
1

Chapter 1

Introduction to Microcontrollers

(I. Scott Mackenzie)

Introduction
• Computers have only been with us for a few decades but

their impact (direct or indirect) on our lives is profound.

• Usually these are supposed to be just data processors
performing exhaustive numeric operations. But there
presence is unnoticed at most of the places; like

– At supermarkets in Cash Registers, Weighing Scales, etc.

– At home in Ovens, Washing Machines, Alarm Clocks, etc.

– At play in Toys, VCRs, Stereo Equipment, etc.

– At office in Typewriters, Photocopiers, Elevators, etc.

– In industry in Industrial Automation, safety systems, etc.

– On roads in Cars, Traffic Signals, etc.

Microcontrollers

• Computers can be divided into following two main
types depending on their function
– General purpose (Not Transparent)

– Special purpose (Transparent)

• Microcontrollers are more suitable for special purpose
devices.

• Microcontroller is a device similar to microprocessor
but includes more circuitry in the same chip.

Terminology

• A computer is defined by two main qualities
– The ability to be programmed to operate on

data without human intervention

– The ability to store and retrieve data.

• Computers also have peripheral devices to
communicate with outside world.

Block Diagram of Microcomputer System

C

P

U

ROM RAM

Peripheral

Devices

Interface

Circuitry

Data Bus

Control Bus

Address Bus
Central Processing Unit (CPU)

• Brain of the computer system, administers
all activity in the system and performs all
operations on data.

• Continuously performs two operations:
fetching and executing instructions.

• Understand and execute instructions based
on a set of binary codes called the
instruction set.

2

Simplified Block Diagram of CPU

Instruction
Register (IR)

Program
Counter (PC)

Instruction
Decode &

Control Unit

Arithmetic &
Logic Unit

(ALU)

Registers

Holds the binary code
for each instruction as
it is executed.

Holds the memory
address of the next
instruction to be
executed.

Temporary storage
of information.

Determines the
operation to perform
and sets in motion the
necessary actions to
perform it.

Performs arithmetic
and logic operations.

Fetching & Executing An Instruction

• Fetching involves the following steps:
a) Contents of PC are placed on address bus
b) READ signal is activated

c) Data (instruction opcode) are read from RAM and placed
on data bus

d) Opcode is latched into the CPU’s internal instruction
register

e) PC is incremented to prepare for the next fetch from
memory

• Execution involves decoding the opcode and
generating control signals to gate internal registers in
and out of the ALU and to signal the ALU to
perform the specified operation.

The Buses: Address, Data, & Control
• A bus is a collection of wires carrying information

with a common purpose.
• For each read or write operation, the CPU specifies

the location of the data or instruction by placing an
address on the address bus, then activates a signal on
the control bus indicating whether the operation is
read or write.

• Read operations retrieve a byte of data from memory
at the location specified and place it on the data bus.
CPU reads the data and places it in one of its internal
registers.

• Write operations put data from CPU on the data bus
and store it in the location specified.

The Buses (contd.)
• Address bus carries the address of a specified location.

For n address lines, 2n locations can be accessed. E.g., A
16-bit address bus can access 216 = 65,536 locations or
64K locations (210 = 1024 = 1K, 26 = 64).

• Data bus carries information between the CPU and
memory or between the CPU and I/O devices. Computers
spend up to two-thirds of their time simply moving data,
so the number of lines of the data bus is important for
overall performance. This limitation by width of data bus
is a bottleneck even with a vast amount of memory on the
system and a high speed CPU. 16-bit computer means…?

• Control bus carries control signals supplied by the CPU
to synchronize the movement of information on the
address and data bus.

Input/Output Devices
• I/O devices or computer peripherals provide the path for

communication between the computer system and the real
world. Three main types:
– Mass Storage Devices (Hard disk, magnetic tape, CD-ROM, etc.)
– Human Interface (Keyboard, mouse, joystick, CRT, printer,

speaker, etc.)

– Control/Monitor devices (Phototransistors, sensors, thermistors,
switches, motors, relays, etc.)

• Control devices are outputs, or actuators, that can affect the
world around them when supplied with a voltage or current.

• Monitoring devices are inputs, or sensors, that are
stimulated by temperature, pressure, light, motion, etc. and
convert this to voltage or current read by the computer.
The interface circuitry converts the voltage or current to binary

data, or vice versa.

Computer Classification

• Computers can be classified by their size and power as
microcomputers, minicomputers, or mainframe
computers.

• Microcomputers contain single chip CPU
(microprocessor).

• Minicomputers contain CPU consists of several chips.

• Mainframes contain CPU consists of several circuit
boards of chips.

• Microcomputers are single-user, single-task systems
while minicomputers, and mainframe computers are
multi-user and multitasking systems.

3

Microprocessors Vs. Microcontrollers

• Microprocessor is a single chip CPU, microcontroller
contains, a CPU and much of the remaining circuitry of a
complete microcomputer system in a single chip.

• Microcontroller includes RAM, ROM, serial and parallel
interface, timer, interrupt schedule circuitry (in addition
to CPU) in a single chip.
– RAM is smaller than that of even an ordinary microcomputer,

but enough for its applications.
– Interrupt system is an important feature, as microcontrollers

have to respond to control oriented devices in real time. E.g.,
opening of microwave oven’s door cause an interrupt to stop
the operation.

(Most microprocessors can also implement powerful interrupt
schemes, but external components are usually needed.)

• Microprocessors are most commonly used as the
CPU in microcomputer systems. Microcontrollers
are used in small, minimum component designs
performing control-oriented activities.

• Microprocessor instruction sets are “processing
intensive”, implying powerful addressing modes
with instructions catering to large volumes of data.
Their instructions operate on nibbles, bytes, etc.
Microcontrollers have instruction sets catering to
the control of inputs and outputs. Their instructions
operate also on a single bit. E.g., a motor may be
turned ON and OFF by a 1-bit output port.

Microprocessors Vs. Microcontrollers (contd.)

