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Abstract

This paper presents a model-based vision recognition engine for planar con-
tours that are scale invariant of known models. Features are obtained by using a
constant-curvature criterion and used to carry out efficient coarse-to-fine recogni-
tion. A robust shape matching is proposed for comparing contour fragments from
scenes with partial occluding. In order to carry out an early pruning of a large
portion of the models, hypotheses are only generated for a sub-set of contours with
enough discriminative information. Poor scene contours are used later in validating
or invalidating a relatively small set of hypotheses. Since hypotheses are selectively
verified, blocking is avoided by extending current matching through pairing of hy-
potheses, predictive matching, and retrieving the next weighted hypotheses. This
avoids the processing of a large number of initial hypotheses. Our evaluation shows
that a high recognition error results from the use of too small a bucket size because
the indices may fall at random, producing non-repeatable results. We use a multi-
dimensional hashing scheme with space separation between dense parameter areas
to create additional hashing tables. The robustness of the recognition is based on
engineering a coarse bucket size to the best tolerance with respect to various sources
of noise. Partially occluded scenes having 3 objects can be recognized with a suc-
cess rate of 84%. The results are reproducible against changes in scale, rotation,
and translation. Due to the selection of robust initial hypotheses and the structure
of the selective matching system, the processing time essentially depends on scene
complexity with a marginal dependence on database size.

Keywords: Hashing, heuristic-search, partial occluding, robust segmen-

tation, shape matching

1 Introduction

Model-based recognition systems [1, 2, 3] are capable of detecting similarities between a
scene object and a few model objects without scanning the entire database model. Only
a minimal portion of the database is examined while finding a small set of potentially
matched objects. The strategy is to use an intermediate representation for capturing the
structural and functional similarities of the contours by using a set of robust descriptors
or features. The recognition algorithm uses the features as indexing keys in an efficient
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hashing look-up process [4, 5] in an attempt to reduce the complexity of the search
space. Finally, histogramming of the partial matching enables global pattern matching
and classification.
The features [2, 1, 6, 7] must be discriminative, stable, local, and small enough to fit

on contour fragments. Global features are inadequate for partially occluded scenes. The
features [4, 8] are used as searching keys in some quick indexing and hashing schemes. To
find stable partitioning criteria, curved contours suggest the use of sharp convexities, deep
concavities, or straight segments as reference points [9] in finding the boundaries between
different geometric features. Curvature maxima have also been used [10] as segmentation
points and straight lines as primitives. Decomposing smoothed contours at extremes of
negative curvature has also been investigated in [11]. The detection of significant changes
in curvature [12] has been applied for encoding geometrical signatures such as smooth
joins, corner cranks, etc. Decomposing contours by using a constant curvature criterion
was proposed by Wuescher et al. [13] and used in other studies [14].
Kalving et al. [15] used a hashing descriptor derived from the relationships between

lengths and the relative orientation of contour segments. Knoll and Jain [16] proposed
a model organization based on common features to index into the model by recognizing
features and to carry out a further search to narrow the object class down to the correct
interpretation. Califano and Mohan [7] proposed the use of larger indices as well as
redundancy in the generation of indices to maintain a relatively coarse bucket quantization
without degrading selectivity. Grimson [6] treats all the available features equally in
generating hypotheses on possible matches. This results in a tree-matching structure that
is scanned by using a depth-first search. The search over the current sub-tree is abandoned
when sufficient inconsistent evidence is accumulated and the next sub-tree is started.
Though this organization allows pruning many inconsistent sub-tree interpretations, the
number of visited sub-trees is large even for simple scenes. Indexing by using a tree
grid data structure [17] reduces the storage size and preserves the spatial ordering which
enables efficient retrieval of nearby entries. The perspective alignment [18] is one method
of solving the back projection which enables computing the 3-D position and orientation
based on 2-D image features. Indexing of 3-D objects from single 2-D images may also
be implemented by using the kd-trees as data structure in a standard hash table [19].
Our objective is to engineer the model representation and search procedure so that

the recognition time would mainly depend on the scene complexity without explicit de-
pendence on the database size. The generation of hypotheses follows a different approach
to previously proposed approaches. An approach to the generation of robust hypotheses
is proposed for efficiently reducing the dependency of the recognition time over the size
of the model. In other words, the model and the algorithm are to be designed so that
the recognition spends a small fraction of time in processing the global database while
keeping the rate of correct classification as high as possible.
To provide efficient pruning of inconsistent hypotheses, we propose a shape matching

metric for comparing whole contours as well as fragments of contours. Our approach is
intended to avoid the brute force processing of a large number of hypotheses regardless of
discriminability. For this, we propose a processing scheme that is driven by discriminabil-
ity in which blocking is avoided by extending the matched contours through predictive
matching and pairing of hypotheses. Reducing the storage size without affecting the dis-

2



criminative power of the recognition is carried out by relating the bucket size of the model
parameters to a metric of discriminability.
The proposed model and algorithm are designed so that a small fraction of time is

spent in global model processing. The aim is to avoid early processing of fragments hav-
ing poor discriminative information. We avoid early processing of poor contours because
the early generation of a large number of hypotheses would necessarily increase the de-
pendency over the size of the model. Poor contours are used in subsequent phases to
validate or invalidate a relatively small set of robust hypotheses. We selectively process
the most discriminative hypotheses which are further validated through spatial and shape
matching. Selective recognition provides efficient pruning of a large number of inconsistent
hypotheses. Predictive matching is used to extend the recognition in the neighborhood
of previously matched contours. Thus the processing scheme is capable of effectively
carrying out model pruning.
We experimentally study the recognition error by tuning the bucket size, which is

critical to the efficiency and robustness of the hashing scheme and the whole recognition
system. Scenes are studied against changes in scale, rotation, and translation. To improve
the robusteness of the recognition, we adjust the bucket size to a level that constrains the
indices from falling at random. We propose a multidimensional indexing scheme with a
space separation between dense parameter areas as one solution to enable the adoption
of a coarse bucket quantization. We study the performance of partially occluded scenes
and determine some statistical evaluation linking the ability to discriminate shapes to
the probability of classification of errors. We also study the dependency between the
recognition time, the scene complexity, and the model size.
This paper is organized as follows. Section 2 presents the low-level contour modeling,

feature extraction, and the proposed hashing scheme. Section 3 presents each component
of the recognition system and explains its operations by using a complete example. Section
4 presents the evaluation of the proposed scheme. In Section 5 we conclude this work.

