
A 3D Vision-Based Man-Machine Interface
For Hand-Controlled Telerobot

Mayez A. Al-Mouhamed ∗, Onur Toker †, and A. Al-Harthy ‡

Abstract

This paper presents a robust telerobotic system that consists of a real-time
vision-based operator hand tracking system (client) and a slave robot (server) which
are interconnected through a LAN. The tracking system (1) monitors the operator
hand motion and (2) determines its position and orientation which are used to con-
trol the slave robot. Two digital cameras are used to monitor a four-ball based
feature frame that is held by the operator hand. To determine the 3D position a
tracking algorithm based on uncalibrated cameras with weak perspective projection
model is used. This allows finding 3D differential position and orientation of op-
erator hand. The features of proposed system are (1) a metric for color matching
to discriminate the balls from their background, (2) a uniform and spiral search
approach to speedup the detection, (3) tracking in the presence of partial occlusion,
(4) consolidate detection by using shape and geometric matching, and (5) dynamic
update of the reference colors. The operator can see the effects of the previous
motion which enables making the necessary corrections through repetitive opera-
tor hand-eye interactions. Evaluation shows that the static and dynamic errors of
tracking algorithm are 0.1% and 0.6% for a centered workspace of 203 inches3 that is
40 to 60 inches away from cameras. Running the tracking algorithm on two PCs in
parallel allowed (1) a parallel image grabbing delay of 60 ms, (2) a stereo matching
delay of 50 ms, and (3) a global refresh rate of 9Hz.

Keywords: stereo vision; telerobotics; 3D tracking; 3D vision

1 Introduction

This paper presents a telerobotic system [1, 2, 3] that consists of a vision-based sta-
tion (client) and a slave robot (server) which are interconnected through a 100 Mbps
Ethernet LAN. The client-server system is implemented using robust Visual Basic (VB)
programming environment together with TCP/IP socket programming to provide real-
time connectivity through the LAN. A real-time vision system consisting of two digital
cameras monitors the operator hand motion to control a tele-robot. To view the robot

∗Department of Computer Engineering, College of Computer Science and Engineering (CCSE)
King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia. Email:
mayez/onur@ccse.kfupm.edu.sa.

†Department of Systems Engineering, CCSE, KFUPM, Dhahran 31261, Saudi Arabia.
‡Department of Systems Engineering, CCSE, KFUPM, Dhahran 31261, Saudi Arabia.

1

scene, the operator uses eyes shuttering glasses to see the robot scene in 3D from the
client station. The generation of stereo views [4, 5] based on display of left and right
images of the robot which produces the stereo illusion after proper synchronization.
Two digital cameras are used to monitor a four-point feature frame that is held by

the operator hand. The frame consists of four balls having distinct colors. The cameras
monitor the trajectory of each ball. Using uncalibrated stereo vision the multiple-view
affine invariance property is used to build a 3D interpretation for the feature frame which is
considered as a reference for the operator hand frame. The frame is represented by twelve
parameters, three for the cartesian coordinates of its origin and nine for its orientation
matrix. These are considered reference parameters for the position of operator hand.
The position and orientation of the operator hand frame are transmitted in a differential
manner to the slave robot by using the client-server network interface. Visual feedbacks
are also forwarded from the slave station to master station to provide the operator with
stereo-views of the slave arm. The operator can see the effects of the previous motion
which enables making the necessary motion corrections through repetitive operator hand-
eye interactions.
Fukumoto et al. [6] proposed a stereo vision system where the user can point a place on

the computer’s screen by his hand and give some commands by hand gesture. However,
such conventional vision systems still impose some restrictions. They require camera
calibration which limits the user motion. The absolute position and orientation of the
hand in the space are used for gesture recognition, which means that the operator should
not move his body from the initial position at the calibration. The operator cannot expect
how the system will work when he moves his body from the initial position.
Estimating 3D position of oject is also used in model-based telerobotics that allows

obtaining and maintaining accurate models of the remote site. To overcome the problems
of time-delay and bandwidth limitation, the operator directly interacts with a model of
the remote site instead of delayed remote site. For this the operator points to a known
object feature in a video image of the remote site and uses 2D images of these features
to solve for the 3D position of the object. Using one single camera Lloyd [7] used the
pin-hole camera model with off-line calibrated focal-length and radial distortion for one
single camera. Using simple camera calibration the geometry of affine stereo vision is
used [8] to estimate the positions and surface orientations needed to locate and reach for
objects by sight. The advantage of this system is its immunity to unexpected translations
and rotations of the cameras and changes of focal length. Uncalibrated stereo vision [9]
is also used in a pointing-based interface for robot guidance based on the use of active
contours to track the position and pointing direction of a hand in real time.
An interactive human-robot interface [10] is proposed to track a hand pointer using

a constrained perspective transform. The real-time tracking system visually tracks the
operator’s pointing hand and projects a mark at the indicated position using an LCD
projector. The mark is visually observed by the operator, thus making possible correction
of the indicated position.
Kuno et al. [11, 12] proposed an interfacing method by using uncalibrated stereo

vision. Their system is based on the multiple view affine invariance theory. It calculates
the hand positions as invariant coordinates in the basis derived from four points located on
the user’s body in a user-centered frame so that the operator can move his hand forward
and backward relative to his body regardless of possible body motion. In this case, only

2

the hand motion with respect to the body is measured by the camera system.
We propose a system that avoids taking the operator’s position into account. Our

system recognizes the position and orientation of the feature frame regardless of the
position of the operator. For this we use the multiple view affine invariance theory. The
position and orientation of the feature frame is evaluated with respect to its previous
configuration. The position of the balls is calculated as invariant coordinates in the
coordinate system with the three basis vectors defined by the four points. For this we
evaluate the position of the feature frame with respect to its position in the previous frame
which allows evaluation of an incremental motion that can be directly mapped to the tool
frame of the slave arm. The operator can control the slave arm by moving the feature
frame regardless of the position of his body. This approach needs no camera calibration
because the camera parameters do not affect the affine invariance feature.
This system is based on robust boundary detection, fast tracking strategy, and a

simple mechanism for partial occlusion. The center of gravity of each ball should be
computed precisely. The color information is useful to improve discrimination and to
enable the use of a wide range of color selection compared to the gray image based
techniques. In the computer vision, the detection of a colored object is known to play
essential role in extracting specific information from the scene therefore we have selected
the RGB color space for the image processing and color detection. Ideally an increase
in the communication delay is translated by a graceful degradation in the task execution
time, i.e. resilient system. For this the control strategy is based on a coarse-control of the
slave arm which leads the operator to assign a coarse-trajectory to the slave arm leaving
the generation and fine trajectory control to a local slave controller.
This paper is organized as follows. Section 2 presents some background on the color

spaces. Section 3 presents a metric to measure color matching. Section 4 presents our
tracking algorithm. Section 5 presents the 3D position matching module. Section 6
presents the evaluation. Section 7 concludes this work.

