, 1996.

[7] P.Y. Richard Ma, E.Y.S. Lee, and T. Masahiro. A
task allocation model for distributed computing sys-
tems. IEEE Trans. on Computers, C-31:41–47, Jan
1982.

[8] V. Sarkar and J. Hennessy. Compile-time partitioning
and scheduling of parallel programs. Proc. of the SIG-

PLAN Symp. on Compiler Construction, pages 17–26,
Jul 1986.

[9] J. Sheild. Partitioning concurrent vlsi simulated pro-
grams onto multiprocessor by simulated anealling.
IEEE proceedings, 134:24–30, Jan 1987.

[10] G.C. Sih and E.A. Lee. A compile-time scheduling
heuristic for interconnection-constrained heterogeneous
processor architectures. IEEE Trans. on Parallel and

Distributed Systems, 10, No 2:175–187, Feb 1993.

[11] T. Yang and A. Gerasoulis. DSC: scheduling par-
allel tasks on an unbounded number of processors.
IEEE Trans. on Parallel and Distributed Systems, 5,
No 3:951–967, Sep 1994.

8

