
King Fahd University of Petroleum and Minerals 
College of Computer Science and Engineering 

Computer Engineering Department 
 
 
 
 
 
 
 

COE 400 Digital Systems Design 
 
 
 
 
 

Lab Manual 
 
 

Prepared By: 
Dr. Abdelhafid Bouhraoua 

 
 
 
 
 
 
 
 
 

August 2007 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 2

 

Lab 1: Introduction to the Rabbit core module 
 

Contents 

Objectives 
The objective of this lab is to provide the students with an introduction to the Rabbit core module. 
 

• The Rabbit System 
• The IDE 
• The way it works 
• First Program (Turning On a LED) 
• Lab Work: Writing a program that makes the LED blink. 

 

The Rabbit System 
The Rabbit family of core modules provides embedded systems developers with a versatile 
platform packaged in a series of miniature boards called core modules. These modules are based 
on several versions of the Rabbit microprocessor (R2000, R3000 and R4000). The module cores 
used in these labs are based on the R3000 microprocessor. 
 

 
Figure 1: The Rabbit R3000 microprocessor chip 

 
The Rabbit modules have several features that enable them to be easily integrated into embedded 
systems solutions.  
 
The Rabbit core module used in this lab is the RCM3600/RCM3610. The RCM3600 is a compact 
module that incorporates the powerful Rabbit 3000 microprocessor, flash memory, static RAM, 
and digital I/O ports. The RCM3600 has a Rabbit 3000 microprocessor operating at 22.1 MHz, 
static RAM, flash memory, two clocks (main oscillator and real-time clock), and the circuitry 
necessary for reset and management of battery backup of the Rabbit 3000's internal real-time 
clock and the static RAM. One 40-pin header brings out the Rabbit 3000 I/O bus lines, parallel 
ports, and serial ports. This core provides the user with the following feature set: 

• Small size: 1.23" x 2.11" x 0.62"(31 mm x 54 mm x 16 mm)  



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 3

• Microprocessor: Rabbit 3000 running at 22.1 MHz  

 
Figure 2: RCM3600 core module 

• 33 parallel 5 V tolerant I/O lines: 31 configurable for I/O, 2 fixed outputs  
• External reset I/O  
• Alternate I/O bus can be configured for 8 data lines and 5 address lines (shared with 

parallel I/O lines), I/O read/write  
• Ten 8-bit timers (six cascadable) and one 10-bit timer with two match registers  
• 512K flash memory, 512K SRAM (RCM 3610 has 256K flash memory and 128K 

SRAM)  
• Real-time clock  
• Watchdog supervisor  
• Connections via header J1 for customer-supplied backup battery  
• 10-bit free-running PWM counter and four pulse-width registers 
• Two-channel Input Capture can be used to time input signals from various port pins  
• Two-channel Quadrature Decoder accepts inputs from external incremental encoder 

modules  
• Four available 3.3 V CMOS-compatible serial ports with a maximum asynchronous baud 

rate of 2.76 Mbps. Three ports are configurable as a clocked serial port (SPI), and one 
port is configurable as an HDLC serial port. Shared connections to the Rabbit 
microprocessor make a second HDLC serial port available at the expense of two of the 
SPI configurable ports, giving you two HDLC ports and one asynchronous/SPI serial 
port.  

• Supports 1.15 Mbps IrDA transceiver 

The programming environment is based on an extended version of the C language. This version is 
called Dynamic C. A large set of libraries are included within the Dynamic C package. Dynamic 
C is an integrated development system for writing embedded software. It is designed for use with 
the family of Rabbit controllers and other controllers from the Zworld family. 

The RCM3600 receives its +5 V power from the customer-supplied motherboard on which it is 
mounted. The RCM3600 can interface with all kinds of CMOS-compatible digital devices 
through the motherboard. 

 

 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 4

The Integrated Development Environment (IDE) 
Dynamic C is an integrated development system for writing embedded software. It is designed for 
use with Rabbit controllers and other controllers based on the Rabbit microprocessor. 
 

 
 

Figure 3: Dynamic C main window 
 

Dynamic C integrates the following development functions:  
• Editing  
• Compiling  
• Linking  
• Loading  
• Debugging 

 
into one program. In fact, compiling, linking and loading are one function. Dynamic C has an 
easy-to-use, built-in, full-featured, text editor. Dynamic C programs can be executed and 
debugged interactively at the source-code or machine-code level. Pull-down menus and keyboard 
shortcuts for most commands make Dynamic C easy to use.  