2 Background

Due to the structure of human eye all colors are seen as variable combination of the three
primary colors: Red, Green, and Blue. There are different format for colors in video
cameras, such as YUV, HIS, etc. We have used the 24 bits RGB format in which each
color is assigned one byte. Ideally any primary color like red, green, or blue should consist
of one component only. In practice the colors that appear in different images taken by
different cameras are not stable under different conditions. For example, a horizontal
scan of a red ball with white background produces the RGB shown in Figure 1. The
middle part (ball) of the figure indicate that there are some components for the green
and blue that cannot be omitted for a specific red color. There are various reasons for
the problem of variation in the values of RGB components, like light reflection, color
saturation, camera sensitivity and configuration, external noise,..etc.
Besides the RGB color space, there are some other 3D color coding, like YUV, YCBCR,

HIS, etc., but in general use of the above coding other than RGB in converting from one
coding to another increases the processing delays. For a high-speed image application with
real-time control, the extra computational overhead and delay may not be acceptable.

3

)(1 tX)(2 tX

)(3 tX

)(0 tX

)1(3 +tX

)1(2 +tX

)1(0 +tX

)1(1 +tX

�����
��� ��	�
��	�����	��

����� � ������� ���
��� ������� � �
! "�# $%� ��&�'�(���)

*,+-�/.�� 0�� � ���
&���1(�� ���32 ���
45�6��� (�� (��
13��� &�'�� ��0��� 0�� � ����&���1(�� ���

2 ������� (�� (��7�� ��� ���

8%9;:<9>= ? �(��'�@�� � (�� � ��0
2 ������� (�� (��
7�� ��� ���

A�B�CED F B�G

��
5H�
JIK��	�����	��

��� ��	�
L�ME� 	�NOI

P�Q5R�Q�S<T�U�V W�X�SY�S�W�P�W�QZ\[JS�T�]�V X�^_�T�` a�bEc�d�_�T�` e

$�fhg���� �
i�(���� @�� (
i�� ��1(/���
� � 13(������.

�kj�l

i�� ��1(/��(�(��
m� /� � 0�'��
&���1(�� �

i�� ��1(/��(�(��
m� /� (�2 �
&���1(�� �

n3oqp oqrh9q:<9>=ts uwv6p s oqxy={z�|/oqrk}5o;rE~��h�>��8%9q:�9>=�|/oqrk}<oqr;�Ep o<� =k��s ��u59qxy=trk9;p p o<��:5����8%9;:<9>=�v6p s oqxy=��ErEs �;�>= �3=��<�K=��qo>=�o�u\= ��9q�<oqrh�>=�9qr;���qx5�
� 9K=�s 9;x��qx<���<oqx<��=�9��5o;rk}5o;rE�<�qx5���E:y����s �qoq9�|/oqrk}<oqr3�hp o<� =k����rh9<}�s �qo<���\=trho�� � s x5��9<���y=�oqrho�9�s � �<�qo<��={9�9q�<o;rk�K={9qr3�5��s x5��o<�<o
�����y= =�oqrEs x5���;p �<�5�5o��q��n�<o�rh9q:<9>=�u5p s oqxy=��<�5o���~<���\�3= ��9�u5� � oqrh�<��=�9 � 9;x�s =�9qrK=t�<o � 9K=�s 9;x�9��q���ho��>=t��rho��hrh� � o��<oqp ��:5��=���o
9q�<oqrh�>=�9qr��5�qx5���k�K���q ¡��� �Es x<o�s x5}<�qrEs �qxy=��y={o;rkoq9 � �>=�u<��s x5�¢=�9�s �qoqxy=ts �k�w�ho��>=��qrho��Erh� � o � 9>=ts 9qxq�

Figure 1: The RGB for a scan of a red ball with white background

Therefore, processing such as edge detection based on the raw RGB coordinates will have
an advantage. The existence of a color edge implies changes in terms of chromaticity or
luminance or both. However monochrome (i.e. gray scale) edges only take into account
changes in luminance. Therefore, the edges detected in a monochrome image may not
correspond to the set of edges existing in a color image, because of regions that are
indistinguishable in terms of their luminance but differ in terms of their chromaticity or
vice versa. In the past, edge features were generally obtained by applying special filters
and gradient operators to gray level images with the aim of minimizing false detection and
enhancing the noise rejection capability. The use of color information has been suggested
and proved to perform better than techniques that operate on gray image alone.
Our approach is based on using two digital cameras tracking a feature frame that

consists of four balls (red, green, blue, and yellow) located at the edges of three ortho
normal vectors. The objective is to accurately evaluate the 3D position of the above
moving frame, that is due to operator hand, and to assign the identified motion to a slave
robot in an attempt to create a mechanism that replicates the operator hand motion.
The vision system has the following components: (1) a metric to measure color matching
(Section 3), (2) a tracking algorithm running on two computers where each computer
is interfaced to a digital camera (Section 4), (3) each computer tracking the motion of
the feature frame, with respect to each camera, determines the coordinate of each ball,
and (4) a stereo matching approach used to compute the 3D position of each ball which
enables finding the position and orientation of the feature frame Section 5.
The tracking algorithm tracks the ball motion, carry out color edge detection by using

a color matching function , and evaluate the coordinate of ball centers by using the 2D
images captured by the digital cameras. One computer collects the ball positions from the
other computer prior to running the 3D stereo matching module. The stereo matching
module evaluates the 3D position and orientation of the feature frame based on the ball

4

Figure 2: The RGB for a scan of a red ball with white background

positions provided by each tracking algorithm running on a computer-camera subsystem.
The operator interface allows carrying out supervised learning of color features for each
ball prior to running of the tracking system. It also displays (1) the current feature frame
image with pointers to detected positions, (2) the RGB plot along a horizontal or vertical
scan of a ball, (3) the color information, and (4) the 3D position and orientation of feature
frame. In Section 6 we present performance evaluation of (1) ball position tracking and
associated errors under static and dynamic conditions for each camera, and (2) stereo
tracking of the feature frame position and associated errors under static and dynamic
conditions.

3 A metric to measure color matching

Every pixel on the image is represented by three bytes, which means that every primary
component will be stored as a byte of information. This property of the RGB color space
help us to explore the color features, and consequently to detect them.
A color pixel p is represented by its RGB components p = (c1, c2, c3), where c1, c2,

and c3 are the luminance of the red, green and blue of the RGB components. Although
each of R, G, and B is represented by one byte (256 levels) we assume normalized RGB
components, i.e. 0 ≤ cj ≤ 1 for j = 1, 2, or 3. For example the horizontal scan of a red
ball with white background shown in Figure 2 produces an RGB plot versus the pixel
location. Note that the white background has similar c1 component to the red ball which
has non-zero c2 (green) and c3 (blue) components. In this case, the red ball can mainly be
discriminated from its background based on its c2 and c3 components. A black background
significantly reduces the c1 components which improve the discrimination with red ball
but the c2 and c3 components are still present as shown in Figure 3.
A monochromatic color has only one luminance component. A reference color i is

represented by its reference RGB parameters (ci
1, c

i
2, c

i
3). We define a function Vi(p) to

measure how close a color pixel p = (c1, c2, c3) is to a reference color i, where 1 ≤ i ≤ 6.
The reference color i can be a monochromatic color (one color) like the red, green, or blue

5

Figure 3: The RGB for a scan of a red ball with black background

or a combination of two colors like the red-green, red-blue, or green-blue. We define a
color luminance function Vi(p) as follows:

Vi(p) =
1

3
w(p) +

1

3

{

2ci − 1 for 1 ≤ i ≤ 3 (one color)
∑

3

j=1,j 6=k(2cj − 1) for 4 ≤ i ≤ 6 (two colors)
(1)

where w =
∑

3

i=1(1 − ci). Note that use of normalized color components leads to
0 ≤ Vi(p) ≤ 1. Using Equation 1, for each ball of the feature frame we define a set of four
colors for which Vi(p) is given by the expressions:

