Parallel implementations for Barnes-Hut algorithm
Anas . Almousa

College of Information and Computer Science Department of computer Engineering
King Fahd University of Petroleum and Minerals
Dhahran 31261, Saudi Arabia
Email: { g200805960}@kfupm.edu.sa

Contents

1. Progress information...........c.cccoevevenieiieene e 1
2. Load balancing information:...........c.cccocevivvieivennnnn. 5
3. Pseudo code for the implementation................c........ 5

1. Progress information

We expanded the algorithm to 3D model. And did measurements for the proportion of
time the algorithm spends in each step:

We found that the dominant operation is the force computation step. Notice that
currently only the force computation step is the parallelized step. Other steps have not
been parallelized or can’t be parallelized. For the parallelized step, we achieved a speedup
of about 7.3 for 8 threads for this step, as seen in Figure 1 belowbelow.

3D Barnes-Hut speedup of force
calculation
8
b=
o
Q Y
£7 '
g
b /
g 6
5] /
1=
[T}
25
s / —4+—OMP 1 Thread
.E 4
E / ——0MP 2 Threads
E 3 OMP 4 Threads
é 2 = = = = OMP 8 Threads
2 . . \ .
21 ¢ % + o
Q
2
] T T 1
6E+04 1E+05 SE+05 1E+06
number of bodies

Figure 1: speedup of the parallelized force calculation step of 3D Barnes-Hut algorithm

Due to the parallelization of only the force calculation time; the above mentioned
speedup will be somehow far from the speedup of total simulation time, which is charted
in Figure 2 below.

Total Simulation time speedup for
different numer of threads and
bodies
45
£ . e
L i
E 2.5 ><"/ —4—10MP Thread
‘é’ 1; B = —u === 2 OMP Threads
b~ 4 OMP Threads
c e e
2 1 ¢ T ¢ T == 8 OMP Threads
= 05
% 0 T T 1
g 6E+04 1E+05 5E405 1E+06
E’_ number of bodies
=3

Figure 2: speedup of total simulation time of 3D Barns-Hut algorithm

This would raise a question of what is the exact proportion of time each step is using.
To sum up the change of proportions of total simulation time, we show a stacked chart that
sums this information in the figure below. We see how the force computation step is
taking less percentage of total simulation time as we increase the number of threads. This
would raise the question of whether the parallelization of other steps shall be our concern.
To know that, we show the charts that specify the exact timings of simulation steps with
dofferent number of bodies and threads, hence we would see how the time consumed by
these step would escalate with number of bodies.

percentage of time spent by different parts of
algorithm for 1x10° objects

100%
90%
80%
70%
60%
S0% M tree deletion
m force computation
40% M mass calculation
30% H Tree creation
20%
10%
D% T
2 4 3

using different number of threads

the added percentage of respective steps to total simulation time

Number of threads

The charts below show the timings for 1 thread and 8 threads for 2 different counts of
bodies.

Time in seconds and percentage for each
step of Barnes-Hut for 6E4 Bodies when
using 1 Thread

0.5714,4.58%

0.7167.5.74% 0.5070,4.06%

M Tree creation
B mass calculation
m force computation

H tree deletion

Time in seconds and percentage for each
step of Barnes-Hut for 1E6 Bodies when
using 1 Thread

11.0512,3.74%_ 12.9271,437%

10.6003,3.58%

M Tree creation
M mass calculation
m force computation

M tree deletion

Time in seconds and percentage for each
step of Barnes-Hut for 1E6 Bodies when
using 8 Threads

10.8901,15.33% 12.9429,18.22%

M Tree creation
M mass calculation
 force computation

M tree deletion

Notice how that for 1 thread, the difference in time for steps other than the force
calculation step doesn't escalate much between 6E4 and 1E6 bodies, they only
approximately double. Also notice how for 8 threads, force computation becomes
comparable to other steps (3 times slower) for 1E6 bodies.

Taking note of the above charts yields that those other steps does not escalate in a fast
speed with number of bodies, which would eliminate the idea of investing time in their
parallelization from our concern.

2. Load balancing information:

We have done some fast-small test to see how much work is being done by each
thread, and we have seen that for all number of bodies the time being spent by each thread
is only different by a fraction of a second from other threads. This is likely the effect of
the initialization of bodies into space in a uniformly random manner.

3. Pseudo code for the implementation.

In this section we summarize the pseudo code for our implementation of Barnes-Hut
algorithm, we repeate the following steps for a decided number of iterations (e.g. 30
iterations):

1. create the body structures, initializing them to random data as follows

1. Initialize body positions in a uniformly distributed random manner inside a space

of 400x400x400.