Gains and Losses

• Gains: Reduced component count in a circuit, high
degree of integration, shorter development time, lower
manufacturing cost, lower power consumption, higher
reliability, etc.

• Losses: Some situations (very few) require extremely
fast response to events are poorly handled by the
microcontrollers. E.g., Implementation of NAND
operation using an 8051 microcontroller.

LOOP: MOV C, P1.4 ;READ P1.4 BIT INTO CARRY FLAG

ANL C, P1.5 ;AND WITH P1.5

ANL C, P1.6 ;AND WITH P1.6

CPL C ;CONVERT TO NAND BY INVERTING

MOV P1.7, C ;SEND TO P1.7 OUTPUT BIT

SJMP LOOP ;REPEAT

• The propagation delay can be measured by a voltmeter or by
an oscilloscope. It is 3 microsecond (assuming 8051 operation
using 12 MHz crystal frequency) while equivalent TTL has
delay of 10 nanosecond.

Gains and Losses (contd.)

8051

P1.5
P1.4

P1.6
P1.7

Chapter 2

Hardware Summary

(I. Scott Mackenzie)

The 8051
• A Microcontroller derivative family based on the 8051

core.

• A Microcontroller because a one-chip system can be
made with the one chip containing:

– Program & Data Memory

– I/O Ports

– Serial Communication

– Counters/Timers

– Interrupt Control logic

– A-to-D and D-to-A converters

– & so on ...

4

MCS-51 Family Overview
• Term 8051 refers to MCS-51 family of microcontroller

ICs by Intel Corp. (From 8031-8752)
• Features are summarized below:

– 8 Bit data path and ALU.
– Easy interfacing.
– 12 to 30 MHz versions available.

(1 µsec to 400 ns for single cycle instructions).
– Full instruction set including:

Multiply and Divide.
Bit set, reset, and test (Boolean instructions).

– Variety of addressing modes.

Hardware Features of the 8051
–0K (8031), ROM 4K (8051), EPROM 4K (8751)

–RAM 128 bytes (8XX1), 256 bytes (8XX2)
(where X= 0 or 7 & X=3 or 5)

–Four 8-bit I/O Ports (P0-P3)

–Two 16-bit Timers/Counters (T0 &T1)

–Serial I/O Port

–Boolean Processor (Operates on Single Bits)

–210 bit-addressable locations

–Oscillator & Clock Circuit

8051 Block Diagram

Interrupt Control

5 Interrupts

CPU

OSC

Timer 1

Timer 0

Serial
Port

I/O PortsControl
Bus

Counter
Inputs

P0 P3P1

4k byte
ROM

128 byte
RAM

P2

(Address/Data)

TXD RXD
ALE

PSEN

EA

RST

8051 Pin Outs

VSS

VCC

RST

P0.7
P0.6

P0.5
P0.4

P0.3
P0.2

P0.1
P0.0

P

O

R

T

0

ADDRESS

AND

DATA BUS

XTAL1

XTAL2

ALE

EA

PSEN

P3.7

P3.6
P3.5

P3.4
P3.3

P3.2
P3.1

P3.0

RD

WR
T1

T0
INT1

INT0
TxD

RxD

SECONDARY

FUNCTIONS

P

O

R

T

3

P2.7

P2.6
P2.5

P2.4

P2.3
P2.2

P2.1
P2.0

P

O

R

T

2

ADDRESS

BUS

P1.7

P1.6
P1.5

P1.4
P1.3

P1.2
P1.1

P1.0

P

O

R

T

1

8051 has 4 Bus Control Signals
• PSEN (pin 29): (Program Store Enable) enables external

program (code) memory. Usually connected to EPROM’s
output enable (OE). It pulses low during fetch stage of an
instruction. It remains high while executing a program
from internal ROM.

• ALE (pin 30): (Address Latch Enable) used for
demultiplexing the address and data bus when port 0 is
used as the data bus and low-byte of address bus.

• EA (pin 31): (External Access) high to execute programs
from internal ROM and low to execute from external
memory only.

• RST (pin 9): (RESET) master reset of 8051.

Reset
• External reset is asynchronous to the internal clock.

• RST pin must be high for at least two machine cycles
while the oscillator is running.

• Internal RAM is not affected by reset.

• Reset sets PC to 0000H.

• Typical circuits:

8051

RST

+5V

8.2K ΩΩ

10 µF

8051

RST

+5V

8.2K ΩΩ

10 µ F

+5V

Manual ResetPower-on Reset

Reset100 ΩΩ

5

8051 Oscillator & Power Pins

• Pins 18 and 19 are the oscillator pins to
connect the crystal of nominal frequency 12
MHz.

• Pin 40 is for +5V and pin 20 is for GND.

I/O Ports

- Four 8-bit I/O ports.

- Most have alternate functions.

- Bi-directional.

Port 0 (pin 32-39)

- Dual purpose I/O port.

- In min. component design, it is used as a
general purpose I/O port.

- In larger designs with external memory, it
becomes a multiplexed data bus:

– Low byte of address bus, strobed by ALE.

– 8-bit instruction bus, strobed by PSEN.

– 8-bit data bus, strobed by WR and RD.

Port 1 (pin 1-8)

- As an I/O port:

Standard bi-directional port for interfacing
to external devices as required for I/O.

- Alternate functions:

Only on some derivatives.

Port 2 (pin 21-28)

- Dual purpose I/O port.

- As an I/O port:

Standard bi-directional general purpose I/O
port.

- Alternate functions:

High byte of address bus for external
program and data memory accesses.

Port 3 (pin 10-17)

- Dual purpose I/O port.
- As an I/O port:

Standard bi-directional general purpose I/O
port.

- Alternate functions:

Serial I/O - TXD, RXD

Timer clocks - T0, T1

Interrupts - INT0, INT1
Data memory - RD, WR

6

Addressing Space

- 64K x 8 ROM - External Program Memory.

(Enabled via PSEN)

- 64K x 8 RAM - External Data Memory.