Vi(p) =
1

3

c1 + (1− c2) + (1− c3) for the primary red color (i = 1)
(1− c1) + c2 + (1− c3) for the primary green color (i = 2)
(1− c1) + (1− c2) + c3 for the primary blue color (i = 3)
c1 + c2 + (1− c3) for the red-green (i = 4)
c1 + c3 + (1− c2) for the red-blue (i = 4)
c2 + c3 + (1− c1) for the green-blue (i = 4)

(2)

The first three colors (1 ≤ i ≤ 3) are being the primary RGB colors which are the
red, green, and blue. The function Vi(p) is maximum if p has full component ci = 1
on a primary color i and zero component on the remaining two. The complement of
component ci is being 1− ci for normalized references but in practice each primary color
component occupies one byte, i.e. 256 levels. The last three colors (4 ≤ i ≤ 6) represent
any combination of two primary colors such as the red-green, red-blue, and green-blue.
In this case the function Vi(p) is maximal if p has full component on two primary colors
and zero component of the third color. Currently we are using four balls colored with red
(i = 1), green (i = 2), blue (i = 3), and yellow (i = 4).
Function Vi(p) represents the luminance of primary color i at pixel p. Other functions

can also be used. Another implementation [13] is Vi(p) = 1 −
∏

3

j=1(cj − cij)
2, where cj

6

Figure 4: Metric functions for a scan of red ball with white background

and ci
j are the jth measured and referenced components of color i, respectively. In this

case Vi(p) will be maximal if at least one measured component matches the corresponding
reference color of the same component. For example, the best combination of red color
is r1 = 1 (red), r2 = 0 (green), and r3 = 0 (blue) which gives V1(p) = 1. Our luminance
function (Eq. 2) equally accounts for the accumulation of color matching over all the RGB
components.
The function Vi(p) measures the similarity between a color pixel p and a single or

combined primary color. Ideal colors are difficult to design. In addition they may have
different values for their primary components under different conditions of lighting and
image quality. This explains the need to use the RGB components of a reference color,
like those of a selected colored ball, as reference parameters. These references are useful
for matching with those of a color pixel to prevent the detection of color pixels having
high Vi(p) values when the searched ball is occluded or out of range. Notice that with a
black background the c2 and c3 components are similar to those of the red ball. In the
case of black background 3 there is a good preservation of relative composition of the
RGB components as compared to the case of the white background 1. The selection of
threshold value for Vi(p) is not governed by any rule and can be affected by the changes
in the image and lighting conditions. This shows that the color luminance function Vi(p)
may lead to processing of many exceptions derived from detection errors.
Another metric to measure the color matching can be selected as the normalized

distance D(p, pi
ref) between the a reference color p

i
ref = (c

i
1, c

i
2, c

i
3) and a given color pixel

p = (c1, c2, c3). The normalized distance color matching is defined as:

D(p, pi
ref) =

1

3

3
∑

j=1

(cj − cij)
2

1/2

(3)

The distance depends on the feature parameters of a specific reference color which

7

Figure 5: Metric functions for a scan of red ball with black background

are generally determined during the supervised learning period and can be dynamically
updated at run time if the referenced ball is detected with high confidence. Although
the distance metric gives useful results in general it may fail because many sporadic
scene pixels may have components that are quite similar to those of the reference. This
situations can occur under poor lighting conditions or in noisy environment. Then the
detection of the correct color in a narrow range will be more difficult. For the above
reasons the distance matching may sometimes give poor results. The objective is to have
one single metric that maximizes the discrimination of ball colors from a wide spectrum of
realistic background colors. One approach to preserve benefits of both distance matching
D(p, pi

ref) and color luminance function Vi(p), is to combine them into one single color
matching function M(p, pi

ref) defined by:

M(p, pi
ref) = Vi(p)−D(p, pi

ref) (4)

where the subscript i denotes the color of one of the four balls and pi
ref represents its

normalized RGB reference parameters. The color matching function satisfies −1 ≤
M(p, pi

ref) ≤ +1 which gives 1 and −1 for a maximally and a minimally matched color
pixel, respectively. Figures 4 and 5 show the plot of functions V (p), D(p, x), M(p, x)
where p is pixel position and x is the reference to the red color. Both plots show that
M(p, x) maximizes discrimination between the red ball and its background as compared
each of V (p) and D(p, x).
This approach enables the use of realistic colored balls while providing good color dis-

crimination if the selected colors are as close as possible to the primary RGB components.
The color discrimination is improved compared using either of the above metrics. The
color luminance function Vi(p) contributes in improving discrimination in poor lighting
conditions and under noisy background. For this, we use the color matching function
M(p, pi

ref) in the remainder of this paper as the main technique for color detection and
matching.

8

1

2 2

22

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

Red

Green

Blue

Yallow

(a) The four-ball feature frame

Initial Step 1 2 3 4

(c) The first 4 steps of Spiral Search

(b) The distribution of visited pixels for
the first four steps of the Uniform Search:
 1 pixel in step 1, 4 pixels in step 2, 16
pixels in step 3, 32 pixels in step 4, etc.

C

Dx

Y

X

DE

D

CX
~

True
center
CX

Returned
center

DE- 0.5DX

(d) Computing center of partially occluded ball

Figure 6: Feature frame, Uniform and Spiral search, and the case of occlusion

4 The tracking algorithm

In this section we first present the color matching function, then our tracking algorithm
that monitor the position and orientation of the feature frame. A too small search area
may lead to missing the searched object. A too large search area leads to slowing down
the tracking algorithm. For this we use a uniform and a spiral searching techniques
(Section 4.1) with backtracking to minimize the number of visited pixels while covering
a relatively large area. This algorithm allows tracking the motion of the feature frame
by identifying its instantaneous position and orientation (Section 4.3). For this each
camera tracks the feature frame, shown in Figure 6-(a), and identifies the coordinates of
each ball with respect to its camera frame. Using information from both cameras the
3D position and orientation of the feature frame can then be evaluated. The metric for
color matching (Section 3) allows boundary detection of each ball which enables finding
its position in the camera frame. The algorithm also handles the case of partial or total
occlusion (Section 4.4) among the balls and determines reasonable solution for each case.
To consolidate the detection our algorithm validates the detected balls through shape and
geometric matching 4.5 prior to dynamically updating the ball reference colors.
The tracking mode represent the normal operation, where all the balls were detected

successfully in the previous frame. The flow chart of the tracking algorithm is shown in
Figure 7 which describes the algorithm structure and its major functions. In this mode,
different approaches are used to assist tracking the ball and to measure the center and
the diameter of each ball. In the following, we present the major functions of the tracking
algorithm.

4.1 Supervised learning of colors

The RGB components of a given color depend on the environment lighting and surround-
ing light reflection. Since the proposed approach is based on tracking a set of colored
balls we need to initialize the reference RGB for a given background. Supervised learn-
ing allows finding the typical RGB parameters for each color ball. For this the operator

9

Uniform Search centered at
 the expected ball center

BALL COLOR IS
 DETECTED?

Spiral Search In a box
of 3x3 the diameter

N

ENOUGH COLOR
 PIXELS?