2 Building an intermediate model

Our approach uses the well known coarse-to-fine matching concept. We use an angle-
length model that provides scale, rotation, and translation invariant properties.
Edge detection allows the extraction of the shape of object by detecting the presence of

an edge at some pixel. For this an approximation of the gradient magnitude is evaluated
and used with the sign of the Laplacian to determine whether a given edge pixel is located
on the background or on the object side of the edge. To reduce sensitivity to noise, the
sobel operator is used for averaging the gradient over a larger pixel neighborhood. The
gradient magnitude is used as the basis of edge detection [20].
The contour is encoded by using the pixel direction coding [21] which consists of en-

coding each border pixel by its direction with respect to the previous border pixel. For
this purpose a conventional 8-direction convolution mask is used. Each chain of con-
nected contour pixels is represented by a chain of directions with one reference point at
its starting pixel.
A segmentation algorithm is used to build a fine angle-length model by breaking down

the contour into a sequence of straight segments. The algorithm repeatedly picks a group
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of 2k contour pixels, located next to the current segment, and compares their average
direction to that of the current segment, where k is a small integer. A coarse breakpoint
is detected when the difference between the above directions exceeds some threshold. A
fine breakpoint is searched for within a neighborhood formed by the last 2k − 1 pixels of
current segment and the coarse breakpoint pixel. We carry out binary splitting of the
above neighborhood and the direction of each split pixel (fine breakpoint) is matched to
the updated direction of the current segment.
Each segment is represented by its length and angle with respect to the previous

segment. Formally, the kth segment tk, is formed by a pair of breakpoints bk = (xk, yk)
and bk+1 = (xk+1, yk+1). The length of tk is sk = (∆x

2
k +∆y

2
k)

1/2, where ∆xk = xk+1− xk
and ∆yk = yk+1 − yk. The angle θ(sk) between segments tk−1 and tk is evaluated as the
exterior angle which is defined by:

θ(sk) = cos
−1((∆xk−1×∆xk +∆yk−1×∆yk)/(sk−1×sk)) (1)

The correct sign of θ(sk) can be found by examining the coordinates of bk−1, bk, and
bk+1.
Segmenting of the contour enables the building of a fine angle-length model of contour,

denoted by F = {(θ(sk), sk)}, which consists of an ordered set of segment lengths sk and
their geometric angles θ(sk). Figure 1 shows the correspondence between the contours of
a cutter (left part) and its fine angle-length models Fc and Fo which are associated to a
closed and open cutter, respectively. The angle axis is used to represent the accumulation
of exterior angles (Eq. 1). The mapping from contours to the plots Fc and Fo are marked
by numbers. Changing the initial orientation produces fine models that differ in their
starting segments. Note that a long straight segment of contour is represented by a
horizontal straight segment in the angle-length graph. A sequence of small segments that
corresponds to a constantly curved contour can then be represented by one coarse segment
with a constant slope.

2.1 Coarse segmentation

The fine angle-length model is not efficient enough to enable direct extraction of geo-
metric features from fine-grain segments. Simple features may occur in many models
which make the search inefficient. Overly complex features have two drawbacks: 1) they
cannot be observed from partial contours, and 2) they lead to a linear search across
the model. The features should contain enough discriminatory information to provide
efficient and accurate indexing of candidate models. We need to build a sketch of the con-
tour or coarse model (C) by clustering fine segments having constantly curved contours
into coarse segments linked by inflection points. In the angle-length plan, non-horizontal
segments represent constantly curved contours and horizontal segments correspond to
straight contours. We present a method to build stable local shape features.
A fragment of contour that is constantly curved is represented in the fine model by a

sequence of a small segments {θ(si), si}, where si is the length of ith straight segment and
θ(si) is the exterior angle between segment ti and its neighbor ti−1. Segment ti is a linear
approximation of a small contour region, thus the ratio hi = θ(si)/si can be considered
as an approximation of the curving for the corresponding contour for small value of si.
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Segmenting of the fine model consists of clustering all neighboring segments for which the
signed ratios θ(si)/si are nearly constant along a given sequence of segments.
The coarse segmentation algorithm is based on two phases which are: (1) the primary

segmentation and (2) the contour improvement rules which operate on the fine model in
the angle-length plan as shown on Figure 2. The first step consists of selecting break-
points among the fine segments corresponding to a strong change in direction. The above
breakpoints are temporarily linked by straight coarse segments in the angle-length plan.
This is shown in the transformation from Fc to Fc1 of Figure 1. The second step con-
sists of creating additional breakpoints when the maximum distance from a new coarse
segment to the fine contour exceeds some threshold as shown on the plot of Fc2 of Fig-
ure 1. In this case, the segment edge of the fine contour that has the largest distance
from the current coarse segment is added as a new breakpoint when the above distance is
sufficiently large compared to segment lengths as shown in step 2 on Figure 2-(a). This
results in the coarse model Cc having 10 segments, as shown in Figure 1. The stability
of the breakpoints needs to be improved because of the effects of digitization, rotation,
shadows, and lighting.
We use a set of contour improvement rules (Figure 2-(b)) to attempt correcting those

