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Abstract

The EM-4 is a supercomputer that offers very fast inter-

processor communication and support for multithread-

ing. In this paper we demonstrate that the EM-4, to-

gether with an automatic parallelization technique re-

ferred to as Data-Distributed Execution (DDE), offer a

computing environment in which large portions of sci-

entific code can be executed without the need for any

explicit parallelism.

DDE exploits iteration-level parallelism in loops op-

erating over arrays. It performs data-dependency analy-

sis, based on which arrays are distributed over the dif-

ferent local memories. The code is then transformed to

“follow” the data distribution by spawning each loop on

all PEs concurrently but modifying its boundary condi-

tions so that each operates mostly on the local subranges

cf the data, thus reducing remote accesses to a mini-

mum. The approach has been tested on the EM-4 by

i:mplementing several benchmark programs representa-

tive of common scientific applications. The experiments

show that high speedup is achievable by automatic par-

a.llelization of conventional Fortran-like programs.

]1 Introduction

Distributed memory MIMD computers are among the

most difficult to program, since independent processes

c,r threads operating on their own memories and tom-

municating with other processes through message or re-

mote memory access must be managed efficiently. W7hile

a, number of such machines have been built to date,

their software development lags far behind due to the

lack of understanding of and the consequent lack of pro-

gramming support for such machines. The most com-

mon approach is to extend existing languages with var-

ious primitives for process control, synchronization,
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and communication, and to leave it up to the program-

mer to develop parallel algorithms using explicit paral-

lelism.

While these approaches may be justified when devel-

oping algorithms or programs that are difficult to paral-

lelize, they are unnecessary in cases where the problems

are highly regular and parallelism is abundant. For such

programs, automatic parallelization is just as effective,

provided the underlying architecture offers adequate fa-

cilities to support the derived parallel code.

The objective of this paper is to demonstrate that the

Ehf-4 multiprocessor [1, 2], together with an automatic

parallelization technique referred to as DDE (Data-

Distributed Execution), which has originally been de-

veloped in the context of coarse-grain dataflow [3, 4],

offer a computing environment in which large portions

of scientific code can be executed without the need for

any explicit parallelism to be specified by the progranl-

mer.

This paper is organized as follows. The EM-4 ar-

chitecture and its most important characteristics are

described in Section 2. Section 3 presents the princi-

ple of DDE and the actual transformations applied to

programs to extract parallelism. Section 4 presents the

results of the benchmarks executed on the EM-4 and

Section 5 concludes about this work.

2 The EM-4

The EM-4 is a distributed memory MIMD supercom-

puter [1, 2, 5] with 80 PEs but may be expanded to

over 1000 processors. Its most important features to-

wards promoting implicit parallelism are the fast inter-

processor communication and the support for rnulti-

threading. Let us address these in turn.

The 80 PEs of the EM-4 are interconnected through

an Omega network by using a direct connect topology.

This topology configures the 80 PEs into 16 groups of 5

PEs each. Within each group, a message must traverse

at most 4 links to go from any PE to any other. Across

clusters, the average number of hops [2] is proportional

to log(npe), where npe is the number of processors. This

approach provides for fast communication in addition to
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Figure 1: EM-4 Pipeline

dynamic load distribution at each node.

To allow efficient multithreading, it is necessary to

create threads and quickly switch among them. Origi-

nally, the EM-4 was conceived as a dataflow/von Neu-

mann hybrid; it is capable of executing sequential code

as well as performing the matching of operands required

by dataflow [6]. This is achieved by using a 4-stage

pipeline so that the first two stages can be bypassed in

case of sequential code. A simplified block-diagram of

the pipeline is shown on Figure 1. This, in fact, results

in a nested pipeline, where the outer four stages are used

for the dataflow mode and the inner two stages are used

in sequential mode.

The first two stages perform what has been termed

direct matching [5]. Whenever a function is invoked, an

operand segment is created such that there is one entry

in the operand segment for each dyadic instruction in

the code segment. A pointer from the operand to the

code segment is also created, since potentially distinct

operand segments (one for each invocation) could be

simultaneously pointing at the same code segment.