How does it work? 
Designing embedded systems is a very time and resource intensive task. The main steps in 
realizing the system are often: 

• Hardware design: design the hardware that will enable the target application to run. 
• Hardware setup: set up all the hardware required for the application to run properly. This 

includes connecting all the needed connections and power supply wires. 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 5

• Design the software algorithm that will be included in the microprocessor core module 
and that will govern the behavior of the system 

• Open the Dynamic C IDE and start writing the code that will implement the desired 
algorithm 

• Connect the programming cable to the host PC 
• Run and debug the program 

 
The programming cable, as shown in Figure 4, connects to the host PC (through the PC serial 
port) on one side and to the RCM3600 on the other side. The edge of the cable on the opposite 
side of the serial connector contains two connectors. These are 10-pins connectors with 1.27mm 
spacing organized in two rows of 5 connectors. One of the connectors shows a label on which the 
word “PROG” is written. The other one bears the word “DIAG”. Only the connector with the 
“PROG” label is used. 
 

 
 

Figure 4: 1.27mm Programming cable 
 
The programming cable is connected on the RCM3600 J2 connector on the top of the board. 
Figure 5 shows a zooming of the J2 connector and its location on the board. 

 
 

Figure 5: Programming Connector on the RCM3600 
 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 6

The programming cable connects the RCM3600 to the PC running Dynamic C to download 
programs and to monitor the RCM3600 module during debugging.  

Connect the connector of the programming cable labeled PROG to header J2 on the RCM3600. 
Be sure to orient the marked (usually red) edge of the cable towards pin 1 of the connector. Pin 1 
is on the side of the connector away from the board’s edge. 

Running A Sample Program 
The following program is a very simple introductory program that simply prints a series of text 
strings onto the standard output using the C printf statement: 
//********************************************************************* 
// King Fahd University of Petroleum and Minerals 
// College of Computer Science and Engineering 
// Computer Engineering Department 
//--------------------------------------------------------------------- 
// COE-400 Digital Systems Design Lab. 
// Author:         Dr. Abdelhafid Bouhraoua 
//--------------------------------------------------------------------- 
// file:            Sample_prg.c 
//  
// Version:         1.0 
// Released:        08/20/2007 
// Description:     This is a sample program that displays a group  
//                  of text strings on the standard output. 
//                  The printf statements used in this program are  
//                  executed by the rabbit. The use of printf  
//                  statements allows to debug the program while being 
//                  executed on the rabbit and not on the PC 
//********************************************************************* 
 
#class auto 
 
main() { 
 
int i,j,k; 
char prime; 
 
   printf("-------------------------------------------------\n"); 
 printf(" This is a simple program executed on the rabbit\n"); 
   printf("-------------------------------------------------\n"); 
 
   // print the 1st 100 prime numbers 
 
   printf(" Prime Number = 1\n"); 
   printf(" Prime Number = 2\n"); 
 
   k = 3; 
   while(k < 100) { 
     i = 2; 
     prime = 1; 
     while((i<=k/2) && (prime == 1)) { 
        j = k/i; 
        j = j*i; 
        if(j == k) prime = 0; 
        else i++; 
     } 
     if(prime == 1) 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 7

       printf(" Prime Number = %d\n",k); 
     k++; 
   } 
} 
 
To get familiar with the rabbit, you are invited to execute the first two programs of the tutorial 
provided with the documentation.



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 8

 

Lab 2: Timers 
 

Contents 
 

Objective 
To learn how to use the internal timers to: 

• generate periodic signals 
• measure time 
• generate internal events 

Timers in the Rabbit 
There are two timers--Timer A and Timer B. Timer A is intended mainly for generating the clock 
for various peripherals, baud clock for the serial ports, a periodic clock for clocking Parallel Ports 
D and E, or for generating periodic interrupts. Timers A1-A7 are general-purpose timers, and 
Timers A8-A10 are dedicated to specific peripherals. Timer B is more flexible when it can be 
used because the program can read the time from a continuously running counter and events can 
be programmed to occur at a specified future time. 

 
Figure 2.1 – Rabbit Timers 

Timer A consists of ten separate countdown timers A1-A10. Timers A1 and A2-A10 are 8-bit 
countdown registers. The reload register can contain any number in the range from 0 to 255. The 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 9

counter divides by (n+1). For example, if the reload register contains 131, then the counter will 
count for 132 clock pulses. If the reload register contains zero, then the counter realizes a division 
by one.  