N

FOUR BALLS
DETECTED?

Y

Apply the two validation rules:
 (1) Shape matching
 (2) Geometric matching

BOTH RULES
 SATISFIED?

Update the ball reference
paremeters (each color)

N

Predict a new position for
 each ball

READ THE BALL CENTER COORDINATES
 FROM EACH CAMERA

USING CAMERA COORDINATES COMPUTE
 3D COORDINATES FOR EACH BALL

COMPUTE 3D INCEMENTAL POSITION AND
 ORIENTATION OF FEATURE FRAME

RESTART

Compute Ball center
using boundary pixels

DISTANCE BELOW
SUM OF DIAMETERS?

Partial or total
 occluding
Find corrected
 center

START

Figure 7: Flow chart of the tracking algorithm and its major functions.

uses the mouse to point to each ball in the continuously refreshed computer image of the
feature frame. The computer scans a small horizontal line centered at pointed location
and having as many pixels as 3 times the ball diameter. The reference RGB parameters
for each color are determined using its histogram which allows clustering the color pixel
population against the immediate neighborhood of the ball. The display of horizontal
scans over the selected ball allows checking the retained parameters and the detection
borders.

4.2 Boundary detection and searching area limits

We noticed that a fast refresh rate with relatively simple tracking algorithm, of the feature
frame, and a narrower searching area is more effective than a slower algorithm with wider
search. One of the main issue is the processing and memory access times of a large
number of pixels associated with the use of commercial processors. A slow refresh rate
constrains the speed of operator hand in addition to increasing the probability of exception
occurrence for which one of balls is not detected and a costly search of a wider image area

10

becomes the only solution. For this an effective position prediction of the feature frame
combined with a narrower searching area makes faster memory access time of cached data
for two reasons. First, we only need to process a small volume of data associated with
fast memory access because the locality of the searching area is easily captured in the
processor cache memory, i.e. better re-use of cache data. For this we search a square
area centered at a point that is linearly predicted based on the previous positions of each
ball in each camera frame. Second, given the refresh frequency of the tracking mode it is
found that the side of the searching area needs not to exceed three times the most recent
diameter of the corresponding ball. For boundary detection, the use of the color matching
function M(p, pi

ref) for a scene color pixel p enables matching to the ith ball reference
color pi

ref whenever the following condition is met:

M(p, pi
ref) ≥M(pbkg, p

i
ref) + α× (M(ptyp−i, p

i
ref)−M(pbkg, p

i
ref)) (5)

where M(pbkg, p
i
ref) and M(ptyp−i, p

i
ref) is the color metric value at a neighboring

background pixel pbkg and at a typical ball pixel ptyp−i both taken from the previous
tracking iteration, and α is a constant satisfying 0 < α ≤ 1. At initialization we may
set α = 0.5 but its values may be raised to filter similar color pixels when the number of
detected color pixels is not enough (Figure 7) in the neighborhood of currently detected
“ball”. Note that pi

ref is a reference for the ith color (ball) that is determined from (1)
the supervised learning phase, or (2) the most recent validation and reference update.
Note that the right hand side of Equation 5 is recomputed following each successful ball
detection.
To minimize the search time, the search of a ball within a predicted area is based

on alternating between a uniform search (US) and a spiral-shaped (SS) search within the
searched area as shown in Figure 6-(b) and (c), respectively. Initially, no information is
available and US is started. When one pixel matches the searched color we switch to SS
and search around the detected pixel and continues until complete detection of the ball or
abandon the SS search if enough inconsistent evidences are accumulated. An inconsistent
ball detection occurs when the number of matched pixels is a small fraction of the total
number of visited pixels by the SS search. The algorithm backtracks to the US search, at
the previous state, when the SS search is abandoned. However, if the predicted area is
visited without detecting the ball the algorithm restarts with a larger search area. Note
that the coordinate of each searched pixel that meets the condition stated in Equation 5
will be considered in the evaluation of the ball gravity center in a later step.
The SS search is based on a 2D square-shaped spiral algorithm that starts at a pre-

dicted pixel. The algorithm is based on repeatedly alternating the direction while moving
in a bi-cyclic fashion over an increasing number of pixels. The direction of motion is fixed
for n pixels. In each step the spiral is created by scanning n pixels along a given direction,
i.e. the row or the column. Next the motion direction is rotated by π/2 in the plan and
another set of n pixels is scanned in the new direction. The next step starts after incre-
menting n. A segment size of n pixels indicates that the total number of scanned pixels
is n(n+ 1) + 1. Thus the spiral search is ended when the total number of scanned pixels
exceeds a square whose side is three times the most recent value of the ball diameter (d
in pixels). In other words search is ended when n(n+ 1) + 1 exceeds 9× d2.
The US search consists of uniformly carrying out color matching within a rectangular

area (RA) Lx×Ly, where Lx and Ly represent the length and the width. This procedure

11

Figure 8: Luminance, distance, and matching functions for a red ball with a reflection
area

allows computing the matching function over a set of 2k uniformly distributed locations
(boxes) within RA after k iterations. In each iteration, RA is partitioned into a number
of equally sized boxes and the matching function is computed at the center of each box.
At start we initialize the box size to that of RA. In each iteration the box is divided into
4 smaller boxes. If there is a match the ball is detected and we abandon the US search.
Otherwise, the algorithm continues after subdividing the box size. In each iteration the
number of visited points is four times that of the previous iteration. Thus after the kth
iteration the algorithm has visited a total of

∑i=k
i=0 4

i uniformly distributed pixels within
the predicted search area. The search is ended if the box size becomes smaller than half
the expected diameter of the searched ball. In this case the searched ball is not present
in RA and a global search must be activated like at the initialization.

4.3 Computing the coordinate of ball center

The search is successfully completed when each ball is detected in the predicted area. The
ball is generally subject to many sources of noise like the light reflection which produces
white regions within the ball boundary as shown in 8. During the spiral search procedure,
in each row i we only record the detected edge pixels located at the most left (jmin) and
most right (jmax) positions of a given row that intersects the outer corona of the ball.
The edge pixels represent the ball boundary pixels with the background. To significantly
reduce the effects of the potential of white regions only the edge pixels contribute in the
evaluation of the ball center coordinates. The center of each row is computed using the
edge pixels with the assumption that all the pixels between the two edges are matched to
the ball color. With this approach the coordinates of the row center (ir, jr) are computed

12

by averaging the coordinates of Nr = (jmax − jmin + 1) pixels within edges (i, jmin) and
(i, jmax). This simplifies to:

(ir, jr) =

(

i,
jmax × (jmax + 1)− jmin × (jmin + 1)

2(jmax − jmin + 1)

)

(6)

The matched rows contribute to the evaluation of the ball center by summing up the
row center coordinates (ir, jr) with Nr being their weight. Note that the true metric of the
ball diameter D need not be identified. The largest value of Nr (in pixels) for a given ball
is considered as the current ball diameter. We also count the total number of matched
pixels for a given ball that is used later as an indicator of the detected ball area. This is
useful for validating or invalidating the ball shape.