2. [Initialize velocity x, y and z components randomly between 0 and 10.

3. Decide body mass based on random numbering between 1 and 10.

4. [Initialize timers and set number of threads

2. Create the tree as follows

1. Create a single new empty node R (representing a single space partition) for the

tree.

2. For each body in space , Insert body B into tree under node R as follows:

i. Do the insertion of body B under node R as follows.

1. If tree is still empty, create a new node inside the tree with that
body inside it; continue covering the bodies in step (Error! Reference
source not found.) with node R being this created node.
2. else, (if tree is not empty): if node R decided to receive the body is
an internal node in the tree
3. Based on distance between center of node R and body B, decide on
a Child C of node R’s children nodes to insert body B into.
4. Execute the insertion step (Error! Reference source not found.)
above with the node R being the child node C, chosen above.
5. Else (if R is a leaf node), do the following :
6. The body represented by this node is preserved as body B1.
7. Convert node R into an internal node.
8. insert body B1 into (now internal) Node R by executing step (i)
above for node R and the body being B1
9. Insert body B into node R by executing step (i) above for node R
and body B.

3. Starting from root of tree R, Compute masses in the tree as follows:

1. If Risempty or a leaf, consider this instance of this step (step3.) to be finished.

2. Else, for each child (C)of node R, compute the mass of the sub tree by executing

an instance of step (3) above with R being the child C

3. Calculate Total mass of node by summing all total masses of the all children of

node R. and register it in node structure.

4. Calculate x, y and z components of center of mass by summing all the

multiplications total mass of node R by respective X, y, z components of all of R’s

children. And register those components in node’s structure.

4. Now update the position components of the node structure.
1. Assign the following two tasks for all bodies over threads
I. For each body B do the following:
1. Reset the registered force components affecting body B to zero (of
that body).

a. Starting from root node R of the tree, calculate the forces of
the nodes in the tree affecting body B as follows :
b. If R is empty, consider this instance of step (a) above to be
finished
c. Else calculate the distance between body B and center
position of node R as distance D.
d. If Dis larger than a certain threshold T, then for each child
C of node R, calculate the force effecting body B by this node
by executing step(a) above with R being the child C.
e. Else, (distance is smaller than threshold) then calculate the
force affecting body B by Node R as a whole on behalf of its
sub tree. And register force components in body B’s structure.
ii. Foreach body B
1. Update the velocity and position of body depending on the force
components affecting this body calculated in previous step.
5. Delete the tree of nodes recursively from leafs to root, preserving only bodies that are still
inside the space in the bodies structure.

End of progress report

speedup of force calculation (over omp 1 thread)

2D Barnes-Hut speedup of force

calculation
8.00 -
—

7.00 - : >

e
6.00 -
5.00 -
4.00 -

k___.‘-—*——i——t-——i——t——*'—i'--m——t —4— OMP 1 Thread
3.00 - —B—OMP 2 Threads
2.00 - — [T] === OMP 4 Threads
1.00 + & > S = —¢ - *—— * =i OMP 8 Threads
0.00

speedup of force calculation {over omp 1 thread)

Q
,@ "pQ" .-QQ‘ ,;bQ‘ '\90‘ '@Q‘ '],Q‘Q‘ %QQ /\QQ‘ OJQQ‘,»(‘)QQ‘
number of bodies
3D Barnes-Hut speedup of force
calculation

8.00 -
7.00 -){"%"")f——?'(’ ==
6.00 -
5.00 -
4.00 -

‘___.‘.--i——‘-—i——i——i——k——h——ﬁ——‘ =—4—0OMP 1 Thread
3.00 - =i—0OMP 2 Threads

200 o OO OMPAThreads
===0MP 8 Threads

1.00 | ———0—0—90—¢

4
L 2
4
L 2
L 2
L 2

0.00

number of bodies

Distribution of bodies in the space using a
Poisson polar probabilistic distribution

% 10

15 -

The algorithm for generation of 3D position according to the Poisson
distribution is as follws:

1. Let's u be a random variable that is generated using a uniform
distribution over [0,1]
2. Evaluate r=-ro*[Ln(1-u)], where r@ is the desired average

distance to space center, Ln is Log neperian, and r is the generated
radius or distance to center,

3. Also generate a and b using auniform distribution over
[0,1]*2Pi,

4. The mapping from spherical coordinate to Cartesian 3D:
X = r*cos(a)*cos(b)

Y = r*cos(a)*sin(b)

Z = r*sin(a)

Where r should follow a Poisson distribution, and a and b must be
uniform within [0,2Pi].