Whenever a data packet arrives at stage 1 of the

pipeline, the code segment number is fetched from

the corresponding operand segment. The location add-

ressed by the packet is examined in stage 2. If it is

empty, the packet is stored in that location and no fur-

ther action is taken by the subsequent stages. If, on the

other hand, it already contains an operand, it is marked

empty and both operands are passed to the third stage,

that performs the fetch and decoding of the correspond-

ing instruction. Finally, the execution is performed by

the fourth stage.

The above cycle is repeated until an instruction,

through a special bit, indicates that sequential execu-

tion is to commence. At that time, no new packets are

accepted by stage 1. Instead, stage 3 continues fetch-

ing subsequent instructions and passing them to stage

4 for execution in a normal von Neumann style using

registers. This mode continues until it is explicitly ter-

minated by an instruction. Hence the EM-4 is capable

of switching between data-driven and control-driven ex-

ecution very efficiently.

The above direct matching mechanism may be viewed

as a mechanism for thread management [9] because it

provides efficient means to: 1) execute sequences of

control-driven instructions (threads) until termination

or a remote memory request is encountered , and 2)

quickly switch to a new thread by using direct matching.

Suspended threads are then resumed when the remote

data becomes available. This approach is very useful to

hide memory latency and has been identified as one of

the major requirement in multiprocessing [7].

Barrier synchronization has been provided through

a library and, due to the fast interconnection network

of the EM-4, performs very efficiently. For example, a

reduce/add over 80 PEs takes 15psec.

I-structures [8] and other memory synchronizing data

structures are supported only through software and,

consequently, are not very efficient.

The EM-4 can be programmed using three distinct

approaches. The original design was intended for the ex-

ecution of functional languages. A functional program

is compiled into dataflow graphs, where components,

referred to as strongly connected blocks do not require

any external inputs other than the operands of the first

instruction, i.e., operands of other instructions are gen-

erated within the block. This enables the block to exe-

cute in an uninterrupted control-driven manner. The re-

maining instructions are executed in a data-driven style

using operand matching.

The second type of programming [9] consists of us-

ing a thread library. In this case, the programmer: 1)

designs threads and specifies their mapping, and 2) ex-

plicitly handles the distribution of data structures.

The third style of programming, which is discussed

in this paper, attempts to exploit implicit parallelism

using conventional languages. This approach will be

presented in the next section.

3 Data-Distributed Execution

The approach described in this paper focuses on data

parallelism, specifically, parallelism at the iteration level

of loops operating on arrays. We consider pi-ogi-arns
written in a conventional language, such as Fortran or

Fortran-like c. The main reason is that DDE, in its

present form, provides transformations for only loops

iterating over arrays. Fortunately, there is a vast body

of scientific programs that fit that description.

The basic philosophy of DDE is to distribute the ar-

rays over the PEs to minimize the amount of remote

data transfer required during the execution of concur-

rent threads. At run time, each parallel loop is asso-

ciated with two families of threads: 1) global threads

(GT) are created by sub-dividing the range of the par-

allel iterator, and 2) uniformly partitioning each GT

into local threads (LT). J$’bile GTs promote inherent

parallelism, the LTs provide each PE the opportunity

to hide remote memory access (RMA) by performing

context switching to ready LTs. The efficiency of this

approach depends on the distribution of arrays so that,

a given GT is mapped to the PE whose local memory
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contains most of the array references that are used by

that GT. While a perfect data and code alignment is

nc,t always possible due to imperfections in the analy-

sis and other factors, the number of RMAs is kept to a

minimum.

3.1 Analysis and Restructuring

Dependence analysis [14, 15] is used to determine the

chronology of operations such that data dependencies

are preserved. Loop-carried-dependencies (LCD) inhibit

pa,rallelization of the loop and lead to generation of a

single scalar thread. Global threads will be created for

loops having only loop-independent-dependencies (LID)

that are free of LCDS. To reduce the granule size of

LCD loops, we use traditional methods to remove paral-

lelizable code fragments from LCD loops using loop dis-

tribution and partial parallelization. Next, we attempt

inserting these fragments closer to their data producer

or consumer expressions that belong to LID loops with

the same loop headers. This identifies all the LID loops

that can be used for generating the global threads.

