
 1

Experiment 8

8 Subroutine Handling Instructions and Macros

Introduction

In this experiment you will be introduced to subroutines and how to call them. You will
verify the exchange of data between a main program and a subroutine in the 8086
environment. You will also use Macros, and as applications you will deal to a useful data
representation: look-up tables. .

You will need some of the programs developed in previous experiments to rewrite them
in a more structured way.

Objectives

1- Stack
2- PUSH and POP instructions
3- Procedures and Procedure Calls
4- Parameter Passing through Memory, Registers and the Stack
5- Macros
6- Application: Real-time clock reading,

8.1 Procedures

8.1.1 The Stack

The stack is a LIFO data structure in memory used to facilitate subroutine handling. The
SS register contains the Stack Segment number where the stack is stored. The ".STACK"
directive instructs the assembler to reserve a stack of a desired size. If the “.STACK”
directive is missing from a program, the assembler issues the warning:

LINK: Warning L4021: no stack segment.

The stack always starts at a high address and grows towards the beginning of the stack
segment at a lower address. The microprocessor stores data on the stack as needed, and
uses the SP register to point to the last item stored on the stack. The stack size
dynamically changes as data is stored or retrieved from the stack.

8.1.2 Stack Handling Instructions

There exist a number of data transfer instructions that are used with the stack. These are
summarized in the following.

 2

8.1.2.1 PUSH and POP

There exist two direct stack handling instructions (Table 8.1): PUSH and POP. The
PUSH instruction is used to store the content of a 16-bit register, or memory location, on
the stack. It first decreases the content of SP by two and then stores the data into the two
bytes on the top of the stack. The high order byte of the data goes to the high addressed
byte in the stack. The POP instruction retrieves a word from the stack and then increases
SP by two.

Example :

The directive

.STACK 100H

instructs the assembler to reserve a stack of size 256 bytes and initializes the Stack
Pointer register (SP) to 100H.

Instruction Example Meaning

PUSH PUSH AX
SP ç SP –2
[SP-1] ç AH
[SP-2] ç AL

POP POP NUM1
[UM+1] ç [SP+1]
[NUM1] ç [SP]
SP ç SP + 2

Table 8. 1: Basic the Satck Handling Instructions

PUSHF PUSHF
SP ç SP –2
[SP-1] ç MSB(FR)
[SP-2] ç LSB(FR)

POPF POPF
LSB(FR) ç[SP]
MSB(FR) ç[SP+1]
SP ç SP + 2

Note: FR = Flag Register
Table 8. 2: Flag Register Handling Instructions

8.1.2.2 PUSHF and POPF

Two other instructions are used to manipulate the flag register (FR) only: PUSHF and
POPF (Table 8.1). The PUSHF instruction is similar to the PUSH instruction, except that
the PUSHF is used to push the contents of the flag register onto the stack. The POP and
POPF instructions have a reverse action of the PUSH and PUSHF, respectively. The
POPF has the same effect, except that the word retrieved is saved to the flag register.
These two instructions are used to access some of the bits of the flag register that are not
accessible by appropriate instructions. Note that not all flags are accessible to the
programmer, but only the ones shown in Error! Reference source not found.2 which
are directly accessible by appropriate instructions.

 3

The remaining flags can be accessed by POPF and PUSF instructions. Once saved in the
AX register, those flags can be set, reset or flipped using bitwise instructions. The
programmer needs to know their exact locations to be able to access them (Figure 8.1).

Flag Instruction Effect

STC Set Carry flag
Carry Flag

CLC Clear Carry flag
STD Set Direction flag

Direction Flag
CLD Clear Direction flag
STI Set Interrupt flag

Interrupt Flag
CLI Clear Interrupt flag

Table 8. 3: Flags Directly Accessible

The following figure shows the positions of the flags that require some manipulations of
the AX Register to be accessed:

Figure 8.1: Flag register

 4

8.1.2.3 PUSHA and POPA
These are used to push all general registers as shown in Table 8.3.

PUSHA PUSHA Push AX CX DX BX original SP BP
SI and DI

PUSHAD PUSHAD Push EAX ECX EDX EBX original
ESP EBP ESI and EDI

POPA POPA Push AX CX DX BX original SP BP
SI and DI

POPAD POPAD Push EAX ECX EDX EBX original
ESP EBP ESI and EDI

Table 8. 4: Flags Directly Accessible

8.1.3 Subroutine Calls

A procedure is a reusable section of the software that is stored in memory once, but used
as often as necessary. The CALL instruction links to the procedure and the RET (return)
instruction returns from the procedure. The Stack stores the return address whenever a
procedure is called during the execution of a program. The CALL instruction pushes the
address of the instruction following the CALL (return address) onto the stack. The RET
instruction removes an address from the stack, so the program returns to the instruction
following the CALL.