(Enabled via RD and WR)

- 256 x 8 RAM - Internal Data Memory.

- 128 x 8 Special Function Registers (SFRs).

- Bit addressing of 16 RAM locations

and 16 SFRs.

Internal Data Memory
- Four register banks (Register Bank 0-3):

00 to 1F hexadecimal.

- Bit addressable RAM (128 bits):

20 to 2F hexadecimal.

- General purpose RAM (directly addressable range):

30 to 7F hexadecimal.

- Special function registers (indirectly addressable range):

80 to FF hexadecimal.

Internal Data Memory
7F

30

2F

20

R0

R1

R2

R3

R4

R5

R6

R7

REGISTER BANK 1

REGISTER BANK 2

GENERAL PURPOSE RAM

BIT ADDRESSABLE RAM

REGISTER BANK 3

00

1F

0F

17

10

08

07

18

REGISTER BANK 0

07 00

7F 78

BYTE ADDRESS
• Any location on general purpose RAM can be accessed

freely using direct or indirect addressing modes.
E.g., MOV A, 5FH ;contents of 5FH location will be loaded in A
E.g., MOV R0, #5FH ; value 5FH will be loaded in register R0

MOV A, @R0 ; data will be loaded in A which is pointed
; at by R0

• Powerful feature that bits can be set, cleared, ANDed,
ORed, etc. with a single instruction
E.g., SETB 67H ; to set bit 67H
Most microprocessors will do like

MOV A, 2CH ; read entire byte
ORL A, #10000000B ; set MSB
MOV 2CH, A ; write back entire byte

External Bus Expansion
8051

PORT 2

PORT 0

ALE

P3.7

P3.6

PSEN

A15 - A8: High byte of address

AD7 - AD0: Data and low byte

address

ALE: Address latch enable

RD: Read strobe

WR: Write strobe

PSEN: Program store enableEA

External Program Memory

8051

PORT2

ALE

PORT0

PSEN

ADDRESS

LATCH

ROM(S)

ADDRESS
INPUTS

DATA
OUTPUTS

OE

A15 - A8

A7 - A0

D7 - D0

AD7 - AD0

EA

• 64K byte address space.

• Enabled by PSEN signal.

7

External Data Memory
• 64K byte address space.

• The only access to this memory is with the MOVX

instruction, using either 16-bit data pointer DPTR, R0, or
R1 as the address register.

8051

PORT 2

ALE

PORT 0

WR

RD

RAM(S) or I/O

CE

DATA

OUTPUTS

ADDRESS

INPUTS

R/W

OE

ADDRESS
LATCH

DECODER

Special Function Register Space
- 128 byte address space, directly addressable as 80 to FF

hex.

- 16 addresses are bit addressable:

Set, Clear, AND, OR, MOV (those ending with 0 or 8).

- This space contains:
– Special purpose CPU registers.

– I/O control registers.

– I/O ports.

Special Function Register Map

F8

F0 B

E8

E0 ACC

D8

D0 PSW

C8

C0

B8 IP

B0 P3

A8 IE

A0 P2

98 SCON SBUF

90 P1

88 TCON TMOD TL0 TL1 TH0 TH1

80 P0 SP DPL DPH PCON

Bit Addressable

0 1 2 3 4 5 6 7

A B C D E F G H

BYTE ADDRESS

Special Function Registers
CPU registers:

- ACC : Accumulator.

- B : B register.

- PSW : Program Status Word.

- SP : Stack Pointer.

- DPTR : Data Pointer (DPH, DPL).

Interrupt control:

-IE : Interrupt Enable.

-IP : Interrupt Priority.

I/O Ports:

- P0 : Port 0.

- P1 : Port 1.

- P2 : Port 2.

- P3 : Port 3.

Special Function Registers (cont'd)
Timers:

- TMOD : Timer mode.

- TCON : Timer control.

- TH0 : Timer 0 high byte.

- TL0 : Timer 0 low byte.

- TH1 : Timer 1 high byte.

- TL1 : Timer 1 low byte.

Serial I/O:

- SCON : Serial port control.

- SBUF : Serial data registers.

Other:

- PCON : Power control

PSW : Program Status Word
CY AC F0 RS1 RS0 OV ---- P

- CY : Carry Flag.

- AC : Auxiliary Carry Flag.

- F0 : Flag 0 (available for user).

- RS1: Register Select 1.

- RS0: Register Select 0.

- OV : Arithmetic Overflow Flag.

- P : Accumulator Parity Flag.

• Flags are 1-bit registers provided to store the results of
certain program instructions. In order to conveniently address
the flags, they are grouped inside the PSW register.

8

PSW (Program Status Word)
• CY: (Carry Flag) is dual purpose: (1) As traditional CY for

arithmetic operations e.g., If A contains FFH then the instruction
ADD A, #1
leaves A equal to 00H and sets the CY in PSW. (A=00H & CY=1)
(2) As Boolean accumulator e.g., ANL C, 25H ; ANDs bit 25H with
the carry flag and places the result back in the CY.

• AC: (Auxiliary Carry Flag) used in addition of BCD numbers, is set
if a carry was generated out of bit 3 into bit 4. If the values are
added are BCD, then the add instruction must be followed by DAA
(decimal adjust accumulator) to bring results greater than 9 back
into range.

• F0: (Flag 0) is a general-purpose flag bit available for user
applications.

• OV: (Overflow flag) is set after an addition or subtraction
operation if there was an arithmetic overflow. Results greater
than +127 or less than –128 will set OV bit.

• P: (Parity Bit) automatically set or cleared each machine cycle
to establish even parity with the accumulator. Parity bit is most
commonly used in conjunction with serial port routines to
include a parity bit before or after the transmission.

• RS1 & RS0 are used to select different register banks.

PSW(Contd.)