situations where a coarse polygonal segment may have been fragmented during initial
segmentation because of noise in the fine model. In this case, neighboring segments having
almost the same orientation angles are fused into one single coarse segment that must have
a bounded orientation error compared to the originally fragmented fine segments. On the
other hand, a fragmented corner contour formed by three initial neighboring segments tk−1,
tk, and tk+1 can be represented by a two-segment corner if the following three conditions
are met. First, we have to make sure that tk−1 and tk+1 are not co-linear which causes
some loss of accuracy if the above segments are modified by extending tk−1 and tk+1 up
to their intersection. Second, the length of tk−1 and tk+1 must greatly exceed that of tk
in order to avoid confusing a corner with a true fragmented contour. Third, the relative
orientations of tk−1 and tk+1 with respect to tk must be of the same sign. This is needed
to make sure that the corner does not form an inflection point. When all three conditions
are met, the polygonal approximation of tk−1, tk, and tk+1 is modified by cancelling tk
and extending tk−1 and tk+1 to their intersection.
The coarse model C is defined by the resulting collection of segments in which each

segment tk is characterized by three parameters which are: 1) the exterior angle θext(tk),
2) the total angular change θchg(tk), and 3) the segment length sk. The exterior angle
θext(tk) is defined as the angle between the tangent to tk−1 and the tangent to tk at their
intersection point. It also denotes the turning angle from tk−1 or its tangent if tk−1 is
curved and tk or its tangent if tk is curved. The total angular change θchg(tk) is the
turning angle from the tangent to tk, at its start point, to the tangent to tk at its end
point. Formally, the coarse model C is an approximation of the original contour by means
of an ordered set of constantly curved segments, which is:

C = {tk = (θext(tk), θchg(tk), sk)} (2)
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2.2 Feature extraction

A recognition system must exploit the local geometric features carried by the contour
fragments in order to classify these fragments and link up the sub-set of segments in an
attempt to find a complete scene interpretation. Features must be simple enough to be
locally present and completely observed on relatively short contours. They must also be
coarse enough to discriminate between models and be able to limit potential matching to
a sub-set of the model.
Figure 3 shows seven possible configurations of two successive segments from the coarse

model (Eq. 2) that are linked with each other. Each vertex v of the coarse model which
links up two successive segments t1 and t2 can be represented by the tuple:

(s1/(s1 + s2), θext, θchg1, θchg2) (3)

where s1/(s1 + s2) is the relative length of segment t1 with respect to its neighbor t2,
θext is the exterior angle between t1 and t2, and θchg1 and θchg2 are the total angular
changes of segments t1 and t2, respectively. The tuple defined in Eq. 3 can be considered
as a geometric feature that is invariant against scale, rotation, and translation. A feature
can be constructed based on the knowledge of two joining coarse segments which can
be formed by all possible combinations of straight (s) or curved (c) coarse segments. In
addition we may distinguish features having an exterior angle between their two segments
and those which do not. This has the effect of isolating the source of noise introduced by
the measurement of θext which may improve the robustness of the recognition. Thus we
may increase the discriminability of a recognition system if each feature can be further
classified by using seven data types (1 to 7) as shown in Figure 3. For example, feature
(sc0, s1/s1 + s2, θchg) is formed by a straight segment t1 (s1 as length), a curved segment
t2 (s2 as length), a nil θext, and an arbitrary angular change θchg for t2.
Figure 3 shows the retained seven features, their indexing parameters, and their rep-

resentations in the angle-length plan below each type. The main effect of breakpoint
selection is the introduction of noise in the values of the exterior angle. However, the
noise caused by the detection of beakpoints has less effect on types sc0, cs0, and cc0 for
which the exterior angle is nil. For the other types, we strongly reduce the effect of break-
point selection by creating features only when there is enough evidence and confidence in
the presence of distinct segments. In other words, a feature is created only when the two
adjacent segments have distinctive curving factors or there is a noticeable exterior angle.
Keeping as many different features as possible improves the selectivity of the model and
recognition system because of the implied decrease in the number of entries in the corre-
sponding buckets. Compared to previous proposals [20] this organization is expected to
improve the discriminability and tolerance to noise as well as improving the robustness
of the indexing of the features.

2.3 Model organization

There are seven distinct types of feature and each type is represented by an indexing
scheme that results from hashing the object models based on the value taken by each
of their features. Each feature f with some type is represented by a pointer value (fv)
that results from concatenation of its parameters ρ = s1/s1 + s2, θext, and θchg. The
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generated discrete index addresses a bucket in a look-up table (Inx-type(fv)) to which we
add the entry fv = (ρ, θext, θchg), whose dimensionality depends on the feature type, with
an object label O from which the feature was extracted. Indexing consists of a search
procedure Inx-type(fv) that takes a feature f with its type and generates all the model
objects which contain at least one occurrence of f .
The degree of sharing within each hashing scheme Inx-type(fv) depends on the tol-

erance allocated to fv which results from the variance on the values of parameters ρ,
θext, and θchg. The upper bound on tolerance for each parameter is experimentally found.
Indexing allows definitive mapping from an input feature into a group of model objects
that are associated with the corresponding range. Each model object that falls in the
range of a given feature type has at least one feature of that type whose parameters fall
within that range. Therefore the selection of the bucket size has a fundamental effect on
the performance and robustness of the recognition system.

3 The recognition system

Our approach consists of initially selecting a sub-set of scene contours from those having
the largest number of features among all scene contours. In other words, poor contours
are not processed in the early stages of our recognition approach but used later. Pruning
and verification of the initially generated hypotheses is done through the application of
a low cost spatial matching which compares the relative positioning of features in the
scene to that of their matched features in the model. Further refinement of the previously
verified hypotheses consists of carrying out accurate shape distance matching. At this
level, the retained hypotheses on the fragments represent a small fraction of the original
hypotheses. Clearly in our approach the matching complexity increases but the problem
size significantly decreases as we move further in the recognition. In the following we
present the details of this approach.