4.4 Partial and total occlusion

Partial and total occlusion may occur among the balls for each camera. The strategy is
to monitor the distance between the ball centers and detect a partial occlusion situation
which implies that the computation of ball center must be modified to account for the
hidden part.
As shown in Figure 6-(d), given two Balls X and Y , the technique of computing the

coordinate of the ball center by using Equation 6 is valid when the distance d(X,Y)
between the identified centers of two balls (Cx) and (Cy) exceeds (Dx + Dy)/2, where
(Dx) and (Dy) are the most recently evaluated values of the diameter just before the
detection of the partial occlusion situation. Otherwise, a ball is considered under partial
occlusion due to another. The former ball (X) is identified by comparing the values of
its currently computed diameter Dx and area Ax to previously stored values of the same
parameters that were evaluated in the most recent pass without partial occlusion for each
ball. The later ball is fully visible and its computed center (C) and diameter (D) are
valid. Since ball X is detected under partial occlusion the above algorithm returns (C̃X)
as its center. However the true center (CX) must be located on the direction U of the

unit vector C̃X−C
|C̃X−C|

. For ball X, let’s assume (DE) is the computed distance between the

edge pixels along the direction U . Then CX is just D/2 + (DE −DX/2) away from C on
the direction U . The center CX can be evaluated by using the following vector equation:

CX = C +
C̃X − C

|C̃X − C|
(DE + 0.5(D −DX)) (7)

Note that if |C̃X − C| becomes very small we may assume that CX = C where ball X is
partially or totally occluded.

4.5 Validation rules

The RGB references of the ball may change depending on the location of the feature
frame. For this we need to update the color references if there is enough confidence in
detection of all the balls in the current tracking iteration. The confidence function used
here consists of meeting two validation rules [14] for each camera frame which are: (1)
the shape matching, and (2) the geometric matching. The confidence function provides a

13

quantitative measure of the degree of matching of currently detected “balls” with those of
the feature frame through matching of the circular shape and the relative positioning of
the balls with respect to each other. In this way we avoid a false update of RGB references
based on false detection.
The shape matching measures, for each camera, how circular are the balls that are

detected without partial occlusion. In this case the ratio of ball area (in pixels) to the
to the square of the current ball diameter (d in pixels) must be close to π/4. To avoid
degradation due to the digitization effect this rule can only be used when d is large enough.
The geometric matching consists of matching the currently detected position of each

ball with respect to each other ball to that of the same ball in a scene obtained by
extrapolating the previously identified 3D feature frame. In each camera frame, the ex-
pected position of the ball center is evaluated by (1) extrapolating its previously detected
3D position, and (2) projecting the expected position over each camera frame. Denote
by X(t + 1) the expected 3D position of a ball center with respect to the previously
detected feature frame R(t). R(t) is defined by its origin X0(t) and its orthonormal
vectors Ei(t), where 1 ≤ i ≤ 3. In 3D the ball center vector X(t + 1) is defined by
X(t + 1) = X0(t) +

∑

3

i=1 αi × Ei(t), where αi, for 1 ≤ i ≤ 3, is the ith component of
point X(t + 1) over R(t). The affine invariant projections of X(t + 1) over R(t) allow
writing x(t + 1) = x0(t) +

∑

3

i=1 αi × ei(t), where x(t + 1), x0(t), ei(t) are 2 × 1 vectors
that represent the projections of X(t+ 1), X0(t), and Ei(t) over the camera frame.
The function d(xk, yl) represents the distance between the ball centers xk and yl as

measured by the tracking algorithm in a camera frame. Using the predicted feature
frame and its projection in each camera frame we compute the distance d(x∗k, y

∗
l) for the

expected ball centers x∗k and y
∗
l . A relative distance error d(Measured, Predicted) that

accumulates the mismatches between all pairs of distance errors:

d(Measured, Predicted) =
3
∑

k

3
∑

l

|d(xk, yl)− d(x∗k, y
∗
l)|

Min{d(xk, yl), d(x∗k, y
∗
l)}

(8)

where Min(., .) is used to normalize the distance error. A small value of d(Measured,
Predicted) indicates that the current geometric distribution of the balls with respect to
each other in the current scene is similar to that of a predicted scene.

5 The 3D position matching module

The camera model is based on weak perspective projection. Since the dimension of the
balls is a small fraction of the distance between the camera and the ball the weak per-
spective projection can be considered as a valid approximation of the general projective
transformation. This approach uses uncalibrated stereo vision based multiple views gen-
erated by two cameras which enable computing the 3D invariant position of a point with
respect to our four-ball feature frame. This approach needs no camera calibration nor
knowledge of camera position because the multiple view invariants are independent from
the camera parameters. Therefore the cameras can be set in an arbitrary position or even
moved to keep centered on the observed feature frame.
Here, we compute the position and orientation of the 3D object from the two images

captured simultaneously by the two digital cameras. There are six parameters, three for

14

)(1 tX)(2 tX

)(3 tX

)(0 tX

)1(3 +tX

)1(2 +tX

)1(0 +tX

)1(1 +tX £ ¤E¥¦h§k¨ © § ¨

ª{«k¨ ¬ «k® ¯ ° ±²�¬ ³ ´ ° ¨ ¬ ¯ µ¶ ·k¸ ¹�¬ ® º » § ³ ¼ ¹ ½ ¾k°k± ±¿ § ° ¯ À ¨ §¿ ¨ ° Á�§Â Ã Ä Å Æ Ç È ÅÉ Æ Ê Ë

²�¬ Ìk¬ ¯ ° ± º °kÁ�§ ¨ ° ³Í « ¨ Î ²�³ ¯ §k¨ § «Á�° ¯ º » ¬ ® Ì²�¬ Ìk¬ ¯ ° ±º ° Á�§ ¨ ° ³tÍ « ¨³ ¯ §k¨ § «Ï© ¬ ³ ¬ « ®

Ðkµ §³ » À ¯ ¯ §k¨ ¬ ® ÌÏÍ « ¨³ ¯ § ¨ § «Ï© ¬ ³ ¬ «k®
Ñ�« ® ¬ ¯ « ¨Òt± ¬ § ® ¯ÓKÔJÕ�Ô�Ö

×OØyÙ\Ú,× Ö Û,Ü Ú;Ý Ü ×�Þ3Ú× Ö,Ö ß Þ;Ú,à Ö ×�á�â Ö ã\ä à�Ú,ÚJá Õ�å
æ�×�Þ�Ú Ü × ä ×�á�â�æ�×�Þ-Ú Ü ×�ç3Ý Ü ×�Þ3Ú Ô Ý Ü ÚOÝ Ú Ü Ú�á�æ�ÚOàJè

Õ Ø5é�ê ß Ú�á Öyß á�æOê Û â ß áOë�æ�×�Þ�Ú Ü ×�Ý Ô�ÜJìJí Þ3× Ö æOî ß á�ë/×�á�â�Ú å Ú3à,î ÛÏÖ Ö Ú Ü ß áOë
×Oà�ï3Ú�ê êÏ×Oà�à�Ú Ü ð Ú Ü�ß á�æOê Û â ß á�ë�æ�×�Þ3Ú Ü ×Oà�Ý Ô�Ü à Ö Ú Ü Ú Ô�ð,ß à ß Ô áJè

Figure 9: Feature frame update and overall client-server system

position and three for orientation. Our main objective is to enable the human operator
to move the robot arm by moving the feature frame. We have used a set of four colored
balls: red, green, blue and yellow. The red ball is at the origin of that structure as shown
in Figure 6-(a). The algorithm gives the 3D position of the object with respect to the
initial coordinate system composed of the basis vectors.