RS1 RSO Register Bank Address

0 0 0 00h - 07h

0 1 1 08h - 0Fh

1 0 2 10h - 17h

1 1 3 18h - 1Fh

SFRs (Special Function registers)
• B Register: (at F0H) also bit addressable and used along with

the accumulator for multiply & divide operations.
E.g., MUL A B instruction multiplies the 8-bit unsigned values
in A & B and leaves the 16-bit result in A (low-byte) & B
(high-byte)
E.g., DIV A B instruction divides A by B leaving the integer
result in A and remainder in B.

• SP: (Stack Pointer) (at 81H) is an 8-bit register contains the
address of the data item currently on the top of stack. Its
operations include “Pushing” & “Popping” data from the stack.

• DPTR: (Data Pointer) is 16-bit register at 82H (DPL, low-
byte) and 83H (DPH, high-byte) used to access external code
or data memory. It can be specified by its 16-bit name, DPTR,
or by each individual byte name, DPH and DPL.

Chapter 3

Instruction Set Summary

(I. Scott Mackenzie)

8051 Addressing Modes
There are basically 5 ways of specifying source/destination operand addresses:

1. Particular On-chip Resources:
This includes the Accumulator (A), the Stack Pointer (SP), the Data Pointer
(DP), the Program Counter (PC), and the Carry (C). Other On-chip Registers are
Memory-mapped while these have special Op-codes.

2. Immediate operands:

The # sign is the designator. These are 8-bits except for DPTR contents (16- bits).

3. Register operands:
Designated as Rn, where n is 0..7. One of the four Register Bank s is used
(selected by RS0 and RS1 in PSW).

4. Direct Operands:
From 00 to FF Hex, specifies one of the internal data addresses.

5. Indirect Address:
Designated as @Ri, where i is 0 or 1, uses the contents of R0 or R1 in the
selected Register Bank to specify the address. Other form is @A, using
Accumulator contents.

8051 Addressing Modes
Addressing modes are an integral part of each computers instruction
set. They allow different ways of specifying source/destination
operand addresses depending on the programming situation. There are
8 modes of addressing:

1. Immediate

2. Register

3. Direct
4. Indirect

5. Relative

6. Absolute
7. Long
8. Indexed

9

Instruction Set : Arithmetic
Mnemonics Operands Bytes/Cycles

ADD A, Rn 1/1

ADDC A, direct 2/1

SUBB A, @Ri 1/1

A, #data 2/1

INC A 1/1

DEC Rn 1/1

direct 2/1

@Ri 1/1

INC DPTR 1/2

MUL AB 1/4

DIV AB 1/4

DA A 1/1

In Rn, n is 0..7. One of the four Register Banks is used (selected by RS0 and RS1 in PSW)
MOV PSW, #00011000B ; Select Register Bank 3
ADD A, R7 ; Add the contents of Register 7 to the Acc.

In Ri, i is 0 or 1.

Instruction Set : Logical

Mnemonic Operands Bytes/Cycles

ANL A, Rn 1/1

ORL A, direct 2/1

XRL A, @Ri 1/1

A, #data 2/1

direct, A 2/1

direct, #data 3/2

C, bit 2/2

CLR A 1/1

CPL C 1/1

bit 2/1

Instruction Set : Logical (cont'd)

Mnemonic Operands Bytes/Cycles

RL A 1/1

RLC A 1/1

RR A 1/1

RRC A 1/1

SWAP A 1/1

SETB C 1/1

CLR bit 2/1

CPL

Instruction Set : Data Transfer

Mnemonic Operands Bytes/Cycles

MOV A, Rn 1/1

A, direct 2/1

A, @Ri 1/1

A, #data 2/1

Rn, A 1/1

Rn , direct 2/2

Rn, #data 2/1

direct, A 2/1

direct, Rn 2/2

direct, direct 3/2

direct, @Ri 2/2

direct, #data 3/2

Instruction Set : Data Transfer (cont'd)
Mnemonic Operands Bytes/Cycles

MOV @Ri, A 1/1

@Ri, direct 2/2

@Ri, #data 2/1

DPTR, #data16 3/2

C, bit 2/1

bit, C 2/2

MOVX A,@DPTR 1/2

@DPTR,A 1/2

A,@Ri 1/2

@Ri,A 1/2

Instruction Set: Data Transfer (cont'd)

Mnemonic Operands Bytes/Cycles

MOVC A, @A+DPTR 1/2

A, @A+PC 1/2

PUSH direct 2/2

POP direct 2/2

XCH A, Rn 1/1

A, direct 2/1

A, @Ri 1/1

XCHD A, @Ri 1/1

10

Instruction Set : Branching

Mnemonic Operands Bytes/Cycles

LCALL addr16 3/2

ACALL addr11 2/2

RET - 1/2

RETI - 1/2

LJMP addr16 3/2

AJMP addr11 2/2

SJMP rel 2/2

JMP @A+DPTR 1/2

J Z rel 2/2

JNZ rel 2/2

Instruction Set : Branching (cont'd)
Mnemonic Operands Bytes/Cycles

CJNE A, direct, rel 3/2

A, #data, rel 3/2

Rn, #data, rel 3/2

@Ri,#data,rel 3/2

DJNZ Rn, rel 2/2

direct, rel 3/2

NOP - 1/1

JC rel 2/2

JNC rel 2/2

JB bit, rel 3/2

JNB bit, rel 3/2

JBC bit, rel 3/2

Chapter 4

Timer Operation
(I. Scott MacKenzie)

Counter / Timers (T0 & T1)
• Timer is a series of divide-by -two f l ip-f lops that receive an

input signal as a clocking source.

• Clock is applied to the first f l ip-flop, which gives output

divided by 2.

• That output of first flip-f lop clocks the second f l ip-

flop,which also divides it by 2 and so on.

• The output of the last stage clocks a timer overflow fl ip-

flop, or flag, which is tested by the software.

• It is like a counter. A 16-bit t imer would count from 0000H

to FFFFH. The overflow flag is set on the F F F F H-t o-

0000H count.

• There are two timers in 8051 i.e., T0 and T1.