3.1 Initialization

In our representation, a vertex is the intersection point of contours or an end point of
open contour. A contour that links up a pair of vertices is called a v-link. At least three
v-links intersect at each vertex in the case of connected contours. A collection of v-links
that link up an arbitrary number of vertices may or may not belong to the contour of the
same object. The problem is to cluster the v-links into the subsets that are individually
matched with enough confidence to some model objects.
We start by sorting the v-links in a decreasing order of the number of segments ac-

cording to their coarse model. The v-links having the largest number of segments have
richer discriminative information than the others and are used in indexing the models to
generate hypotheses on possible matching. In other words, we retrieve a sufficient number
of candidate v-links from a list sorted according to the principle of the largest number of
features first. This represents a significant fraction of the total number of scene v-links
and available features. The idea of selecting rich contours at the start of the recognition
algorithm is summarized in Figure 4.
Figure 5 shows an example of partial overlapping between three objects. There are 18

vertices labeled as (a, b, . . . , q) and 26 v-links labeled by the pair of vertices they connect.
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For example, vertices a and b directly connect two contours that are labeled ab1 and ab2.
Initially all vertices are set into a state called “inactive”. The features that belong to

the initially selected v-links are then used in the indexed search which allows the finding
of one or more matches for each selected v-link. This allows v-links to be directly matched
to sub-sets of the model. Indirect matching of v-links will be described later. Matched
v-links are called fragments. Each v-link is matched to a sub-set of models that are sorted
in order of decreasing number of matched features. In the example, the set of fragments
(27%) is found following the initialization step is {ab1, ef1, ei, jk1, kl, lm, oq} for which
each fragment has 3 features or more. These are indicated by arrows in Figure 5.
The vertices connected to fragments become active as the fragments may be used to

extend the matching to some of their neighboring v-links which are connected to active
vertices. In the example, the active vertices are (a, b, e, f, i, j, k, l,m, o, q) (Figure 6-a).
These vertices are obtained after removing all inactive vertices and v-links having poor
information.
In the next section we show how robust initial matching hypotheses can be found

which result from carrying out gross-to-fine matching for the initial set of fragments only.

3.2 Spatial and shape matching

We denote by (<fx, fm>) the operation of matching a scene feature fx to a model feature
fm. Thus the primary matching <fx, fm> represents a hypothesis that might need to be
verified. Assume that a fragment of scene contour Ax has a set of n features fx,1, . . . , fx,n
which have been one-to-one matched to features fm,1, . . . , fm,n of some model Om. The
ordering of fx,1, . . . , fx,n corresponds to their order on contour Ax according to a given
direction.
To consolidate the matching of Ax to the model Om we carry out spatial matching

which consists of comparing the relative position and orientation of features fx,1, . . . , fx,n
according to their setting in the scene to that of matched features fm,1, . . . , fm,n according
to their setting in the model. For this purpose the position and orientation of each fx,i+1

is evaluated with respect to some frame of reference attached to a previous feature fx,i.
The above position and orientation are compared to those of the matched features (fm,i+1

with respect to fm,i) with the objective of validating or invalidating the ordered matching
<fx,i, fx,i+1, Om> based on the matching pair <fx,i, fm,i> and <fx,i+1, fm,i+1>. Operation
<fx,i, fx,i+1, Om> consists of matching the relative position and orientation of (fx,i, fx,i+1)
in the scene with respect to that of (fm,i, fm,i+1) in the model.
The idea of using spatial matching for the pairs (fx,i,fx,i+1) and (fm,i,fm,i+1) is sum-

marized in the phase of primary matching described in Figure 4. The relative position
and orientation vector of fx,i+1 is evaluated with respect to fx,i for the scene features and
compared to the vector fm,i+1 that is observed with respect to fm,i. Spatial matching
is a low cost operator that evaluates the error vector ε(i) which is simply the difference
between the above vectors. The error vector measures how the relative positioning of
the scene features differ from their corresponding model features. A global measure of
the relative positioning error between fx,1, . . . , fx,n and fm,1, . . . , fm,n can be defined by
adding up the squares of the error vectors:

εx,m = Σ
i=n−1
i=1 ε(i)2 (4)
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In other words, εx,m (Eq. 4) is the spatial matching error for <Ax, Om>. The error is
normalized and used in evaluating the matching confidence.
The advantage of this approach lies in the ability to carry out additional model prun-

ing at low cost processing because the number of originally generated hypotheses is still
relatively large. Three important characteristics contribute in the efficiency of spatial
matching. First, only those contours having sufficient discriminative information par-
ticipate in the original spatial matching. Second, the relative position and orientation
of features within the model are pre-computed and need no further processing. Third,
the relative position and orientation of the scene features are evaluated once and used
in pruning all inconsistent hypotheses among those contours having sufficient connected
features. The process of spatial matching allows a low cost verification of the most prob-
able hypotheses that are directly produced by the indexed search. The low cost of spatial
matching and the organization of the storage to this effect is one important issue for re-
ducing the dependency of the recognition time over the size of the database. Verifying the
most probable hypotheses by using low cost spatial matching is an essential refinement
step prior to applying the more costly shape matching which is described below.
The shape matching compares contour shapes after referring to spatially matched

features in scene and model. This enables further pruning and consolidation of the subset
of initial hypotheses. Shape matching consists of evaluating the minimum possible area
difference between scene fragment Ax(s) and its matched fragment Am(s) against all
possible vertical shift operations.
Functions Ax(s) and Am(s) are the polar angles as a function of the contour length

s. Figure 7-a shows the fine polar models of Ax(s) and Am(s) that will be used here
to evaluate a shape similarity function. Ax(s) is a set of K polygonal segments with a
total length L and Am(s) is of equal length but with N segments. In Figure 7-a k = 6
and N = 5. The interval [0, L] is divided into a number of sub-intervals so that in
each sub-interval i functions Ax(s) and Am(s) are common over the length L(si) of that
sub-interval. The total length satisfies:

L = ΣN
i=1L(si) (5)

The effect of the scene instance on Ax(s) appears as a vertical shift in the angle-length
plan when compared to the model instance. The shift is due to the original orientation
of the objects with respect to the horizontal.
The shape matching is a distance that measures the minimum possible area difference

between Ax(s) and Am(s) against all possible vertical shift operations. To increase the
accuracy, the evaluation is carried out in the corresponding fine angle-length model. The
distance function is defined by:

da(m,x) = ΣN
i=1(Ax(si)− Am(si) + a)2L(si) (6)

where N is the least number of length intervals in which both Ax(s) and Am(s) are
common and constant and a is the value of a constant that vertically shifts Ax(s) with
respect to Am(s). The distance da(m,x) (eq. 6) is a convex function [22] of the vertical
shift parameter a that would vertically translate Ax(s) in order to yield the least value of
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da(m,x). The total length (Eq. 5) is L = ΣN
i=1L(si); the minimum value of d(m,x) that

minimizes a quadratic error is then:

d(m,x) = ΣN
i=1[Ax(si)− Am(si)]

2L(si)−
1

L
[ΣN

i=1(Ax(si)− Am(si))L(si)]
2 (7)

To find the least possible value of d(m,x) (Eq. 7) the matched features of Ax(s) and
Am(s) are aligned (horizontal shift) prior to finding the appropriate horizontal shift value
of a given setting. The idea of evaluating the shape matching for a scene contour with its
features and a matched model contour with its matched features is summarized in Figure 4.
The normalized distance d(m,x)/L allows the smallest area difference (shape distance)
between two fragments Ax and Am of equal length s to be found that is determined by
the length of the scene fragment Ax.
In summary, spatial and shape matching enable powerful pruning of hypothesized

models. The result is a set of robust hypotheses that will be extended in the next sub-
section via inter-fragment matching and predictive matching which facilitates progress in
reaching a global interpretation.

3.3 Selective processing

An active vertex has at least one fragment and a number of v-links. Each fragment A
of some active vertex is paired with a v-link l for possible matching. This consists of
appending the v-link to A in the angle-length plan and comparing the shape (A, l) to
the models that match A. In the examples of Figures 5 and 6-a, the fragments ab1,
ef1, and jk1 could not be matched to their neighboring v-links. The pairing <ei, ef2, il>,
<lk, kj2>, <lm, il,mn>, and <oq, op, qr> were successful and the newly matched v-links
became fragments and their connected vertices were then considered as newly active ver-
tices. By transitivity, the matched chain of fragments and v-links are extended such as
in the case of the chain (fe, ei, il, lm,mn) as more vertices become newly active such as
(n, p, r). Repeating the above matching process enables extending the previous match-
ing to new chains that are (gf, fe, ei, il, lm,mn, np1) which can now be combined with
chain (np1, po, oq, qr, rh). An intermediate step of combining matched chains is shown
in Figure 6-b where most of the contours that belong to the top object are discovered.
The newly active vertices (h, g) enable matching hg to the previous chain thus identi-
fying the top object. Other combined chains can also be matched at this level such as
(ij, jk, kl). Removal of the top object leaves all the v-links and fragments that are shown
in Figure 6-c.
At this point, we note that the active vertices can be classified into two categories:

1) the vertices that connect only fragments which we call completed vertices, and 2) the
vertices that connect fragments and v-links which we call blocking vertices. In the example,
completed vertices that must remain active are (e, f, k, g, i, l, o, p,m, n) which appear in
Figure 6-c. On the other hand, blocking vertices are (a, b, g, h,m, n, o, p, q, r) as each of
these vertices still have at least one v-link.

3.4 Pairing of hypotheses

Pairing of hypotheses applies to active vertices that have fragments cannot be matched
to other contours of the same vertices. Pairing of hypotheses evaluates the potential
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matching of distant fragment of contours that have been highly hypothesized to the same
models. For example, fragment ef1 (Figure 6-c) cannot be matched to any neighboring
contours at vertices e and f .
Assume two scene fragments A1 and A2 that are matched to some contours denoted

by A∗

1 and A∗

2 of the same model. We compare the position and orientation of each pair
of features from A1 and A2 to those of the matched features from the model. For this
purpose we choose two points (x1, x2) on A1 and (y1, y2) on A2 so that any combination
of three points out of (x1, x2, y1, y2) is not co-linear. Based on previous feature matching
with the models, choose x∗1, x

∗

2, y
∗

1, y
∗

2 as the points of A
∗

1 and A∗

2 that correspond to x1,
x2, y1, y2, respectively. Now the position and orientation of A2 with respect to A1 can be
matched to that of A∗

2 with respect to A
∗

1 by matching the distance between every pair of
points (x, y) in the scene to the corresponding distance in the model.

3.5 Predictive matching

Predictive matching is an advanced step in recognition because all contours having signif-
icant discriminative information have already been hypothesized and there are still some
contours (v-links) that must be included in the global interpretation.
Examining the geometric relationships between a fragment A at vertex u (<A,Om>)

and a v-link l at vertex v allows an extension of the matching process to l, i.e. whether
<l,Om> holds or not. The question is how to search efficiently for a scene v-link that
can be present in many matched models. To do this we use: 1) vector matching, 2)
orientation matching, and 3) shape matching. It is possible to backtrack at each step
and terminate the current search when any mismatching occurs. For vector matching, we
evaluate the vector uv by selecting a vertex v that is the nearest unvisited vertex to u.
The vector is reported with respect to edge u in each model to which A is matched. If the
reported vector points to a contour point w of the model, then the relative orientation
(tangential) of l with respect to A in the scene is compared to the relative orientation
of w with respect to A in the model. The shape distance matching is attempted only
when vector and orientation matching succeed. Otherwise, the next model to which A is
matched to is taken and the previous steps are repeated.
Predictive matching (figure 6-c) allows the fragments kl to be matched to the v-link

mo, mo is matched to qa, and so on. This results in matching the chains (kl,mo, qa, ab2,
bc, cd, dr, pn), (jk1, hd), and (jk1, gc) each of which contains at least one initialization
fragment.