5.1 The affine invariants from multiple views

We use multiple views generated by two uncalibrated cameras to compute the 3D invariant
position of a small ball. For this we define a 3D frame of reference R formed by three
mutually orthonomal axes using basis vectors {Ei : 1 ≤ i ≤ 3} and origin O. We assume
frame R is observed with respect to a fixed frame R0. The mapping of R to our feature
frame is as follows: (1) the origin O of R is the position X0 of red ball center, (2) the
position of the edge of each basis vector Ei, for 1 ≤ i ≤ 3, is the center Xi of the green
(i = 1), blue (i = 2), and yellow (i = 3) balls, respectively. In other words, if Xi is being
the 3D coordinates of the ith ball the basis vector Ei can then be evaluated as:

Ei =
Xi −X0

‖Xi −X0‖
1

2

(9)

The position and orientation of frame R can be determined at time t by using the 3D
coordinates of each ball. This gives R(t) = {X0(t), Ei(t) : 1 ≤ i ≤ 3}. At time t + 1
frame R moves (operator) to a new position and orientation defined by R(t+ 1) which is
observed with respect to the previously identified frame R(t). The position of X(t + 1)
of a ball center of R(t+ 1) becomes:

X(t+ 1) = X0(t) +
3
∑

i=1

αi × Ei(t) (10)

where αi is being the ith components of a ball of frame R(t + 1) that is observed with
respect to R(t) as shown on Figure 9 -(a). Parameters αi, for 1 ≤ i ≤ 3, are also the affine
invariant projections of edge X(t+ 1) over the basis vectors of R(t). In other words, the
coordinates of the same ball of R(t + 1), with respect to R(t), in the 2D frame of first
camera are given by:

15

(

x1

y1

)

=

(

x1
0

y1
0

)

+

(

e1
1,1(t) e1

2,1(t) e1
3,1(t)

e1
1,2(t) e1

2,2(t) e1
3,2(t)

)

.

α1

α2

α3

 (11)

where (x1, y1)t, (x1
0, y

1
0)

t, (e1
1,1(t), e

1
1,2(t)), (e

1
2,1(t), e

1
2,2(t)), and (e

1
3,1(t), e

1
3,2(t)) are the pro-

jections on first camera (superscipt) of X(t + 1), X0(t), E1(t), E2(t), and E3(t), respec-
tively. This means that we can derive two equations with three unknowns for any point
location in a single 2D camera frame. The problem of finding αi is under-determined.
A second view with known correspondence to the first view can, however, give an over-
determined set of equations. Cameras frames are shown in Figure 9 -(a). Thus we have
four equations with three unknowns. In matrix notation we have:

X =M.α (12)

where M ia a matrix formed by the projections E1(t), E2(t), and E3(t) over the first
(upper two rows) and second camera (lower two rows), respectively. We have:

x1
0

y1
0

x2
0

y2
0

=

e1
1,1(t) e1

2,1(t) e1
3,1(t)

e1
1,2(t) e1

2,2(t) e1
3,2(t)

e2
1,1(t) e2

2,1(t) e2
3,1(t)

e2
1,2(t) e2

2,2(t) e2
3,2(t)

.

α1

α2

α3

 (13)

The least squares solution α̂ is given by:

α̂ = (M tM)−1M tX (14)

Thus α̂ provides an estimate of the 3D position of any given ball. We may obtain
an estimate of the 3D position for each of the four balls that represent the feature frame
R(t+1) by simply repeating the computation of Equation 14 for each ball. Therefore the
position of the feature frame R(t+ 1) can be fully identified by the position of its origin
X0(t + 1) and its orientation matrix Φ(t + 1) = {E1(t + 1), E2(t + 1), E3(t + 1)} which
is derived from Equation 9. Both X0(t + 1) and Φ represent differential information on
position and orientation of hand motion because they measure changes with respect to
previous frame R(t).
In addition to 3D position information, we can obtain 3D orientation matrix R3×3

information based on the 3D position information as following:

R33 =

1

l1
0 0

0 1

l2
0

0 0 1

l3

 .

xg − xr xb − xr xw − xr

yg − yr yb − yr yw − yr

zg − zr zb − zr zw − zr

 (15)

In teleoperation a master arm is used to continuously measure increments in oper-
ator hand position ∆Xh = X+

h − Xh and hand frame orientation φ = M−1

h M+

h , where
(Xh,Mh) and (X

+

h ,M
+

h) represent the previous and current operator hand frame position
and orientation, respectively. In order for φ =M−1

h M+

h to produce correct results we must
ensure that the column vectors of orientation matrix Mh = [E1, E1, E1] are normalized
and orthogonal before computation of φ. For this we need to guarantee that the identified
feature frame has normalized orthogonal vectors.

16

We used Gram-Schmidt orthogonalization process to produce an orthogonal set of
function from the set we have computed. The Gram-Schmidt process for computing an
orthonormal basis T = {Z1, Z2, .., Zm} for a m dimensional subspace W of Rn with basis
S = {X1, X2, ..., Xm} through the following steps. In Step 1, we Let Y1 = X1. In Step 2,
we Compute the vectors Y2, Y3, ...Ym successively, one at a time, as follows:

Yi = Xi − (
Xi.Y1

Y1.Y1

).Y1 − (
Xi.Y2

Y2.Y2

).Y2 − ...− (
Xi.Yi−1

Yi−1.Yi−1

).Yi−1 (16)

Note that the set of vectors T ∗ = {Y1, Y2, ...Ym} is an orthogonal set. In Step 3, we
Let

Zi =
Yi

‖Yi‖
, 1 ≤ i ≤ m (17)

Then T = {Z1, Z2,, Zm} is an orthonormal basis for subspace W.

6 Performance evaluation

Our telerobotic system consists of a master station (client) and a slave robot station
(server) which are interconnected through a 100 Mbps Ethernet LAN. Both client and
server programs use TCP/IP sockets to provide the required real-time connectivity through
the LAN. Figure 9-(b) presents the overall telerobotic system.

6.1 Real-time stereo vision using eye shuttering technology

At the server station, two digital cameras (left and right) are set on a common base to
maintain parallel orientation with 6 cm as horizontal disparity. The IEEE 1394 Firewire
adapter is used for camera interfacing. A video stream is created using TCP/IP socket
programming for the real-time transport of the images from the server site to the client
site. To preserve image resolution we used the LAN file sharing service.
The “above below” format maps the left and right images to the upper and lower

halves of the display. The eye shuttering electronics capture the sync signal from the
graphic card, multiplies it by two, and sends the modified signal to the display. This
forces the display to draw first the upper image, then the lower image, and repeat this
process in a loop. When the display is looked by naked eye, one can see two superimposed
images. However, when looked through shuttering glasses, one can see a 3D image. In
fact the shuttering glasses synchronize the opening of left (right) glass and the closure of
right (left) glass at a rate of 150Hz. The synchronization uses embedded wireless infrared
control. Each eye sees an image that is refreshed at a rate of 75Hz which is sufficient to
eliminate possible flickering. This process gives the illusion of 3D vision to the human
brain.