The Timer B counter can be driven directly by perclk/2, by that clock divided by 8, or by the 
output of Timer A1. Timer B has a continuously running 10-bit counter. The counter is compared 
against two match registers, the B1 match register and the B2 match register. When the counter 
transitions to a value equal to a match register, an internal pulse with a length of 1 peripheral 
clock is generated. The match pulse can be used to cause interrupts and/or clock the output 
registers of Parallel Ports D and E. 

For more explanations about timers in the rabbit refer to the R3000 microprocessor 
documentation. 

Timer Experiment 
Generate a 50% duty cycle clock of a frequency of 30 kHz. Use the oscilloscope to confirm the 
period and the duty cycle. 
 
To generate a 50% duty cycle of a frequency of 30 kHz we must do the following: 

• Program the timer to produce a frequency equal to the double of 30 kHz which is 60 kHz. 
The period is 16.66 µs. 

• Detect the end of count event from the timer by continuously monitoring the status bit 
corresponding to the used timer. 

• Use the event to toggle a parallel port programmed as output from 1 to 0 and from 0 to 1 
everytime the end-of-count event is detected. 

 
The following source code will produce a 50% duty cycle clock of 30 kHz: 
//********************************************************************* 
// King Fahd University of Petroleum and Minerals 
// College of Computer Science and Engineering 
// Computer Engineering Department 
//--------------------------------------------------------------------- 
// COE-400 Digital Systems Design Lab. 
// Author:         Dr. Abdelhafid Bouhraoua 
//--------------------------------------------------------------------- 
// file:            TIMER_30KHZ.c 
//  
// Version:         1.0 
// Released:        08/20/2007 
// Description:     This program uses timers A1 and A2 to produce an 
//                  external clock of 30 kHz on a parallel output pin 
//                  PB5. It continuously polls Timer A status register  
//                  to determine whether the programmed countdown time 
//                  has elapsed or not.  
//                  When the time is elapsed the clock value is flipped 
//                  and set to output PB5. 
//********************************************************************* 
#class auto 
 
main() { 
   int b, toggle; 
 
   toggle = 0;                               // set the clock to 0 
   BitWrPortI(PBDDR, &PBDDRShadow, 1, 5);    // set port PB5 to output  



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 10

   //BitWrPortI(PEDDR, &PEDDRShadow, 1, 4);    // set port PE4 to 
output 
 
   WrPortI(PECR, &PECRShadow, 0x10);         // transfer high nibble on  
                                             //  output of Timer A1 
 
   BitWrPortI(PBDR, &PBDRShadow, 0, 5);      // Initialize PB5 to 0 
   //BitWrPortI(PEDR, &PEDRShadow, 0, 4);      // Initialize PE4 to 0 
   BitWrPortI(TACSR, &TACSRShadow, 0, 1);    // Disable interrupts 
   BitWrPortI(TACR, &TACRShadow, 1, 2);      // Timer 2 clocked by              
                                             //  output of A1 
   BitWrPortI(TAPR, &TAPRShadow, 1, 2);      // Clock of Timer A1 is  
                                             //  perclk/2 
   WrPortI(TAT1R, &TAT1RShadow, 0xAF);       // set to 11 to generate a  
                                             //  perclk/22 which is  
                                             //  1 MHz 
   WrPortI(TAT2R, &TAT2RShadow, 0x0F);       // set to 15 to generate a  
                                             //  17 us event 
 
   BitWrPortI(TACSR, &TACSRShadow, 1, 0);    // Enable main clock 
   while(1) { 
     b = 0; 
     while (b == 0) {                        // Loop as long as Timer  
                                             //  A2 has not reloaded 
       b = RdPortI(TACSR);                   // Read the Timer A Status  
                                             //  Register 
       b = b & 0x04;                         // test bit 2  
                                             //  corresponding to  
                                             // Timer A2 status 
     } 
     if(toggle == 0) toggle = 1;             // flip the clock value  
                                             // (1 --> 0 and 0 --> 1) 
     else toggle = 0; 
     BitWrPortI(PBDR, &PBDRShadow, toggle, 5);  // Set clock on PB5 
     //BitWrPortI(PEDR, &PEDRShadow, toggle, 4);  // Set next value on 
PE4 
   } 
} 

Lab Work 1 
1. Modify the frequency to 17 kHz. 
2. Modify the duty cycle of the clock to 30% and 70%.  
Use the oscilloscope to verify the settings.  
 