In some cases, load inbalance may occur among the

PEs because the parallel iterator loop count is small

compared to npe. To load balance the PEs, a number of

parallel outer loops are combined such that the number

of their instances, that is the number of GTs, becomes

the closest to ripe.

Renaming [10] multiple write operations to the same

variable is performed in order to make the code obey

the single assignment principle, which allows a value to

be written only once. This eliminates possible race con-

ditions [11] and produces the correct result regardless of

loop scheduling.

The above loop restructuring places data producers

closer to their data consumers, thus, causing more inl-

mediate references to become subject to identical loop

constraints. Because each instance of a parallel loop

is used to generate a GT that is mapped to one PE,

the domain of each array that is indexed by the parallel

iterator index is implicitly distributed across the PEs

to yield the least number of remote memory accesses.

This enables finding different array distributions over

the PEs depending on the way each array is referenced

in different loops. A voting technique allows finding the

most frequently used array distribution that becomes

the global distribution.

3,2 Transformations for parallelism

We will use the generic program example in Figure 2 to

illustrate the creation of global and local threads. The

first step is to replace all array definitions (line 1) by a

call to an allocaieo function, which, at run time, per-

forms a distributed allocation of the array by sending

requests to all PEs to allocate their own local subranges

Sequential Code:

1 int A[l [l, 13[1 [l;

2 for (i = O; i < nl; i++)

3 for (j = O; j < n2; j++)

4 a[i] [j]=some_comp(B [i.] [j] , . . ) ;

Transformed Code:

5 A = allocate (ROW, . . .);

6 B = allocate (ROW, . . .);

7 for (p = O; p < NO_PEs; p++)

8 fork(pe[p] , iJoop, . . . ) ;

9 void i_loop( . . . ) {

10 lb = max(O, getny-atarti(A) ) ;

Ii ub = min(nl, getmy-end.i(A) ) ;

12 for (i = lb; 1 < ub; j.++) {

13 for (j = O; j < n2; j++) {

14 fork(self-pe, j-loop, . . .);

15 }

16 void j-loop(. . .) {

17 value= some-comp(read~rray (B, i, j ) , . . ) ;

18 write _array(A, i, j ,value) ;

19 }

Figure 2: Program transformation

(lines 5-6). The type of distribution is determined, for

each array, based on the preceding program analysis.

Without loss of generality, we consider 2-D arrays and

their column-major and row-major distributions but the

approach can easily be extended to arbitrarily dimen-

sioned arrays. The heuristic operates as follows:

Given an array, A, consider each access A[i, j]

within a loop. If this is a singly nested i loop,

or a nested loop with i as inner index, then mark

the access as a column access.

If it is a singly nested j loop, or a nested loop with

j as inner index, then mark the access as a row

access.

Count the number of loops with row access versus

column access. Depending on which is more fre-

quent, choose row or column distribution for the

matrix.

In Figure 2, the parameter ROW indicates that the

arrays are to be distributed row-major, that is, each PE

will be responsible for a certain subrange of the index i.

To implement DDE, i.e., to make the code follow the

data distribution, the following basic approach is used.

Each loop is started on all PEs concurrently. The loop

code, however, is augmented so that each PE operates
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on a different subrange of the original loop. For nested

loops it is first necessary to determine the loop nest that

controls the array distribution. This is based on the dis-

tribution of the arrays operated on by the loop. In most

cases, all arrays accessed within a given loop will have

been distributed along the same dimension. In this case,

the index along which the arrays were distributed deter-

mines the loop level to be distributed. In the rare cases

where not all arrays accessed within a given loop have

been distributed along the same dimension, we count

the number of array accesses along each dimension and

select the most frequently used one to determine the

loop level to be distributed.

Once a level is chosen, the corresponding for-loop con-

struct is transformed into a function and the necessary

code is inserted to fork the GTs over all PEs. In Figure

2, both arrays were distributed row-major and hence

the i-loop (line 2) was chosen for distribution. It has

been transformed into the function called i.loopo (line

9) and is spawned on all PEs using the loop shown on

lines 7–8. This loop executes on P130 that is the master

PE. It uses the fork primitive of the EM-4 thread li-

brary, which specifies the target PE, the function to be

called, and any arguments to be passed to that function.