With the Assembler (MASM) there are specific ways for writing, and storing, procedures.
A procedure begins with the PROC directive and ends with the ENDP directive. Each
directive appears with the name of the procedure. The PROC directive is followed by the
type of the procedure: NEAR (intra-segment) or FAR (inter-segment).

In MASM version 6.X, a NEAR or FAR procedure can be followed by the USES
statement. The USES statement allows any number of registers to be automatically
pushed onto the stack and popped from the stack within the procedure.

Procedures that are to be used by all software (global) should be written as FAR
procedures. Procedures that are used by a given task (local) are normally defined as
NEAR procedures.

8.1.4 The CALL Instruction

The CALL instruction transfers the flow of the program to the procedure. The CALL
instruction differs from the jump instruction in the sense that a CALL saves a return
address on the stack. The RET instruction return control to the instruction that
immediately follows the CALL. There exist two types of calls: FAR and NEAR, and two
types of addressing modes used with calls, Register and Indirect Memory modes.

 5

8.1.4.1 Near CALL

A near CALL is three bytes long, with the first byte containing the opcode, and the two
remaining bytes containing the displacement or distance of ±32 K. When a NEAR CALL
executes, it pushes the offset address of the next instruction on the stack. The offset
address of the next instruction appears in the IP register. After saving this address, it then
adds the displacement from bytes 2 and 3 to the IP to transfer control to the procedure. A
variation of NEAR CALL exists, CALLN, but should be avoided.

8.1.4.2 Far CALL

The FAR CALL can call a procedure anywhere in the system memory. It is a five-byte
instruction that contains an opcode followed by the next value for the IP and CS registers.
Bytes 2 and 3 contain the new contents of IP, while bytes 4 and 5 contain the new
contents for CS. The FAR CALL instruction places the contents of both IP and CS on the
stack before jumping to the address indicated by bytes 2 to 5 of the instruction. This
allows a call to a procedure anywhere in memory and return from that procedure. A
variant of the FAR CALL is CALLF but should be avoided.

8.1.5 Calls with Register Operand

CALLs can contain a register operand. An example is CALL BX, in which the content of
IP is pushed into the stack, and a jump is made to the offset address located in register
BX, in the current code segment. This type of CALL uses a 16-bit offset address stored in
any 16-bit register, except the segment registers.

Program 8.1 illustrates the use of the CALL register instruction to call a procedure that
begins at offset address DISP. The offset address DISP is placed into the BX register,
then the CALL BX instruction calls the procedure beginning at address DISP. This
program displays “OK” on the monitor screen.

8.1.6 CALL’s with Indirect Memory Address

A CALL with an indirect memory address is useful when different subroutines need to be
chosen in a program. This selection process is often keyed with a number that addresses a
CALL address in a lookup table.

Program 8.2 shows three separate subroutines referenced by Number 1,2 and 3 as read
from the keyboard. The calling sequence adjusts the value of AL and extends it to a 16-bit
number before adding it to the location of the lookup table. This references one of the
three subroutines using the CALL TABLE[BX] instruction. When this program executes,
the letter A is displayed when a 1 is typed, B if 2 and C if 3 is typed.

The CALL instruction can also reference far pointers if the data in the table are defined as
double-word data with the DD directive, using the CALL FAR PTR[SI] or CALL

 6

TABLE[SI] instructions. These instructions retrieve a 32-bit address from the data
segment memory location addressed by SI and use it as the address of a far procedure.

8.2 Parameter Passing

To pass data (parameters) between the main program and the routines, data may be left in
the general-purpose registers. This method has the disadvantage of changing the contents
of the registers every time the subroutine is called. A more elegant way is to exchange
data through the stack, or through memory. The data to be passed to a subroutine is saved
in the memory before calling the subroutine. All the registers that need to be saved, and
are used by the subroutine, should also be saved and retrieved afterwards.