• Four modes of t imer operations.

TMOD : Counter/Timer MODe Register
GATE C/T M1 M0 GATE C/T M1 M0

Timer 1 Timer 0

- GATE : Permits INTx pin to enable/disable the counter.

- C/T : Set for counter operation, reset for timer operation.

- M1, M0 :

00 : Mode 0 - 13- bit t imer mode (Emulates 8048 counter/timer).

01 : Mode 1 - 16- bit timer mode.

10 : Mode 2 - 8- bit auto- reload mode.

11 : Mode 3 - Split timer mode (Timer 0 = two 8- bit t imers).

• TMOD is not bit addressable. It is loaded, generally, by the

software at the beginning of a program to initialize the timer m ode.

TCON : Counter/Timer CONtrol Register

- TF1, TF0 : Overflow flags for Timer 1 and Timer 0.

- TR1, TR0 : Run control bits for Timer 1 and Timer 0.

Set to run, reset to hold.

- IE1, IE0 : Edge flag for external interrupts 1 and 0. *

Set by interrupt edge, cleared when interrupt is processed.

- IT1, IT0 : Type bit for external interrupts. *

Set for falling edge interrupts, reset for 0 level interrupts.

* = not related to counter/timer operation but used to detect and

initiate external interrupts.

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

Timers Interrupts

11

Timer Modes
• Timer Mode 0 (13-bit Timer):

– Timer high- byte (THx) is cascaded with the 5 least- significant
bits of the timer low- byte (TLx) to form a 13- bit timer, where x

= 0 or 1.

– Upper 3- bits of TLx are not used.

– Overflow occurs on the 1FFFH- to- 0000H and sets the timer
overflow flag.

– MSB is THx bit 7, and LSB is TLx bit 0.

– MOV TMOD, #00H ; setting both timers to mode 0

Timer
clock

Overflow
flag

TLx
5-bits

THx
8-bits

TFx Interrupt

• Timer Mode 1 (16-bit Timer):

– Same as mode 0 except that it is 16- bit. Timer high- byte (THx)
is cascaded the timer low- byte (TLx) to form a 16- bit timer,

where x = 0 or 1.

– Clock is applied to the combined high and low- byte timer
registers.

– Overflow occurs on the FFFFH-to- 0000H and sets the timer
overflow flag.

– MSB is THx bit 7, and LSB is TLx bit 0.

– LSB toggles at clock frequency/2 and MSB at clock
frequency/216

Timer Modes (cont'd)

Timer
clock

Overflow
flag

THx
8-bits

TFx InterruptTLx
8-bits

• Timer Mode 2 (Auto-Reload):

– Timer low - byte (TLx) operates as an 8- bit timer while the
timer high - byte (THx) holds a reload value.

– When the count overflows from FFH- to- 00H , not only the

timer flag set, but also the value in THx is loaded into TLx,
and counting continues from this value up to next FFH- to-
00H, so on.

Timer Modes (cont'd)

Timer
clock

Overflow
flag

THx
8-bits

TFx InterruptTLx
8-bits

Trigger
Reload

Timer Modes (cont'd)• Timer Mode 3:

– Timer 0 Splits into two 8- bit counter/timers. TL0 and TH0 act as
two separate timers with overflows setting the TF0 and TF1

respectively.

– Timer 1 (when t imer 0 is in mode 3):

§ Counter stopped if in mode 3

§ Can be used in mode 0, 1, or 2

§ Has gate (INT1) and external input (T1), but no flag or

interrupt.

§ May be used as a baud rate generator.

Timer
clock

TH1
8-bits

TL1
8-bits

Overflow flag

Timer
clock

TF0 InterruptTL0
8-bits

Overflow flag
/12 Fosc. TF1 InterruptTH0

8-bits

Clocking Sources

1. Interval Timing
2. Event Counting

Clocking Sources (contd.)

1. Interval Timing:
• If C/T = 0 (in TMOD), timer operation is selected

and timer is clocked from on-chip oscillator. A
divide-by-12 clock frequency is applied.

• Timer registers (TLx/THx) increment at a rate of
1/12th the frequency of on-chip oscillator.

• 12 MHz crystal would yield a clock rate of 1 MHz.
• Timer overflows occur after a fixed number of

clocks, depending on the initial value loaded into the
timer registers.

12

Clocking Sources (contd.)

2. Event Counting:

• If C/T = 1 (in TMOD), counter operation is selected and timer
is clocked from external source. Usually, external source
supplies the timer with a pulse upon the occurrence of an
event. Timer counts those events.

• External clock source comes through P3.4 (for Timer 0) and
P3.5 (for Timer 1).

• Timer registers are incremented in response to a 1-to-0
transition at the external input.

• Number of external events is determined in software by
reading the timer registers TLx/THx.

Start, Stop, and Control of Timers

• TRx bit in bit addressable register TCON is
responsible for starting and stopping the counters

– TRx = 0 stops/disables the timers (e.g., CLR TR1)

– TRx = 1 starts/enables the timers (e.g., SETB TR0)

• System reset clears TRx, so timers are disabled by
default.

Timer 1 Operating in 16-bit (Mode 1)

Osc. ÷12 Osc.

TL1
8-bits

TF1 TH1
8-bits

Interrupt

Control

T1
(P3.5)

TR1

Gate
INT1
(P3.3)

C/T

8051
12MHz

0=Up, 1=Down

Gate Disable/Enable INT
0=Disable, 1=Enable

Initializing and Accessing Timer Registers
• Timers are usually initialized once at the beginning of

the program to set the correct operating mode.

• Then, within the body of a program, the timers are
started, stopped, flag bits are tested and cleared, timer
registers read or updated, and so on, as required in the
application.

• First register to be initialized is TMOD to set the mode of
operation e.g.,

MOV TMOD, #00010000B ; sets Timer 1 in mode 1, leave
C/T = 0 and GATE = 0 for internal clocking, and clears
the Timer 0 bits.

Initializing and Accessing Timer Registers
(Contd.)