Lab Work 2 
Determine the frequency of the core module using a single timer by measuring the number of 
times the timer times out during one second. To measure one second, the R3000 has an on-chip 
real time clock that is accessed through a system variable called SEC_TIMER. This variable is 
incremented automatically after one second. The variable is of type long 
 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 11

Lab 3: Parallel Ports Interfacing 
 

Contents 

Objective 
To enable the students to effectively and efficiently use the parallel ports of microcontrollers. 

Introduction to Parallel Ports 
A parallel port is a group of I/O that can be controlled (driven) or listened to (read) from inside 
the microcontroller. These groups of I/O are commonly referred to as “parallel ports” by 
opposition to “serial ports”. 
Parallel ports are characterized by the following features: 

• Software selectable direction (input or output) 
• Software accessible wire values through registers that are directly connected to the IO 

pins. 
 Ability to read the logic values currently driving the wire connected to the IO pin (in 

the case it is programmed as input). 
 Ability to drive the wire connected to the IO pin with the desired logic value (in the 

case it is programmed as output). 
 

Parallel Ports in the Rabbit 

The Rabbit has seven 8-bit parallel ports designated A, B, C, D, E, F, and G. The pins used for 
the parallel ports are also shared with numerous other functions. The important properties of the 
ports are summarized below.  

• Port A--Shared with the slave port data interface and auxiliary I/O data bus.  
• Port B--Shared with control lines for slave port, auxiliary I/O address bus, and clock I/O 

for clocked serial mode option for Serial Ports A and B.  
• Port C--Shared with serial port data I/O.  
• Port D--4 bits shared with alternate I/O pins for Serial Ports A and B. 4 bits not shared. 

Port D can be configured as open drain outputs. Port D also contains output preload 
registers that can be clocked into the output registers under timer control for pulse 
generation.  

• Port E--All bits of Port E can be configured as I/O strobes. 4 bits of port E can be used as 
external interrupt inputs. One bit of port E is shared with the slave port chip select. Port E 
has output preload registers that can be clocked into the output registers under timer 
control for pulse generation.  

• Port F-- As outputs, Port F can be configured as open drain outputs. Alternatively, 
Parallel Port F outputs can carry the four Pulse-Width Modulator outputs. As inputs, 
Parallel Port F inputs can carry the inputs to the two channels of the quadrature decoders. 
Port F pins can also be configured to be used as clock pins for clocked Serial Ports C and 
D.  

• Port G--As outputs, Port G can be configured as open drain outputs. Port G inputs and 
outputs are also used for access to other serial peripherals on the chip such as those used 
for asynchronous or SDLC/HDLC communication.  

• Parallel Ports D-G behave in the same manner when used as digital I/O. 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 12

In the RC3600, not all the ports from the R3000 are accessible in the connector. Figure 3 shows 
the J1 connector that depicts the accessible ports in the RCM3600. 

 

Figure 3.1: RCM3600 Pinout 

Toggle switch controlled LED 
The first experiment using parallel ports is to connect a toggle switch to a microcontroller and use 
it to control the lighting of a LED. The setup, as shown in Figure 3.2 below, uses two parallel port 
pins PB3 and PB5. PB3 is connected to the toggle switch and PB5 is driving the LED. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2: Toggle switch controlled LED Experiment setup 
 

PB3 

Microcontroller 

PB5 

Toggle switch 

Vdd 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 13

The toggle switch is a switch that has 3 connectors. Two connectors are edge connectors and a 
middle connector. The middle connector is connected to either one of the edge connector 
alternatively according to the switch contact position. 
 
The following program realizes the control of the lighting of the LED using the toggle switch. 
//********************************************************************* 
// King Fahd University of Petroleum and Minerals 
// College of Computer Science and Engineering 
// Computer Engineering Department 
//--------------------------------------------------------------------- 
// COE-400 Digital Systems Design Lab. 
// Author:         Dr. Abdelhafid Bouhraoua 
//--------------------------------------------------------------------- 
// file:            Sample1.c 
//  
// Version:         1.0 
// Released:        08/20/2007 
// Description:     This program changes the status of a LED using the 
//                  value input from a toggle switch. 
//                  The toggle switch is connected on PB3 and the LED  
//                  is connected on PB5. 
//                  Change the value only when the toggle switch first  
//                  goes to 1. Use the "toggle" flag to ensure that 
//                  the LED status is not changed continuously when  
//                  the toggle switch is connected to Vdd. 
//********************************************************************* 
#define TOGGLE_IN 3 
#define LED_OUT 5 
 