Instruction Example Effect

CALL CALL SQRT

[SP-1] ç 34
[SP-2] ç 5B
SP ç SP-2
IP ç 34A0

RET RET
LSB(IP) ç [SP]
MSB(IP) ç [SP+1]
SP ç SP + 2

Note: Assuming SQRT is a Near Procedure, starting at CS:34A0H, and the instruction CALL is at
CS:345BH.

Table 8. 5: Summary of the Subroutine Handling Instructions

8.3 Macros

Macro sequences relieve the programmer from retyping the same instructions. They allow
you create your own pseudo language for instruction sequences that often appear in
programming. A macro sequence starts by the MACRO directive and ends by an ENDM
directive. Associated with MACRO is the name of the macro and any parameters that are
carried with the macro to the instructions between MACRO and ENDM statements.
Program 8.3 contains two macros. A MACRO is declared and used as shown in the
following example

DISPLAY MACRO STRING

 MOV DX,OFFSET STRING
 MOV AH,09H
 INT 21H

ENDM

;If “Message” is the string to be displayed, the

; Macro is called as follows:

 DISPLAY MESSAGE

 7

Macros can be saved in a separate file, to which a name such as “MACRO.INC” can be
given. This file can then be used as a library, and therefore can be included in the
program using the directive INCLUDE, in the following manner:

 INCLUDE MACRO.INC

Provided that both, the program and the macro library are in the same directory.
Alternatively the path has to be specified as follows:

 INCLUDE Path\MACRO.INC

8.4 Labels local to a Macro:

When a MACRO contains labels, and the Macro is used more than once in a program,
which is usually the case, the assembler gives the following error: Label referenced more
than once. To avoid such an error, these labels should be made local to the MACRO, this
is done using the following:

DISPLAY MACRO STRING

 Local Label1
 …

Label1:…

 …
ENDM

Reading the System Date: Function 2AH, INT 21H:

Function 2AH of Interrupt INT 21H is used to read the system date. It returns the Day of
the week in AL register, the year in CX register, the month in DH register and the day of
the month in DL register. Note that as indicated in Table 8. 2, the returned values are in
hexadecimal format, which, in order to be displayed, need to be converted to decimal, as
indicated in experiment 5.

Effect: Read system date

 Function

ENTRY EXIT

AL = Day of the week CX = Year (1980-
2099)

2AH AH = 2AH
DH = Month DL = Day of the month

Note: The day of the week is encoded as Sunday = 00 through Saturday = 06.
The year is a binary number equal to 1980 through 2099.

Table 8. 3: Read Time and Date Function: 2AH, INT 21H

 8

8.5 Lab Work

Pre Lab Work :

1. Write, assemble, link and run program 8.1 and 8.2. Try to understand how
the different routines are written and how they are called. See also how the
different procedures pass parameters between them.

2. Write, assemble, link and run program 8.3. See how Macros are used.
3. Rewrite program 6.1, from Experiment 6, using Procedures and Macros.

Call it program 8.4.
4. Bring your work to the lab.

Lab Work:

1- Show programs 8.3 and 8.4 to your lab instructor.
2- Modify program 6.3, from experiment 6, using Procedures and

Macros. Call it program 8.5.
3- Program 8.4 reads a string and encrypts it. Complete the program

and use Macros and Procedures.
4- Modify Program 8.4, so that it reads an encrypted string and

converts it back to the original one. Write this program using
procedures and Macros. Call it program 8.6.

Lab Assignment:

DOS Function 2CH reads the system time, and works as described below:

MOV AH, 2CH
INT 21H
; and returns (in binary) the time as follows:
CH: hours (0-23);
CL: minutes (0-59);
DH: seconds (0-59); and
DL: hundredths of a second.

Use program 8.3, and the above function, to develop a program that reads the date, and
displays it in the following format:

Today is: Sunday 24/October/1999, The Time is: 12:02:32

Make the program loop for a large number of times, so that you can see the time
changing.