• Secondly, registers to be initialized are TLx/THx. E.g.,
For 100ìs interval, the following instruction will do the
job

MOV TL1, #9CH ; (-100)10 = FF9CH

MOV TH1, #FFH ; load Timer 1 registers by FF9CH

Initializing and Accessing Timer Registers
(Contd.)

• The timer is then started by setting the run control bit i.e.,
SETB TR1

• Overflow flag is automatically set 100ìs later. Following
instruction will check that
WAIT: JNB TF1, WAIT ; wait until overflow flag is set.

• When the timer overflows, it is necessary to stop the
timer and clear the overflow flag in software by the
following instructions:
CLR TR1 ; stop Timer 1

CLR TF1 ; clear overflow flag of Timer 1

13

Short and Long Intervals

• Shortest possible interval is one machine cycle i.e.,
1ìs (using 12 MHz crystal frequency).

• An 8-bit counter can give maximum delay of 256ìs
because 28=256.

• A 13-bit counter can give maximum delay of 8192ìs
because 213=8192.

• A 16-bit counter can give maximum delay of 65536ìs
because 216=65536.

65536ì s = 0.065536 sec = 0.066 sec (approx.)

Short and Long Intervals
(Contd.)

• For more than 0.066 sec delay, there are two methods:

1. Cascade Timer 0 and Timer 1 but in this way both
timers will be tied up.

2. Use one timer in 16-bit mode with a software loop
counting overflows.

Chapter 5

Serial Port Operation

(I. Scott MacKenzie)

Introduction
• 8051 includes an on-chip serial port that can operate in

four modes over a wide range of frequencies.
• Essential function of serial port is to perform parallel-to-

serial conversion for output data, and serial-to-parallel
conversion for input data.

• Transmission bit is P3.1 on pin 11 (TXD) and
reception bit is P3.0 on pin 10 (RXD).

• Features full duplex (simultaneous reception and
transmission).

• Receive buffering allowing one character to be received
and held in a buffer while a second character is received.
If the CPU reads the first character before the second is
fully received, data are not lost.

• Two SFRs (SBUF & SCON) provide software access to
serial port.
– Writing to SBUF loads data to be transmitted and

reading SBUF accesses received data.
– SCON is a bit addressable register containing status

bits and control bits. Control bits set the operating
mode and status bits indicate the end of a character
transmission or reception. The status bits are tested in
software or programmed to cause an interrupt.

• Serial port frequency of operation (baud rate) can be fixed
or variable.
– Fixed is derived from on-chip oscillator and variable is

supplied by Timer 1 which must be programmed
accordingly.

SCON : Serial Port CONtrol Register (098H)

- SM0, SM1 : Serial Port Mode bits
Mode Baud Rate

00 = Mode 0 : Shift register I/O Fixed (oscillator frequency/12)

01 = Mode 1 : 8-bit UART Variable (set by timer)

10 = Mode 2 : 9-bit UART Fixed (osc frq/32 or osc frq/64)

11 = Mode 3 : 9-bit UART Variable (set by timer)

- SM2 : Serial Port Mode bit
Mode 0 : Not used.

Mode 1 : 1 = Ignore bytes with no stop bit.

Mode 2,3 : 0 = Set receive interrupt (RI) on all bytes.

: 1 = Set RI on bytes where 9th bit is 1.

SMO SM1 SM2 REN TB8 RB8 TI RI

14

- REN: Receiver enable. Must be set to receive characters.
- TB8: Transmit bit 8. Ninth bit transmitted (in modes 2

and 3); set/cleared by software.
- RB8: Receive bit 8. Ninth bit received (in modes 2 and 3):

Mode 0 : Not used.

Mode 1 : Stop bit.
Mode 2, 3 : Ninth data bit.

- TI: Transmit interrupt flag. Set at end of character
transmission; cleared by software.

- RI: Receive interrupt flag. Set at end of character
reception; cleared by software.

SCON (contd.)
Serial Interface

- Full duplex UART (Universal Asynchronous Receiver
/Transmitter is a device that receives and transmits serial
data with each data character preceded by a start bit “0”
and followed by a stop bit “1”). Sometimes a parity bit is
inserted between the last data bit and the stop bit.

- The essential operation of a UART is to perform parallel-
to-serial conversion for output data, and serial-to-parallel
conversion for input data.

- 10 or 11 bit frames.
- Interrupt driven.
- Registers:

SCON - Serial port control register.
SBUF - Read received data.

- Write data to be transmitted.

Serial Port Block Diagram

SBUF
(write only)

SBUF
(read only)

Shift Register
CLKCLK

Baud rate clock
(transmit)

Baud rate clock
(receive)

DQ

TXD
(P3.1)

RXD
(P3.0)

8051 Internal Bus

Mode 0: 8-Bit Shift Register Mode. Terms RXD & TXD
are misleading in this mode. RXD line is used for both
input and output. TXD line serves as the clock.

• Eight bits are transmitted and received with the LSB first.
Baud Rate is 1/12 of on-chip oscillator frequency.

• Transmission is initiated by any instruction that writes
data to SBUF. Data are shifted out on RXD line with
clock pulses sent out by the TXD line. Each transmitted
bit is valid on the RXD pin for one machine cycle. E.g.,
MOV SBUF, A

• Reception is initiated when the receiver enable bit (REN)
is 1 and the receive interrupt bit (RI) is 0. REN is set at
the beginning of the program, and then clear RI to begin a
data input operation. The clocking of data into serial port
occurs on the positive edge of TXD.

Serial Interface Modes of Operation

Mode 1: Serial port operates as an 8-bit UART with a
variable baud rate.10-bits are transmitted on TXD or
received on RXD. Start bit (always 0), 8 data bits (LSB
first), and a stop bit (always 1). For a receive operation,
the stop bit goes into RB8 in SCON. Baud Rate Clock is
variable using Timer 1 overflow or external count input.