Please try the above rules and try to see the generated points in a
plan.

Forcasting the tread execution time in the next
iteration using the Double Exponential
forcasting algorithm:

The completion times of a series to be forcasted is a value Y(t) observed at time
t. The estimated value for Y(t) is denoted as YY(t) and the forcasted value at
time t+1 is YY(t+1).

L(t)=a*Y(t)+(1-a)*YY(t)
T(t)=b*(L(t)-L(t-1))+(1-b)*T(t-1)
YY(t+1)= L(t) + T(t)

Starting : YY(1)=Y(1); YY(2)=Y(2); L(1)=Y(1); and T(1)=0.
In other words, we need Y(1) and Y(2) to start the algorithm and
produce a forcast YY(3).

How do we choose the value of constant a and b:

Constant a is called the smoothing parameter, where © < a < 1.

For noisy data the value of a must be small, and for smooth data the value of s
must be large.

In practice ©0.05 < a < 0.35

Constant b is called trend, where © < b < 1. For linear trend b must be small
and for changing trend b must be large.

One may choose a=b=0.35.

Dynamic Load Balancing based on forcasting the
thread execution time and linear correction of
the thread computational load:

Reference to the need to eliminate the system fluctuations in the execution times
due to OS time-sharing. The exact update on the number of bodies should be:

N

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

N - [100*(th-th')/th']*G*Nbodies/(8*100)

Where N is number of bodies for next iteration for a given thread
th is forcasted on the thread time for this iteration
th' is average thread time for this iteration,

G is some gain which is typically 0.2 or 0.5
Nbodies is the total number of bodies

Thus 100*(th-th')/th' = percent deviation from average or simply the
forcast YY on the deviation from average for this iteration:

N = N - YY*G*Nbodies/(8*100)
Please check, before applying the correction, that the forcast YY is

correctly generated in a system without correction on the number of
bodies.

10

Thread work deviation for 1E5 bodies
No Load Balancing

10 15 20 25 30 35 40 45 50 55

Iteration N.O.

50
£ 4
@
bh ,-‘-’—ﬁ_’-‘_——\
E 30 Thread 0
>
E 20 \’\ =—Thread 1
..E_ Thread 2
c
~§ Thread 3
.,
z Thread 4
=
E Thread 5
2 Thread 6
-30 Thread 7
0 10 15 20 25 30 35 40 45 50 55
Iteration N.O.
Thread work deviation for 1E5 bodies
Error correction load Balancing
40
] l
5 30
& \ ——Thread 0
E 20 rea
© —
E I Thread 1
= ——Thread 2
=4
-,9, Thread 3
B
3 Thread 4
e
=
§ ——Thread 5
E ——Thread 6
-30 ——Thread 7

11

Percent deviation from average (%)

40

Thread work deviation for 1E5 bodies
Double expo load Balancing

5 10 15 20 25 30 35 40 45 50 55

Iteration N.O.

=———Thread 0
=—Thread 1
——Thread 2
——Thread 3
——Thread 4

Thread 5
——Thread 6
——Thread 7

Percentdeviation from average (%)

Thread work deviation for 26E4 bodies
No Load Balancing

=—=Thread 0
Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

10 15 20 25 30 35 40 45 50 55

Iteration N.O.

Thread 6
Thread 7

12

Percent deviation from average (%)

Thread work deviation for 26E4 bodies
Error correction load Balancing

iter 0 iter 5 iterlO iterl5 iter20 iter25 iter30 iter35 iterd0 iterd5 iter50 iter55

Iteration N.O.

=———Thread 0
=—Thread 1
——Thread 2
——Thread 3
——Thread 4

Thread 5
——Thread 6

——Thread 7

Percentdeviation from average (%)

Thread work deviation for 26E4 bodies
Double expo load Balancing

0 5 10 15 20 25 30 35 40 45 50 55

Iteration N.O.

——Thread 0
——Thread 1
——Thread 2
——Thread 3

Thread 4
——Thread 5
——Thread 6

——Thread 7

13

Percent deviation from average (%)

50

Thread work deviation for 5E5 bodies
No Load Balancing

40

“ _/V—’ \

20

e

10 +

Ll o

-10 A

=20 4

'::::H"u.—w""":::l /-

5 10 15 20 25 30 35 40 45 50 55

Iteration N.O.

Thread 0
s Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

14

