
 1

Experiment 4

4 Segmentation and Addressing Modes

Introduction

Addressing modes are a means, provided by assembly to the programmer, to access
memory through different ways. This helps the programmer write at his ease his
programs. The different assembly addressing modes are introduced in this experiment.

Objectives:

• Segmentation
• Addressing Modes
• Indexing
• Data Manipulation and Array Manipulation
• Pentium Addressing modes

4.1 Memory Segmentation

In the Intel family of microprocessors, memory is divided into segments. Since registers
are 16-bit wide, each segment has its address space limited to 64 Kbytes. The 16-bit
address used by the program is actually an offset from a segment base address, saved in
the segment register. Pentium processors however, can operate in one of two modes; Real
Mode and Protected Mode. In the real mode, the Pentium processor behaves exactly like a
fast 8086 processor. In the protected mode, the Pentium processor supports both
segmentation and pagination. Pagination is useful in implementing virtual memory,
concept very used in operating system. However, pagination is transparent to the
programmer and therefore is not covered at this level.

Segment registers are independent and segments can be contiguous, disjoint, partially
overlapped or fully overlapped.

Figure 4.1: Memory Segments

 2

Figure 4.2: Various ways of placing segments in the memory

4.2 Real Mode Memory Architecture

The segment register is offset by four bits and added to the offset to give a 20-bit address,
known as the physical address.

Physical Address = Segment Register*10H + Offset

Application programs use the logical address which consists of two components: a
segment base and an offset or effective address, such as BASE ADDRESS:OFFSET.
The base address is usually in a segment register, which is a pointer to the base of the
segment. The offset is also known as the effective address. Code, data and stack are each
put in one segment. Each segment has its own base address saved in a segment register.
The segment registers are:

• CS: code segment,
• SS: stack segment,
• DS: data segment
• ES, FS, GS: extra data segments.

4.3 Addressing Modes

Table 4.1 summarizes all addressing modes used by the 8086 processor and the real mode
of the Pentium processor. The address is computed only when memory is accessed, no
addressing is needed when the processor accesses an immediate operand making part of
the instruction, or its own internal registers. Internal registers are accessed using a
different mechanism that will be covered in the organization part of the COE 205 course.

 3

Source operand
Assuming: DS = 1000H, SS = 2000H,
 BX = 0200H, SI = 0300H, BP = 0400H

Addressing
Mode Example

Address Generation Phys. Address
Immediate MOV AX, 0F7H - -
Register MOV AX, BX - -
Direct MOV AX, [1234H] DS x 10H + 1234H 11234H
Register-Indirect MOV AX, [BX] DS x 10H + 0200H 10200H
Register-Indirect MOV AX, [BP] SS x 10H + 0400H 20400H
Based MOVAX, [BX+ 06] DS x 10H + 0200H + 0006H 10206H
Indexed MOVAX, [SI + 06] DS x 10H + 0300H + 0006H 10306H
Based-Indexed MOV AX, [BX+SI+06] DS x 10H + 0200H + 0300H + 0006H 10506H

Table 4.1: Addressing Modes

4.3.1 Which Segment Register

Any of the registers BX, SI or DI can be used as an offset into the data segment. BP is
used as an offset into the stack segment. This is the default situation unless overriding is
used, as shown in the next example.

MOV AL, Byte Ptr [BP] ; PA = SS*10H + BP, SS is assumed by default

MOV AL, Byte Ptr [DS:BP] ; PA = DS*10H + BP using overriding

When the processor is to read a program instruction, the CS register is used to provide the
segment part of the logical address of the instruction to be fetched. The offset part is
supplied by IP (or EIP) register. Thus CS:IP points to the next instruction to be fetched
from the code segment. The physical address is computed as follows:

PA = CS*10H + IP

4.3.2 Array Indexing

An array is a contiguous list of data elements in memory. All elements are of the same
type and use the same number of bytes of memory. Because of these properties, arrays
allow efficient access of data by its position, or index. The address of any element can be
computed by knowing: (i) the address of the first element of the array, (ii) the number of
bytes in each element and (iii) the index of the element. The index of the first element of
the array is zero.

In 16-bit addressing mode elements of an array are usually accessed through one of the
following addressing modes:

• Based addressing mode.
• Indexed addressing mode.

 4

• Based-Indexed addressing mode.

Arrays, depending on the programmer view, may be seen as 1-dimensional or 2-
diomensional structures. Based and Indeed modes are often used to access 1-dimensional
arrays. The Based-Indexed addressing mode is often used to access two-dimensional
arrays.