6.2 The weak perspective projection assumption

To study the errors due to weak perspective projection, we performed the following tests.
First, we generated on the computer a test image for a grid consisting of 25 by 25 small

17

squares for which the side of each square is 0.2 inches. We captured pictures of the above
grid using our video camera from varying distances. In all cases, the video camera’s
optical zoom was always enabled. We carried out analysis of errors and distortion effects
on the the resulting images for the following two cases.
In the first case, the camera orientation vector is set perpendicular to the grid plan,

and passes through the grid center. We observed that, the square sides appear as curved
instead of straight lines. For a distance d = 10 inches from the video camera to the
grid the maximum distortion due to curved square side is about 2% of the side length.
However, when d = 20 inches or more, the above magnitude of the above nonlinear effects
becomes below the camera resolution.
In the second case, the grid plan is placed in one of the four image quadrants and

the camera orientation vector was set to 45 degrees incidence angle with the grid plan.
Similar to the first case, nonlinear effects were observed. Their error magnitude increases
with a decrease in d. Indeed, it has been observed that the square sides appear slightly
curved and lacking parallelism. For a distance d = 10 inches (d = 40 inches), the angular
error in the orientation of square parallel sides does not exceed 10 degrees (5 degrees).
However, in our operating range of d = 60 inches to 80 inches there were hardly noticeable
or measurable angular deformation using the available camera resolution, i.e. an error
less than 0.1% of the side length.

6.3 Static and dynamic testing

The proposed 3D vision-based man-machine interface is part of the client station that
consists of two PCs connected by using a simple cross-over cable to minimize communi-
cation delays. We use 2 PCs to speedup execution of our tracking algorithm. Each PC
is interfaced to a digital camera using Firewire card. The distance between cameras is 20
inches with near perpendicular camera orientations. Thus the operator hand workspace is
a sphere of 40 inches diameter that is at least 40 inches distant from the cameras to meet
the requirements of the weak perspective camera model. The feature frame held by the
operator hand occupies of 2.43 inches3 and occupies about 1/25th of the camera image.
The PCs synchronize acquisition of two images and computation of ball coordinates.

However, one PC computes the 3D stereo matching after it receives the 2D coordinates of
ball centers from the other PC. At the kth iteration, this gives the 3D incremental change
in the coordinates of the four balls which enables computation of increments in operator
hand frame origin (αk), a 3× 1 vector, and orientation matrix (Φk), a 3× 3 matrix.
The performance of the tracking algorithm is based on (1) evaluation of static and

dynamic positioning errors for each camera, and (2) evaluation of dynamic errors in the
3D transformation.
The measurement of static errors with respect to each camera consists of evaluating

the ball center position in the camera frame versus change in the ball diameter (0.5 inches)
measured in pixels. The ball was set at a distance of 60 inches from the camera. We used
the zoom function to vary the ball diameter in the range of 5 to 65 pixels. For each
camera, the average position error was 3 × 10−4 (0.1 pixels) and its upper bound was
6× 10−4 (0.2 pixels) of the camera range. For example a workspace of 40 inches leads to
a static error of 0.01 inches with an upper bound of 0.025 inches.
The measurement of dynamic errors with respect to one camera consists of evaluating

18

60

80

100

120

140

160

180

200

220

240

100 150 200 250 300 350 400 450 500

Y
 d

ire
ct

io
n

(m
m

)

X direction (mm)

Camera tracking and detection of a circular ball motion

Single circle
Multiple circles

Figure 10: Tracing of the detected motion of a red ball held by a moving robot

the ball position errors in the camera frame while moving the feature frame by the robot
along linear and circular trajectories as shown on Figure 10. The ball diameter was
approximately 0.5 inches or 15 pixels. Our algorithm was implemented on 2 PCs, one
for each camera, and dynamically tracking in parallel the balls. The camera fraplot.psme
acquisition timer is an indicator of the availability of new camera frame and used to
trigger the acquisition and iterative processing of the tracking algorithm. As such a 10
Hz refreshing rate was achieved. For each camera, the average position error was 3×10−3

(1 pixel) and its upper bound was 5× 10−3 (1.6 pixels) of the camera range. For example
a workspace of 40 inches leads to a dynamic error of 0.12 inches with an upper bound of
0.2 inches. The above results are only valid when the ball speed is below 20 inches/s. The
average dynamic errors increase significantly with increase in the ball speed. for example
at a speed of 28 inches/s the average position error becomes 1.2× 10−2 (3 pixels) and its
upper bound was 2.8× 10−2 (7 pixels) of the camera range.
The measurement of dynamic errors consists of computing the affine invariant trans-

formation while moving the feature frame by the robot along a known linear and a circular
3D trajectories. The identified trajectory are shown on Figures 11 and 12. The setting is
similar to the previous experiment. The upper bound on the measured error was a box of
0.243 inches3 in a slave arm workspace of 40 inches3 when the motion speed was at most
20 inches/s and the feature frame was about 40 inches away from the cameras.

6.4 Kinesthetic mapping between master and slave systems

The server station continuously reads the joint position (vector θPuma(t)) of the PUMA
560 slave arm, and computes the slave arm tool position and orientation {Xk,Mk} =
G(θPuma(k)), where Xk and Mk are the slave frame position (3× 1) and orientation ma-
trix (3×3) and G(.) is the direct Kinematic model of the slave arm. We use the Kinematic
model to provide local control of singularities and multiple solutions. Whenever the slave
station receives from the client station a position control packet with (αk,Φk) it (1) com-

19

0

50

100

150

200

−60

−40

−20

0

20
−60

−50

−40

−30

−20

−10

0

X (mm)Y (mm)

Z
(m

m
)

Figure 11: Two cameras tracking of a linear 3D trajectory with single-pass and lines

putes the new slave frame position Xk+1 = Xk + αk and orientation Mk+1 = MkΦk, and
(2) evaluates the slave joint position θPuma(k+1) = G−1(Xk+1,Mk+1) which corresponds
to the desired tool frame, (3) sends to the slave robot the new joint position θPuma(k+1).
The local servo-controller in the slave robot moves the arm from its previous position
θPuma(k) to desired position θPuma(k + 1). Thus the above scheme maps the operator
incremental motion into increments on current slave tool position and orientation. Ide-
ally this results in a slave robot motion that is a replica of the operator hand motion.
The stereo vision allows the operator to see the slave scene and to make the necessary
corrections.
Mainly our system can track the feature frame and calculate its 3D information at

about 9Hz. The main reason for the delay is the time spent for (1) vision data transfer,
(2) the tracking algorithm, and (3) computing the 3D affine invariant transformations.
Figure 13 shows the timing of the various components of the telerobotic system during

a motion controlled by the operator. In this case the robot speed is fixed and the motion
time varies depending on its magnitude.
The delay in the stereo matching algorithm has the following two components. The

delays in grabbing of the data image from a camera and transfer to the PC DRAM is
about 60 ms. The average stereo matching processing time is about 50 ms. Packet
communication delay is about 1-5 ms between client and server. However, the dominant
parts (about 0.2 seconds) are due to the motion of the electro-mechanical robot system.
The peaks shown are due to larger incremental motion done at constant speed.