• Transmission is initiated by writing data to SBUF, but
does not start until the next rollover of the divide-by-16
counter supplying the serial port baud rate. Shifted data
are outputted on the TXD line beginning with the start
bit. The transmit interrupt flag (TI) is set as soon as the
stop bit appears on TXD.

• Reception is initiated by a 1-to-0 transition on RXD.
The divide-by-16 counter is immediately reset to align
the counts with the incoming bit stream.

Mode 2: Serial port operates as a 9-bit UART with a
fixed baud rate. 11-bits are transmitted or received.
Start bit (always 0), 8 data bits (LSB first), a
programmable 9th bit, and a stop bit (always 1).

• On transmission, the 9 th bit whatever has been put in
TB8 in SCON (may be a parity bit).

• On reception, the 9 th bit is placed in RB8 in SCON.

• Baud Rate is programmable to either 1/32 or 1/64 of
the on-chip oscillator frequency.

15

Mode 3: Serial port operates as a 9-bit UART
with a variable baud rate. 11-bits are transmitted
or received. Baud Rate is programmable and
provided by the Timer 1 overflow or external
input.

Summary:
Baud rate: Fixed in mode 2, variable in modes 1 & 3

Data Bits: Eight in mode 1, nine in modes 2 & 3

Initialization
• Receiver Enable Bit (REN): must be set by software to

enable the reception of characters at the beginning of a
program when the serial port, timers, etc. are initialized.
The instructions are

SETB REN or MOV SCON, #xxx1xxxxB
• The 9th Bit: transmitted must be loaded into TB8 by

software and received is placed in RB8.
• Adding a Parity Bit: is a common use of 9th bit. E.g., if

communication requires 8 data bits plus even parity
MOV C, P ; Put even parity bit in C flag
MOV TB8, C ; This becomes the 9th data bit in TB8
MOV SBUF, A ; Move 8 bits from ACC to SBUF

• E.g., if communication requires 8 data bits plus odd parity
MOV C, P ; Put even parity bit in C flag
CPL C ; Convert to odd parity
MOV TB8, C ; This becomes the 9th data bit in TB8
MOV SBUF, A ; Move 8 bits from ACC to SBUF

• Parity can be used in mode 1 also if the 7 data bits are
used. E.g., 7-bit ASCII code with even parity can be
transmitted as follows:

CLR ACC.7 ; Ensure MSB is clear
MOV C, P ; Put even parity bit in C flag
MOV ACC.7, C ; Copy even parity bit into MSB
MOV SBUF, A ; Send character

• RI & TI in SCON play an important role in serial communications.
Both bits are set by hardware but must be cleared by software.

– RI is set at the end of character reception and indicates “receive
buffer full”.

– This condition is tested in software or programmed to cause an
interrupt.

– If software wishes to input a character from the device connected
to the serial port, it must wait until RI is set, then clear RI and
read the character from SBUF.

WAIT:JNB RI, WAIT ; Check RI until set
CLR RI ; Clear the flag
MOV A, SBUF ; Read character

Interrupt Flags (RI &TI)

– TI is set at the end of character transmission and
indicates “transmit buffer empty”.

– If software wishes to send a character to the device
connected to the serial port, it must wait until TI is set
(means previous character was sent, wait until
transmission is finished before sending the next
character), then clear TI and send the character.

WAIT: JNB TI, WAIT ; Check TI until set
CLR TI ; Clear the flag
MOV SBUF, A ; Send character

Interrupt Flags (RI &TI) contd. Multiprocessor Communication
• Serial Communication Modes 2 and 3 allow one

"Master" 8051 to control several “Slaves” 8051.

• The serial port can be programmed to generate an
interrupt (RI) if the 9th data bit = 1 by setting the SM2
bit in SCON.

• The TXD outputs of the slaves are tied together and to
the RXD input of the master. The RXD inputs of the
slaves are tied together and to the TXD output of the
master.

• Each slave is assigned an address. Address bytes
transmitted by the master have the 9th bit = 1 & data
bytes have it = 0.

16

Multiprocessor Communication (Contd.)

• When the master transmits an address byte, all the
slaves are interrupted. The slaves then check to see if
they are being addressed or not.

• The addressed slave will clear its SM2 bit and
prepare to receive the data bytes that follows and the
slaves that weren’t addressed leave their SM2 bits
set and go about their business, ignoring the
incoming data bytes. They will be interrupted again
when the next address byte is transmitted by the
master processor.

Baud Rates
• Baud rate is also affected by a bit in the PCON register.

PCON.7 is SMOD bit. If SMOD = 1, baud rate will be
doubled in modes 1, 2 and 3.

• Mode 2 baud rate is the 1/64th the oscillator frequency
(SMOD = 0) and can be doubled to 1/32nd the oscillator
frequency (SMOD = 1).

• PCON is not bit-addressable, setting SMOD without
altering the other bits requires a “read-modify-write”
operation as follows:

MOV A, PCON ; Get current value of PCON
SETB ACC.7 ; Set SMOD
MOV PCON, A ; Write value back to PCON

Using Timer 1 as Baud Rate Clock
• Usually the timer is used in auto-reload mode and TH1 is loaded

with a proper reload value.
• Formula for the baud rate in modes 1 and 3 is

Baud Rate = Timer 1 Overflow Rate / 32
e.g., For 1200 baud

1200 = Timer 1 Overflow Rate / 32
Timer 1 Overflow Rate = 38400 Hz

• Timer must overflow at a rate of 38.4 kHz and the timer is clocked
at a rate of 1000 kHz (1 MHz), overflow required every 1000/38.4
= 26.04 clocks, so

MOV TH1, # -26
• Due to rounding, there is a slight error in the resulting baud rate.

Up to 5% is tolerable using asynchronous communications. Exact
baud rates are possible using an 11.059 MHz crystal (Table 5-3).

To initialize the serial port to operate as an 8-bit UART at
2400 baud.