3.6 Interpretation

During recognition, each fragment of contour A retains a number of valid hypotheses that
are processed every time A is involved in some matching extension like the pairing of
hypotheses or predictive matching. Now each matched model of fragment A accumulates
a number of votes that is the fraction of the length of all the fragments and v-links which
have been successfully matched to A. The retained models are taken as those having the
highest number of votes when all possible matching has been completed for the retained
hypotheses. Each fragment is hypothesized to one of the matched models that received
the highest number of votes. This generally allows complete clustering of the scene.
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In some cases the originally generated hypotheses of a fragment are not matched to
any other scene fragment because the hypothesized contour is present in many models
and the selected hypotheses are incorrect. In this case these hypotheses accumulate a rel-
atively very low vote. To avoid this blocking, the algorithm backtracks into the originally
generated hypotheses and retrieves the next highest hypotheses which are incrementally
matched with the currently running hypotheses at all levels of the recognition.

4 Performance evaluation

Our approach consists of increasing the dimensionality of the indices as a way of increas-
ing selectivity. We use 2, 3, and 4 dimensional indices with a space partitioning of the
index space into seven distinct hashing tables to decrease the number of entries per table
and reduce the storage size without affecting discriminability. Our objective is to avoid
the traditional problems of 1-D hashing processes such as limited selectivity, excessive
accumulation of vote in each bucket, limited number of useful buckets, and extreme sen-
sitivity to all sources of digitization noise. Unlike other approaches [7], our higher-level
geometric features allowed us to avoid starting the recognition with a large number of
redundant features in an attempt to increase selectivity. Given a set of features and their
hashing scheme, the main issue is how to select a coarse enough bucket size to guarantee
robustness to noise without scarifying the discriminating power of the system. In the
following we present the performance of the proposed recognition versus the bucket size.
For a given geometric feature, the maximum number of buckets is given by:

Nmax = Π
η
i=1Ri/Π

η
i=12εi (8)

where η is the dimensionality of the feature parameters, Ri is the allowable range of
its ith parameter, and εi is the overall variance. For the features shown on Figure 3,
the values of η are 2 , 3, and 4 for the feature types (ss,sc0, and cs0), (sc, cs, and
cc0), and (cc), respectively. As an example, the maximum number of buckets of feature
(sc, s1/s1+s2, θext, θchg) is Nmax = RρRθext

Rθchg
/8ερεθext

εθchg
(Eq. 8), where ρ = s1/s1+s2.

Since parameters ερ, εθext
, and εθchg

are global variances it is important to optimize
the bucket size by directly relating it to the probability of correct classification. For this
we heuristically searched for the best possible bucket size by stepping the size around the
value of Rmin = Π

η
i=12εi which is the smallest bucket size, after estimating the values of εi

based on known thresholding and repetitive acquisitions of the features by varying their
position and orientation. The current bucket size is given by:

Rρ,θext,θchg
= αRmin (9)

where α is the bucket size factor that is studied here in the range 0.6 ≤ α ≤ 1.6 by using
steps of 0.2.
The discrimination function (D(A)) for a scene shape A is defined as the ratio of the

number of votes received for the correct matching of A over the maximum number of votes
received for any incorrect shape instance. Our objective is to link the bucket size (eq. 9)
to the discrimination function as well as the recognition error and processing time which
includes the generation of hypotheses, the cost of verifying them, the cost of carrying
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out accurate distance matching, etc. For this we selected 25 scenes each consisting of
three objects with partial occluding. Each object belongs to a library of 130 formed by
mechanical tools and 2-D plastic shapes with different sizes and different shapes. Each
object contour has between 20 to 140 fine segments or between 10 to 50 coarse segments.
Each of the above 3-object scenes was rotated by using four different angles, digitized (see
Section 2), and the resulting 100 scenes were stored into memory. The scene rotation is
useful in studying the robustness of the recognition in the presence of various sources of
digitization noise.
We examined three hashing schemes denoted by one-feature, four-feature [20], and our

proposed seven-feature. For the one-feature hashing scheme there is one single feature
(s1/s1 + s2, θext, θchg1, θchg2). In this case, a feature instance formed by two straight seg-
ments generates (s1/s1+s2, θext, 0, 0). For the four-feature there are four hashing schemes
generated for the four types ss, sc, cs, and cc with their appropriate attributes, where s
and c denote a straight segment and a curved segment, respectively. For the seven-feature
there are seven hashing schemes generated for the seven types ss, sc, sc0, cs, cs0, cc, and
cc0 as defined in the model organization of Section 2. For each of the above three hashing
schemes our recognition algorithm was run over the stored 100 scenes. The results are
displayed on Figures 8, 9, and 10. Figure 8 shows the average object discriminability D
and the minimum value of D as a function of the bucket size for each of the above three
hashing schemes. The recognition failed for every D < 1.
Increasing selectivity through the selection of a small bucket size, as shown on Figure 8,

gives higher values for D (1.15 ≤ D ≤ 1.35) but this is done to the detriment of the levels
of noise that the algorithm can handle which is evidenced by the high probability of
recognition error as shown on Figure 9. A small bucket size also corresponds to a low
processing time because of the reduced number of hypotheses that fall into the allowable
range of its parameters. Furthermore, a robust recognition system must avoid the use
of a small bucket size to prevent the indices from falling at random which produces non
repeatable results.
Intuitively one adopts a coarse bucket quantization but traditional 1-D hashing schemes