 9

TITLE “Program 8.1”
; a program that display OK on the monitor screen using procedure DISP

.MODEL TINY ; select TINY model
.CODE ; indicate start of CODE segment
.STARTUP ; indicate start of program

 MOV BX, OFFSET DISP ; address DISP with BX
 MOV DL, 'O' ; display 'O'
 CALL BX
 MOV DL, 'K' ; display 'K'
 CALL BX
.EXIT ; exit to DOS
;
; a procedure that displays the ASCII contents of DL on the monitor screen.
; **
DISP PROC NEAR
 MOV AH, 02 ; select function 02H
 INT 21H ; execute DOS function
RET ; return from procedure
DISP ENDP

END ; end of program

TITLE “Program 8.2”
; program that uses a CALL lookup table to access one of three different procedures:
; ONE, TWO, or THREE.

.MODEL SMALL ; select SMALL model

.DATA ; indicate start of DATA segment

TABLE DW ONE ; define lookup table
 DW TWO
 DW THREE

.CODE ; indicate start of CODE segment
 ONE PROC NEAR
 MOV AH, 2 ; display a letter A
 MOV DL, 'A'
 INT 21H
 RET
ONE ENDP

TWO PROC NEAR
 MOV AH, 2 ; display letter B
 MOV DL, 'B'
 INT 21H
 RET
TWO ENDP

 10

THREE PROC NEAR
 MOV AH, 2 ; display the letter C
 MOV DL, 'C'
 INT 21H
 RET
THREE ENDP

; Start of Main Program
.STARTUP
TOP:
 MOV AH, 1 ; read key into AL
 INT 21H
 SUB AL, 31H ; convert from ASCII to 0, 1, or 2
 JB TOP ; if below 0
 CMP AL, 2
 JA TOP ; if above 2
 MOV AH, 0 ; form lookup address
 MOV BX, AX
 ADD BX, BX
 CALL TABLE [BX] ; call procedure ONE, TWO, or THREE
.EXIT ; exit to DOS
END ; end of file

TITLE “Program 8.3”
; This program uses the function read time and displays the current day

.MODEL SMALL ; select SMALL model
.STACK 100
.DATA
 CRLF DB 0DH,0AH,'$'
 PROMPT1 DB 'Today is : ','$'

 DAY DW D0,D1,D2,D3,D4,D5,D6
 D0 DB ‘SUNDAY’,’$’
 D1 DB ‘MONDAY’,’$’
 D2 DB ‘TUESDAY’,’$’
 D3 DB ‘WEDNESDAY’,’$’
 D4 DB ‘THURSDAY’,’$’
 D5 DB ‘FRIDAY’,’$’
 D6 DB ‘SATURDAY’,’$’

.CODE
.STARTUP

; Display Prompt1
MOV AH, 2AH ; GET SYSTEM DATE

 INT 21H
 MOV SI, OFFSET DAY
 MOV AH, 00
 ADD AX, AX

 11

 ADD SI, AX
 MOV DX, [SI]
 MOV AH, 09H
 INT 21H

 LEA DX, CRLF ; MOVE CURSOR TO NEXT LINE
 MOV AH, 09H
 INT 21H
.EXIT
END

TITLE “Program 8.4”
; This program reads a string of 200 characters maximum and encrypts ; it.
.MODEL SMALL
.STACK 100
.DATA
 CRLF DB 0DH,0AH,'$'
 PROMPT1 DB 'Enter a string : ','$'
 STRING DB 100 DUP(?)
 CODED DB 100 DUP(?)
 UTAB DB 'MNBVCXZLKJHGFDSAPOIUYTREWQV'
 LTAB DB 'bgtnhymjukilopvfrcdexswzaq'

.CODE
.STARTUP

; DISPLAY PROMPT1

 ; Read a string from the keyboard, save it in the array STRING

; Scan the string STRING, and do the following:
; if character is an upper case letter
; that is:
; if AL >= 'A' and AL =< 'Z'

 MOV BX, OFFSET LTAB

 SUB AL, 41H
 XLAT
 ; Save the character in AL in the array CODED.
 ; if character is a lower case letter
 ; i.e.
 ; if AL >= 'a' and AL =< 'z'
 MOV BX, OFFSET UTAB
 SUB AL, 61H
 XLAT
 ; Save the character in AL in the array CODED.
 ; MOVE CURSOR TO NEXT LINE

; Display the array CODED.
; exit to DOS

END