ORG 0000H

MOV SCON,#52H ;serial port mode 1
MOV TMOD,#20H ;timer 1, mode 2
MOV TH1, #-13 ;reload count for 2400 baud
SETB TR1 ;start timer 1
END

Initializing the Serial Port

Initializing the Serial Port
SMO SM1 SM2 REN TB8 RB8 TI RISCON:

0 1 0 1 0 0 1 0 (52H)
• (SM0/SM1=0/1) sets serial port into 8-bit UART, (REN=1) enables the serial port to
receive characters, (TI=1) allows transmission of the first character by indicating that
the transmit buffer is empty.

GATE C/T M1 M0 GATE C/T M1 M0TMOD:

• (M1/M0=1/0) puts Timer 1 into auto-reload mode.

0 0 1 0 0 0 0 0 (20H)

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0TCON:
0 1 0 0 0 0 0 0 (40H)

• (TR1=1) turns ON Timer 1.

Tb7 b6 b5 b4 b3 b2 b1 b0TH1:
1 1 1 1 0 0 1 1 (F3H)

• Loads the re-load value –13 or F3H in the TH1 register.

Chapter 6

Interrupts

(I. Scott Mackenzie)

17

Interrupts
• An interrupt is the occurrence of an event that causes a

temporary suspension of a program while the condition
is serviced by another program.

• It is like a sub-routine. CPU cannot execute more than
one instruction at a time; but it can temporarily suspend
execution of one program, execute another, then return
to the first program.

• Difference in interrupt and subroutine is that in an
interrupt-driven system, the interruption occur
asynchronously with the main program, and it is not
known when the main program will be interrupted.

• Program that deals with the interrupt is called as ISR
(Interrupt Service Routine).

Program Execution
Main Program

Time
Program execution without interrupts

Main

ISRISRISRISR

MainMain Main Main

Time Interrupt Return from interrupt instruction

Program execution with interrupts

Interrupt System
- Five interrupt sources in order of polling (priority) sequence are:

External Interrupt 0
Timer 0

External Interrupt 1
Timer 1

Serial Port
- The polling sequence is fixed but each interrupt type can be

programmed to one of two priority levels.
- If two interrupts of same priority occur simultaneously then polling

sequence will determine which is serviced first.
- External interrupts can be programmed for edge or level sensitivity.

- Each interrupt type has a separate vector address.
- All interrupts are disabled after a system reset and enabled

individually by software.

Processing Interrupts
When an interrupt occurs and is accepted by CPU, the
following actions occur:

–Current instruction’s complete execution

–PC is saved on the stack

–PC is loaded with the vector address of the ISR

–ISR executes and takes action in response to interrupt

–ISR finishes with a RETI instruction

–PC is loaded with its old value from the stack

–Execution of main program continues where it left off

IE : Interrupt Enable Register (0A8H)

(1 = Enabled, 0 = Disabled)

- EA : Global interrupt enable/ disable.
- ES : Serial port interrupt enable/ disable.
- ET1 : Timer 1 interrupt enable/ disable.
- EX1: External interrupt 1 enable/ disable.
- ET0 : Timer 0 interrupt enable/ disable.
- EX0: External interrupt 0 enable/ disable.
e.g., Timer 1 interrupt can be enabled as follows:

SETB EA ; Enable global interrupt bit

SETB ET1 ; Enable Timer 1 interrupt

Or MOV IE, #10001000B

EA ---- ---- ES ET1 EX1 ET0 EX0

IP: Interrupt Priority Register (0B8H)

(1 = High priority, 0 = Low priority)

- PS : Priority for Serial port interrupt.
- PT1: Priority for Timer 1 interrupt.
- PX1 : Priority for External interrupt 1.
- PT0 : Priority for Timer 0 interrupt.
- PX0 : Priority for External interrupt 0.

IP is cleared after a system reset to place all
interrupts at the lower priority level by default.

----- ----- ----- PS PT1 PX1 PT0 PX0

18

Interrupt Vector

• When an interrupt is accepted, the value loaded
into the PC is called the interrupt vector. It is the
address of the start of the ISR for the interrupting
source.

• When an interrupt is vectored, the flag that
caused the interrupt is automatically cleared by
hardware.

• Timer interrupts occur when the timer registers
(TLx/THx) overflow and set the overflow flag
(TFx).

Interrupt Vector Addresses

RI or TI

TF1

IE1

TF0

IE0

RST

Flag

0023H

001BH

0013H

000BH

0003H

0000H

Vector
Address

SCON.0 or
SCON.1

Serial Port

TCON.7Timer 1

TCON.3External 1

TCON.5Timer 0

TCON.1External 0

System Reset

SFR & Bit
Position

Interrupt

• Each one is 8 byte in size.

SCON : Serial Port CONtrol Register (098H)

SMO SM1 SM2 REN TB8 RB8 TI RI

• TI: Transmit interrupt flag. Set at the end of
character transmission; cleared by software.

• RI: Receive interrupt flag. Set at the end of
character reception; cleared by software.

Serial Interrupts

External Interrupts

• External interrupt occurs as a result of a low-level or
negative-edge on the INT0 or INT1 pin of 8051.

• Flags that generate these interrupts are bits IE0 and
IE1 in TCON. These are automatically cleared when
the CPU vectors to the interrupt.

• Low-level or negative-edge activated interrupts can
be programmed through IT0 and IT1 bits in TCON,
i.e., ITx = 0 means low-level and ITx = 1 means
negative-edge triggered.

TCON : Counter/Timer CONtrol Register (088H)

- TF1, TF0 : Overflow flags for Timer 1 and Timer 0.

- TR1, TR0 : Run control bits for Timer 1 and Timer 0.

Set to run, reset to hold.

- IE1, IE0 : Edge flag for external interrupts 1 and 0. *

Set by interrupt edge, cleared when interrupt is processed.

- IT1, IT0 : Type bit for external interrupts. *

Set for falling edge interrupts, reset for 0 level interrupts.

* = not related to counter/timer operation but used to detect and initiate

external interrupts.

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

Timers Interrupts