do not behave well in the presence of uncertainties, digitization noise, and saturation. The
use of a large bucket size for the one-feature hashing process produced the lowest discrim-
inability (Figure 8) with relatively high recognition errors (Figure 9). Furthermore, a
coarse bucket quantization with the one-feature hashing is responsible for limiting the
index selectivity due to a relatively high degree of storage sharing which produces very
low discriminability values. In addition, the high recognition errors are indicators of the
excessive sensitivity to various sources of digitization that noise produces. The increase
in the processing time for excessively large buckets is due to an increase in the number of
hypotheses that result from selecting a bucket size larger than the allowable range of its
parameters. Many unrelated models come into the picture and those have to be processed.
Our recognition system relies on expanding the dimensionality of the indexing scheme

in space and parameters which enables the use of a coarse bucket quantization to guarantee
a good level of robustness to various sources of noise. The selection of a coarse bucket
(1 < α ≤ 1.6) for the four-feature and seven-feature hashing was rewarded by a sufficiently
high level of discrimination and a greater noise tolerance.
The main difference between the seven and four-feature hashing is the space separa-
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Hypotheses pruning versus model (M) size
M size hypotheses Ranking 1 Ranking 2 Ranking 3 Recog. time % increase
10 61 16% 14% 25% 24 −
40 258 7.6% 6.2% 10.4% 25.5 6.25%
70 497 4.3% 3.8% 6.7% 26.5 10.4%
100 796 2.8% 2.5% 4.5% 27.5 14.5%
130 1172 2.1% 1.8% 3.25% 29 20.8%

Table 1: Hypothesis generation, ranking, and recognition time

tion between dense parameters areas. By distinguishing between features having a zero
and non-zero exterior angle, a significant index expansion was made through the space
separation between two dense parameters areas. The increase in the selectivity in the case
of the seven-feature hashing was rewarded by a noticeable increase in discriminability, an
increase in the rate of correct recognition, and a shorter processing time. Based on the
above the bucket size factor was set to α = 1.4.
By categorizing our features into seven types we expanded the indexing mechanism

beyond the 1-D table to 2-D, 3-D, and 4-D hashing schemes together with the parameter
space separation to gain selectivity. This approach leads to buckets having a less dense
population than 1-D hashing which enables the use of coarse buckets to reduce errors
while keeping a reasonable number of initial hypotheses. Thus our approach is based on
extended indexing and bucket size engineering.

4.1 Effects of model size

Here we study the recognition time as a function of model size. A model for n-objects is
denoted by Mn and the studied instances of n are 10, 40, 70, 100, and 130. The bucket
size was set as Rρ,θext,θchg

= 1.4×Rmin. The recognition algorithm (seven-feature) was run
for each of the previous 3-object scenes which are similar to the scene shown on Figure 5.
The indexed search provides hypotheses of the mapping from scene features to features

of the models. Note that a feature may be hypothesized more than once within the same
model because of possible parameter matching with distinct features. Each feature of some
scene object accumulates votes for matching with features of the models. The ranking
of a feature is taken as the minimum percentage of hypotheses generated which contains
the correct matching. The ranking of an object is the average of the ranking of all its
features. Table 1 shows the total number of hypotheses generated and the ranking for all
the three scene objects versus the size of the database for the 3-objects of the typical scene
shown on Figure 5. The reason for the large number of hypotheses generated is that most
individual features are found in many object feature instances due to noise, digitization,
thresholding, and bucket tolerance. This does not pose a major problem if we do not
retain all these hypotheses but only a very small subset which will be further processed.
For example, object-2 received a ranking of 6.2% under DB40 which indicates that, on
average, the number of votes received by each of its features for the correct matching was
in the top 6.2% of all the highly voted matches. Though the number of total hypotheses
generated is at least quadratic in the database size, the algorithm spends a small fraction
of the recognition time on the processing of these hypotheses because only a small fraction
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Type of Invariance Dimen- Type of Search Time Drop in disc- Drop in disc-
Paper features to similari- tion of shape Linearity Linearity riminability criminabilty

used ty transf- index used H(M100)/ T (M100)/ 1 −D(M50)/ 1 −D(M100)
ormation space H(M50) T (M50) D(M10) D(M10)

Correlation
Califano of geomet- Yes 4-D & Leaf - - 0.4 0.5
& Mohan ric triangle 7-D shapes

Super
Stein & segment, 6 Yes 1-D to Animal 1.76 1.63 - -
Medioni attributes 6-D shapes
Al-Mou- Curving, Polygo-
hamed & length, & No 1-D & nal sha- 2.1 1.18 0.58 0.66
Ismail corners 2-D pes
Al-Mou- Constant Polygo-
hamed curvature Yes 1-D & nal sha- 2.36 1.07 0.26 0.42

parameters 2-D pes

Table 2: Main features of some recognition systems based on multi-dimensional indexing

of these hypotheses are to be verified and the remainder is pruned.
The number of hypotheses that are checked for their spatial relationships is slightly

larger than the percentages shown on Table 1 which depend on the database size. Checking
for the spatial relationships between pairs of features has a relatively larger overhead than
hypothesis generation but its global overhead is moderate because the set of potential
matches is small after the hypotheses pruning step. Spatially unmatched hypotheses are
further pruned prior to carrying out the accurate distance matching having the highest
overhead. The overall recognition time of the three objects is shown on Table 1 together
with the percentage increases in recognition time over that obtained for DB10. The
recognition time is likely to be independent the number of hypotheses originally generated.
The time increases are relatively small as the algorithm must spend only 20% extra time
when the database size becomes 13−fold that of DB10. By experimentally choosing the
ranking percentages of hypotheses, the number of retained hypotheses becomes nearly
constant regardless of the database size. Under this condition, the recognition algorithm
would likely depend only on scene complexity without explicit dependence on database
size.