6.5 Comparison to others

In [8], a gesture interface is proposed for reliable tracking of a pointing hand using an
uncalibrated stereo vision algorithm running on a Sun Sparc workstation. The stereo
hand-eye coordination (closed-loop) converges by a straight-line path to its destination
in 3 or 4 iterations. There are two sources of errors. First, large disturbances to camera
geometry lead curved trajectories. Second, strong perspective is tolerated but requires

20

−100

−50

0

50

100

−150

−100

−50

0

50
−60

−50

−40

−30

−20

−10

0

10

20

X (mm)Y (mm)

Z
(m

m
)

Figure 12: Two cameras tracking of a circular 3D trajectory with multi-passes and lines

changing the loop gain or tuning to finer iterations to avoid overshoot. An error of 0.6
inches (3.7%) is reported in a workspace of 16 inches.
In [10], a human-robot interface based on an interactive hand pointer is studied. By

using a Sun Ultra 5 computer, they estimated various heights in the robotic scene and
compared it to the actual height. They reported about 4% or less errors in height esti-
mation for heights of 2 inches or more in the robotic scene.
In [15], a visual hand posture tracking problem is studied by using a 26-dof model of

the hand. By using a Power Macintosh running at 180MHz, they were able to achieve
a 15 frames per second rate with angular errors of at most 10% between the actual and
reconstructed fingers.
In [11], a vision based human interface system is investigated. Authors used uncali-

brated stereo vision techniques, and reported that the error between the actual nonlinear
camera projection operator and the weak perspective projection operator is small, when
the distance (d) between the camera and the object is large. More precisely, they reported
that the error due to weak perspective projection assumption is about 1.5% of “d” when
“d” is no less than 80 inches.
We proposed a real-time vision-based operator hand tracking system using a hand

held four-ball feature frame. Using digital cameras, the static and dynamic errors of our
tracking algorithm are 0.1% and 0.6% for a centered workspace of 203 inches3 that is 40 to
60 inches distant from cameras. Using commodity PCs our refreshing rate is 9Hz. Due to
the interactive nature of telerobotics absolute accuracy is useful but not critical especially
in pre-positioning situations. However, one alternative to gain accuracy in pre-contact
situations is to scale-down (1-to-1 to 1-to-0.2) the mapping of operator workspace to slave
arm space which improves accuracy in contact phases at the cost of slowing down speed
of teleoperation. To minimize delays Future direction is to overlap in time the tasks
(threads) of grabbing data images (60 ms) and stereo matching (50 ms) which might
significantly increases the refreshing rate. However, overall communication delays are
influenced by network and communication protocols over the LAN or the Internet. These
delays force the operator to use the stop-and-wait strategy in simple manual teleoperation.

21

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600 700

M
ea

su
re

d
D

el
ay

 (m
s)

Experiment Time Window

Delays in client, server, and robot during typical telerobotic session

Client data-packet protocol (57/69 ms)
Inverse geometric transform (10.5/12.6 ms)

Client-Server RDY-ACK (11.2/14.3 ms)
Direct geometric transform (8.8/11.2 ms)
Motion and communication (231/242 ms)

Server latency seen by client (262/280 ms
Client latency seen by Server (205/251 ms)

Figure 13: Delays in Client, Server, and PUMA with slow motion (0.5 mps)

The general consensus to overcome this problem is to raise the level of operator commands
through the use of slave arm automated tasks that are activated and supervised by the
remote operator.

7 Conclusion

In this paper we presented a telerobotic system that consists of a real-time vision-based
tracking algorithm (client) and a slave robot (server) which are interconnected by using
a LAN. The tracking system monitors a feature frame that is held by the operator hand.
The algorithm determines the 3D position of operator hand by using uncalibrated cameras
together with the affine invariant property. The features of the proposed systems are (1)
a metric for color matching to discriminate the balls from their background, (2) uniform
and spiral search approaches to speedup the detection, (3) tracking in the presence of
partial occlusion, (4) consolidate detection by using shape and geometric matching, and
(5) dynamic update of the reference colors. We presented a telerobotic system based on
a complete kinematic mapping from operator hand motion to slave robot joint space. In
the evaluation, the experimental analysis indicated that static and dynamic
errors of tracking algorithm are 0.1% and 0.6% for a centered workspace of
203 inches3 that is 40 to 60 inches distant from cameras. The running of the
tracking algorithm on two PCs in parallel allowed (1) a parallel image grabbing
delay of 60 ms, (2) a stereo matching delay of 50 ms, and (3) a global refresh
rate of 9Hz. Analysis of delays in the proposed telerobotic real-time control
scheme indicated that the dominant delays are due to the mechanical system
and the network.

22

References

[1] T. Kazerooni, H. Tsay and K. Hollerback. A controller design framework for teler-
obotic systems. IEEE Trans. on Contr. Syst. Technol., 1, Mar 1993.

[2] Ajit Shah. Developmnet of a telepresence surgical system. WWW site of Defense
Sciences Office, October 1999.

[3] L. Sooyong, D.-S. Choi, M. Kim, C.-W. Lee, and J.-B. Song. A unified approach to
teleoperation: human and robot interaction. IEEE/RSJ Inter. Conf. on Intelligent
Robots and Systems, 1:261–266, 1998.

[4] S. Lee, S. Ro, J. Park, and C. Lee. ”optimal 3d viewing with adaptive stereo displays:
A case of tilted camera configuration. ICAR ’97, pages 839–844, 1997.

[5] S. Lee, S. Lakshmanan, S. Ro, J. Park, and C. Lee. ”optimal 3d viewing with
adaptive stereo displays for advanced telemanipulation. International Conference on
Intelligent Robots and Systems, pages 1007–1014, 1996.

[6] M. Fukumoto, K. Mase, and Y. Suenaga. Real-time detection of pointing actions
for a glove-free interface. IAPR Workshop on Machine Vision Applications, pages
473–476, 1992.

[7] J. E. Lloyd, J. S. Beis, K. D. Pai, and D. J. Lowe. Model-based telerobotics with
vision. Proc. IEEE Inter. Conf. on Robotics and Auatomation, pages 1297–1304,
1997.

[8] N. J. Hollinghurst and R. Cipolla. Uncalibrated stereo hand-eye coordination. Image
and Vision Computing, 12:187–192, 1994.

[9] R. Cipolla, D.P. Robertson, and N. J. Hollinghurst. Human-robot interface by point-
ing with uncalibrated stereo vision. Proc. IAPR workshop on machine vision appli-
cations MVA’94, pages 171–178, 1994.

[10] S. Sato and S. Sakane. A human-robot interface using an interactive hand pointer
that projects a mark in the real work space. Proc. IEEE Inter. Conf. on Robotics
and Automation, 1:589–595, 2000.

[11] Y. Kuno, M. Sakamoto, K. Sakata, and Y. Shirai. Vision-based human interface with
user-centered frame. Proc. Inter. Conf. IRS’94, 3:2023 –2029, 1994.

[12] Y. Kuno, K. Hayashi, K.H. Jo, and Y. Shirai. Human-robot interface using uncali-
brated stereo vision. IEEE Inter. Conf. on Intelligent Robots and Systems, 1:525–530,
1995.

[13] Y. F. Ho, H. Masuda, H. Oda, and L.W. Stark. Distributed control for tele-
operations. IEEE/ASME Trans. on Mechatronics, 5, No 2:100–109, June 2000.

[14] Mayez Al-Mouhamed. A robust gross-to-fine pattern recognition system. IEEE
Trans. on Industrial Electronics, 48, No. 6:1226–1237, Dec. 2001.

23

[15] F. Lathuiliere and J.-Y. Herve. Visual hand posture tracking in a gripper guiding
application. Proc. IEEE Inter. Conf. on Robotics and Auatomation, 2:1688–1694,
2000.

24