To make each PE operate on a different subrange,

the code to compute the local lower and upper bounds

(lb, ub) for the distributed loop is inserted (lines 10-

11). This code, referred to as the Range Filter, ac-

cesses the header of the array the loop operates on and,

from the recorded distribution information, computes

the local subrange. The functions get_rny_start_io and

get-rny-end.io represent the retrieval of the starting

and ending i-indices, which are different for each PE.

These are then combined using the maz and min func-

tions with the boundaries of the original loop, in this

case, the values O and nl, respectively.

The transformations performed so far resulted in the

creation of a GT on each PE. To mask memory latency

result ing from remote memory accesses, it is necessary

to increase the level of parallelism within each PE. This

is achieved by locally spawning the iterations of the next

lower nest of the distributed loop as separate LTs. This

is analogous to the previous transformation except that

the PE specified by the ~orko primitive is the local

PE. In Figure 2, the j-loop becomes a separate function

(lines 16-19) and is spawned for each j on the PE as

a local thread (line 14). For more deeply nested loops

this transformation can be repeated at yet lower levels

until a sufficient level of parallelism is achieved.

The final transformation is to replace each reference

to an array element by a call to the read_arrayo or

write -arrayo function, which determines the location

of the given element (local or remote) and performs

the access. The implementation of these functions de-

pends on the specific array mapping algorithm. For

‘d I
PE #

I
localindex

Figure 3: Array Mapping Using Dimension nd

the programs presented in this paper, we have imple-

mented the following mapping strategy. Given an array

A[nl, n2, . . .], assume that the array is to be distributed

alOIIg a given dimension nd. We interpret nd as a binary

number and use the leading k bits as the PE number and

the remaining bits as the local index, as illustrated in

Figure 3. The number k is determined by right-shifting

nd until the result is smaller than the total number of

PEs. The number k is then stored in the array header

and used by the access functions as follows. Assume we

are given an element A[il, i2, . . .] to be accessed. The

read function performs the following computations:

pe = nd >> k;

locindx = mask[k] & k;

global~ead(pe, address(A, locindx, j));

The first instruction right-shifts nd by k bits to obtain

the PE number. The second instruction masks out the

leading k bits (using an array of predefine masks) to

get the local index. The third operation then performs

the actual memory read by computing the local address

of the element and retrieving the value from the given

PE.

Since the address calculation is essentially the same

as for accessing an array element in a sequential system,

the additional overhead are the two binary operations

and the initiation of the global access. This modest

overhead is well worth the performance gain achieved

through parallelism.

Before the program is submitted for execution, a

number of optimizations are performed. The most sig-

nificant ones are the inlining of the inserted functions,

notably the read-array and write-array functions, and

moving of all invariant code outside of the loops. The

program schedule, resulting from the insertion of the

various fork and barrier primitives, is also improved by

moving loops that do not need to wait for a particular

barrier in front of that barrier. Hence a form of a greedy

schedule is implemented.

4 Results

This section presents the results of applying the pro-

posed DDE approach to the Livermore loop 3 and the

conduction loop of the SIMPLE benchmark, These pro-

grams have been run on the EM-4.
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4.1 Livermore Loop 3

The Livermore Loop 3 [13] consists of a reduc-

ticm/multiply over two vectors z and z with size n. The

loop is repeated a constant number of times in order to

accurately measure the execution time on the EM-4.

Analysis reveals no recurrence and hence both ar-

rays z and z are distributed by allocating a subrange

of in/npe] elements to each PE, where npe = 64 in this

experiment. The accumulation of partial results was

performed using a barrier add operation.

To measure the speedup, the execution time of the

sequential version was obtained by compiling the pro-

gram using a commercial c compiler and running it on

one node of the EM-4. By varying the size of the vectors

from 1000 to 10,000 and 20,000, the resulting speedups

were 10.5, 42.5, and 51, respectively. The average idle

time for each PE was 56Y0, 2170, and 1370, for each of

the above vector sizes.