4.2 Comparison to other recognition schemes

In Tucker et al. [23], all scene features are allowed to participate in the generation of
hypotheses which are ranked by mutual support. A massively parallel machine was used
in the verification of hypotheses. The hypothesis with the highest confidence level is
retained. Due to the parallelism used, the recognition time depends mainly on scene
complexity with only a minor dependence on model size.
Table 2 compares the main features of our approach to those of three other recognition

systems [7, 24, 25] which are based on a multi-dimensional indexing scheme. The first five
columns compare the type of features used, the invariance to similarity, the dimension of
the index space, and the shapes of objects used. In columns 6 and 7, we list the number
of hypotheses generated (H(Mn)) and the recognition time (T (Mn)) against a change in
model complexity (Mn), respectively. Although (H(M100)/H(M50)) is relatively large in
our case, due to bucket sharing, the pruning process significantly reduced its effect on the
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recognition time (T (M100)/T (M50)). In the last two columns we show the drop of the
discrimination function D(Mn) (see Section 4) against an increase in model complexity.
The larger drop in the discrimination indicates that the recognition decision has a greater
dependence on the complexity of the model.
We reduced the dependence of the recognition time on the size of the model by using

the following strategy. First, we avoided increasing the selectivity by reducing the granule
size of the bucket [13] which has the effect of degrading the discrimination of the whole
scheme. The reason for this is that such a reduction occurs at the expense of the levels of
noise that the system can handle. This effect has been extensively studied by Califano and
Mohan [7] who proposed the adoption of larger indices to keep a relatively coarse bucket
quantization without reducing the selectivity. Unlike [7, 24, 25], we used non-redundant
geometric features.
Second, we avoided generating a large number of hypotheses by selecting initial con-

tours that have rich discriminatory information. Poor fragments are tested later on the
validity of current hypotheses.
Third, to prune a large fraction of the models, we used an in-depth first-hypothesis ver-

ification approach that progresses from coarse spatial matching of features to fine shape
matching. To extend the current hypothesized matching, the scene vertices (intersect-
ing fragments) are progressively activated to exploit contour continuity between strongly
hypothesized fragments and poor fragments. Objects on top of the scene are rapidly rec-
ognized. This facilitates the predictive matching of contour fragments that intersect with
top objects.
Fourth, we used a global interpretation approach that leaves the least percentage of

uncovered contours. Though a serial processing is used, the fraction of the recognition
time that is database-dependent is only a small percentage of the overall processing time
(Table 1).

5 Conclusion

We have presented a coarse-to-fine recognition algorithm that selectively processes dis-
criminative initial hypotheses which are expanded through predictive matching and other
neighborhood relational operators. This avoids the processing of a large number of ini-
tial hypotheses and allows pruning of large portions of inconsistent hypotheses. We have
avoided the problems of limited selectivity, excessive accumulation of vote, and extreme
sensitivity to noise by selecting a set of high-level multidimensional features. Our eval-
uation shows that a high recognition error results from the use of an excessively small
bucket size because, in this case, the indices may fall randomly, producing non-repeatable
results. A robust recognition requires the use of a coarse bucket quantization which is one
feasible solution if we adopt a multidimensional hashing scheme, with space separation
between dense parameter areas, to create additional hashing tables. The robustness of
the recognition is based on engineering a bucket size with the best tolerance to various
sources of noise. Partially occluded scenes consisting of 3 objects can be recognized with
a probability of 0.84. These results are reproducible against changes in scale, rotation,
and translation. Due to the selection of robust initial hypotheses and the structure of the
selective matching system, the processing time depends mostly on scene complexity with
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only a marginal dependence on database size.
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Figure 1: A cutter and its fine and coarse models
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COARSE SEGMENTATION

Phase 1: Primary Breakpoints (PBs)

Input: fine contour in the length-angle plan
          F = { ( O ( si) , si ) } .

Step 1: Create initial breakpoints (IBs).
            Detect strong change in the  direction.

Step 2: Create corrective breakpoints.
            Detect maximum diatance from a chain
            of IBs and fine contour.

_

tk

tk+1

IB

new IB

tk
tk1 tk2

IB
IB

Phase 2: Improvement Rules

Input:  chain of primary beakpoints in the  angle-length plan

Rule 1: correcting a fragmented straight segement

Rule 2:
    condition 2.1: Segements tk-1 and tk+1 are not co-linear.

    condition 2.2: Each of tk-1 and tk+1  is longer than tk.

    condition 2.3: Orientation of tk-1 and that of tk+1 are

                           of the same sign.

t1
t2

t3

tk-1

tk+1

tk

new tk-1

new
tk+1

(a)

(b)

new t1

Figure 2: Primary segmentation (a) and improvement rules
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CONTOUR MATCHING
Input:
    set of v-links sorted in  the order of  decreasing
    number of their scene eatures

Selection of rich contours:
    Select a subset of v-links { Ax } such that their

    aggregate number of features is a farge
    fraction of  the number of scene features.

Primary matching:
     + Index the features of selected v-links into the
         model and find all matching {< Ax , Om>}.

     + For each v-link, find  a set M ={Om} of matched models.

     + For each <Ax,M>, sort  M in the order of decreasing

        number of matched features of Ax.

Spatial matching:
     For every pair of features fx,i and fx,j of some

     v-link Ax  that are matched to features fm,i and

     fm,j of model Om, do:

        + evaluate the confidence of matching the
         relative position  fx,i / fx,j  in the scene to

         fm,i / fm,j in the model Om;

        + sort M  in the order of decreasing matching
         confidence.

Shape matching:
      For each matching < Ax, Om>, do:

          + find best horizontal shift of Ax w.r.t. model Om
             that aligns the largest number of features;
          + evaluate the minimum value of the shape distance
             d(Ax m) by optimizing the vertical shift;

          + for each <Ax, M>, sort M in the order of decreasing

             shape distance.

_

fx,i
fm,i

fx,i+1

fm,i+1

Error

fm,i+1/ fm,i

fx,i+1 / fx,i

v-links

Number of
features

Retained
v-links
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Figure 4: Contour matching functions
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