Base Index

BX
or
BP

+
SI
or
DI

+ Displacement

Table 4.2: Based Indexed Addressing modes

1-Dimensional Arrays

Example 1

. DATA

NUM DB 20, 4, 32, 50, 7, 15, 80, 12, 6, 125
. CODE

MOV BH, NUM[0] ; BH is assigned the value 20
MOV AL, NUM[3] ; AL is assigned the value 50
MOV BX, 5
MOV AH, NUM[BX] ; AH is assigned the value 15

MOV SI, 7
MOV CL, NUM[SI + 2] ; CL is assigned the value 125
MOV DL, NUM[BX - 3] ; DL is assigned the value 32
MOV BX, 2
MOV AL, NUM[SI + BX] ; AL is assigned the value 125

Example 2

Array1 DB 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 Array2 DB 10 DUP(0)

; Based addressing mode
 MOV BX, OFFSET Array1 ; Address Array1
 MOV AL, [BX+4] ; Load 5th element of Array1 into AL

; Indexed addressing mode
 MOV DI, OFFSET Array2 ; Address Array2
 MOV [DI+6], AL ; Save AL into 7th element of Array2
 MOV SI, 3 ;
 MOV Array2[SI], AL ; Save AL into 4th element of Array2

 5

2- Dimensional Arrays

Example 3

Array3 DB 11 12, 13, 21, 22, 23, 31, 32, 33 ; Array3 is a 3x3 array
 RowSize EQU 3

; Based-Indexed addressing mode

 MOV BX, OFFSET Array3 ; Address Array3
 MOV SI, 1*RowSize ; Beginning of 2nd row
 MOV DI, 2*RowSize ; Beginning of 3rd row
 MOV AL, [BX+SI+1] ; Load 2nd element of 2nd row into AL
 MOV [BX+DI+2], AL ; Save AL into 3rd element of 3rd row

Remark:

- That the Rth row has index (R-1)
- The nth element has index (n-1)

4.4 Protected Mode Memory Architecture

The protected mode is the native mode of the Pentium processor. The processor supports
a more sophisticated segmentation mechanism. Before dealing with Pentium addressing
modes, the 32-bit Pentium registers are briefly introduced.

4.4.1 Pentium Registers

Each register has 32 bit, 16 bit and 8 bit names. In the real mode, the 16 bit names are
used for addressing, whereas in the protected addressing mode, the 32 bit names are used.

• The primary accumulator register is called EAX. Secondary accumulator registers

are: EBX, ECX and EDX.
• EBX is often used to hold the starting address of an array.
• ECX is often used as a counter or index for a loop.
• EDX is a general purpose register.
• The EBP register is a stack pointer. It is used to facilitate access to the stack.
• ESI and EDI are general purpose registers. If a variable is to have register storage

address, it is often stored in either ESI or EDI. String handling instructions use ESI
and EDI as pointers to source and destination addresses.

• The ESP register or stack pointer, points to the top of the stack.
• The EFLAGS register, or status register. Individual bits in this register are affected or

checked by several instructions.
• The EIP register holds the instruction pointer or program counter (PC), which points

to the next instruction of the currently running program.

 6

4.4.2 32-bit Addressing Modes

In 32-bit addressing bit, a scale factor is multiplied by the index register to be added to
the base register each time an instruction using a memory operand is executed. Table 4.3
shows how the elements of a memory operand appear.

To load the 9th double word-sized entry in the table DwordArray into EAX:

MOV EBX, 8
MOV EAX, DwordArray [EBX*4]
MOV EBX, 7
MOV ECX, 4
MOV EAX, DwordArray [ECX + EBX*4]

As seen above, index scaling can be extremely useful for accessing elements in word,
double-word, and quad-word arrays.

By default, if the base register is either EBP or ESP then SS is the segment address
otherwise DS is used.

Base Index Scale
EAX EAX
EBX EBX
ECX ECX
EDX EDX
ESI ESI
EDI EDI
EBP EBP
ESP

+

*

1
or
2
or
4
or
8

+ Displacement

Table 4.3: 32-bit addressing mode

4.5 Some Basic Assembly Instructions

4.5.1 Procedures
A procedure is the equivalent of a method in Java. Procedures avoid rewriting pieces of
code.

A procedure is declared using:

ProcName PROC NEAR ; Near is by default, therefore optional
 ….
 ….
 RET
ProcName ENDP

A Procedure is invoked using the instruction CALL:
 CALL ProcName

 7

4.6 Lab Work

Part I
Program 1:

• Write a program that reads two 2-digit numbers, saves them in 16 bit registers then

displays their sum.

• Can you write your program so that it can deal with 4-digit numbers. What do you

think is the problem?

• Note that numbers are dealt with in unpacked BCD format, where each digit occupies

one byte. Packed BCD numbers are dealt with in the next experiment.

Program 2:

Repeat the same program as above, but with 4-digit numbers, using array variables
instead of registers. Store each number in an array. Use the following procedure to read a
single digit number.

READC PROC
 MOV AH, 01
 INT 21H
 SUB AL, 30H
 RET
READC ENDP

Write a similar procedure to display a single digit number on the screen. Use the
procedure in your program to display the sum of the two numbers.

Part II

Program 3:

Write a program that reads two 2x3 arrays of single digit numbers, adds the two arrays
and displays the array sum in matrix format.

Program 4:

Given the 2 initial elements of a Fibonacci series, write a program that generates the first
20 elements of the series. Knowing that, each new element is equal to the sum of the two
previous ones.

.DATA
 FIB DW 1, 1, 18 DUP(?)