This demonstrates that the EM-4 is capable of per-

fc,rming reduction quite efficiently. Due to its fast com-

munication network, the grain size may be fairly small.

Even for a vector size of 1000 elements where each GT

consists of only 15 multiplications, a 10-fold speedup is

achieved by using 64 PEs. Increasing the granule size

of the GT significantly improves performance, such as

the 5 l-fold speedup for 20K vectors.

4.2 SIMPLE

SIMPLE is a well-known benchmark program [12] that

performs a hydrodynamics and heat conduction simula-

tion and is indicative of large-scale scientific code that is

executed on today’s supercomputers. It simulates the

behavior of a fluid in a sphere, using the Lagrangian

Fm-mulation.

In this experiment, we have considered the conduc-

tion function which is the main portion of SIMPLE and

the most difficult to parallelize compared to its other

routines. The code consists of a number of singly and

multiply nested loops iterating over several 2-D arrays.

After a simple transliteration from Fortran into c,

the code was analyzed for recurrences. Since there were

no simple intra-loop dependencies to be removed, only

barriers were inserted as necessary. The code was then

translated automatically according to the steps of Sec-

tion 3.2. After optimization, the code was executed such

that PEO performs the allocateo and work distribution

functions and the remaining 79 PEs executed the actual

computation.

The resulting parallelism profile is shown in Figure 4.

The measured speedup was 65 and the average idle time

was 9.09Y0. The extracted parallelism was nearly 77

during most of the computation time. This parallelism

p refile is excellent, given that PEO and two other PEs
— those holding the boundary rows – were idle during
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Figure 4: Parallelism Profile of Conduction Loop

most of the computation time.

The drops in parallelism, resulting from barriers that

could not be masked by other work, were steep, narrow,

and few in number. The shape of the drops is a clear

indication of the EM-4’s superior communication net-

work. It allows workload to be distributed throughout

the machine and results to be rapidly collected in a cen-

tral place, thus keeping the idle time due to barriers to

a minimum.

The small number of the drops and the fact that they

do not extend all the way down to a single PE is an

indication of the available parallelism in a typical sci-

entific application. Even though we have used only a

rudimentary scheduling technique (move loops in front

of barriers if possible), there were sufficient numbers of

independent loops that could be run concurrently and

thus mask the effect of much of the idle time resulting

form barriers.

5 Conclusions

In this paper we have investigated an approach to par-

allel programming using transformations applied at the

source level of sequential programs. The approach

was investigated for the EM-4 multiprocessor in order

to evaluate its performance under implicit parallelism.

The primary conclusion we draw from our experiments

is that there are many real world applications that a
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hybrid machine like the EM-4 could exploit without re-

quiring the labor-intensive and error-prone task of man-

ual parallelization. It has been shown that a significant

speedup is achievable on regular Fortran-like programs

that iterate over large data structures, such as the SIM-

PLE benchmark. Primarily, this is attributed to the

EM-4’s fast communication network and its support for

multithreading. The main shortcoming in the EM-4 de-

sign is the lack of support for memory synchronization.

The consequent use of barriers results in parallelism

drops which cannot always be masked by other compu-

tation due to the difficulty in finding efficient schedules

and/or the lack of inherent parallelism.

We recognize that automatic parallelization will not

eliminate the need for the human programmer’s involve-

ment. Other well-known algorithm parallelized using

DDE yielded only marginal speedup. To solve these

problems more efficiently, different algorithms must be

developed, which cannot be done without human intelli-

gence. Hence we view automatic parallelization as only

one component of a parallel programming environment,

which must take into consideration many components,

including the programmer, the language, the compiler,

the machine architecture, and the various development

tools. The programmer’s involvement is essential for

algorithm development, as already suggested, and for

parallelizing complex structures and intricate programs.

The structure of most real world programs, however, is

quite simple and very regular, and offers an abundance

of parallelism. Thus it is a waste of the most precious re-

source when programmers are required to analyze such

programs by hand and to explicitly insert paralleliz-

ing and synchronizing primitives when automatic par-

allelization techniques would perform equally well, as

long as the architecture provides the necessary commu-

nication, multithreading, and synchronization support.
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