#class auto 
 
main() { 
   int led, toggle; 
 
   led = 0; 
   toggle = 0; 
 
   BitWrPortI(PBDDR, &PBDDRShadow, 0, TOGGLE_IN); // Set as input 
   BitWrPortI(PBDDR, &PBDDRShadow, 1, LED_OUT);   // Set as output 
 
   BitWrPortI(PBDR, &PBDRShadow, led, LED_OUT);   // The LED is off 
 
   while(1) { 
      if((BitRdPortI(PBDR,TOGGLE_IN)== 1) && (toggle == 0)) { 
          toggle = 1; 
          if(led == 0) led = 1;            // Change the LED value 
          else led = 0; 
          BitWrPortI(PBDR, &PBDRShadow, led, LED_OUT); 
      } 
      if(BitRdPortI(PBDR,TOGGLE_IN)== 0) 
          toggle = 0; 
   } 
} 
 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 14

Connecting a single pushbutton switch 
Single pushbutton switches are used as keys for enabling user interaction with the embedded 
system. Pushbutton switches, also called momentary switches, are switches that make a contact 
between two terminals when the pushbutton is pressed. As long as the pushbutton is pressed the 
contact is realized. When the pushbutton is released, the contact is broken. Figure 3.3 shows an 
example of a pushbutton switch and its schematic symbol. 

 
Figure 3.3: Pushbutton switch (example and diagram) 

 
The switch should be connected to one of the parallel ports. The goal is to be able to input an 
event using the switch. Since a single wire is involved, two states are possible: logic 0 and logic 
1. One way is to connect one extremity of the switch to the ground (logic 0) and the other to the 
parallel port as shown in Figure 3.4. 

 

 

 

 
 

 
Figure 3.4: Connecting the pushbutton switch to the microcontroller 

 
Figure 3.4 shows that pressing the switch will drive a logic 0 into the parallel port. However, 
when the pushbutton is released, the value sent to the microcontroller is unknown. What we want 
is to set the wire to logic 1. A connection from the power supply to the parallel port input will fix 
that but will create a shortcircuit when the pushbutton will be pressed. To avoid burning our 
circuit, a resistor should be placed between the power supply and the parallel port input as shown 
in Figure 3.5. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.5: Connecting the pushbutton switch to the microcontroller (corrected) 
 

Parallel Port 

Microcontroller 

Parallel Port 

Microcontroller 

Vdd 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 15

This way, when the pushbutton is pressed the resistor will limit the current flowing from the 
power supply to the ground. When the pushbutton is released, no current flows through the 
resistor and the wire is driven up to the power supply voltage. 
The value of the resistor should be chosen so that a balance is realized between two conflicting 
parameters: 

• The charge and discharge time of the capacitor that is inherently associated with the wire, 
which should be fast enough for a proper microcontroller operation. This will require a 
high current meaning a low resistor value. 

• The power consumption that should be kept to a reasonable level. This requires a low 
current meaning a high resistor value. 

Practically, a resistor value between 1K and 100 KΩ is reasonable. 
 
The following program detects a pressed button and prints a message on the standard output. 
//********************************************************************* 
// King Fahd University of Petroleum and Minerals 
// College of Computer Science and Engineering 
// Computer Engineering Department 
//--------------------------------------------------------------------- 
// COE-400 Digital Systems Design Lab. 
// Author:         Dr. Abdelhafid Bouhraoua 
//--------------------------------------------------------------------- 
// file:            pushbutton.c 
//  
// Version:         1.0 
// Released:        08/20/2007 
// Description:     This program changes the status of a LED using the 
//                  value input from a toggle switch. 
//                  The toggle switch is connected on PB3 and the LED  
//                  is connected on PB5. 
//                  Change the value only when the toggle switch first  
//                  goes to 1. Use the "toggle" flag to ensure that 
//                  the LED status is not changed continuously when  
//                  the toggle switch is connected to Vdd. 
//********************************************************************* 
#class auto 
 
#define KEY_IN 3 
 
main() { 
   int key_flag; 
 
   BitWrPortI(PBDDR, &PBDDRShadow, 0, KEY_IN); // Set as input 
 
   key_flag = 1; 
 
   while(1) { 
      if((BitRdPortI(PBDR,KEY_IN)== 0) && (key_flag == 1)) { 
          printf("Pushbutton pressed\n"); 
          key_flag = 0; 
      } 
      if((BitRdPortI(PBDR,KEY_IN)== 1) && (key_flag == 0)) { 
     printf("Pushbutton released\n"); 
          key_flag = 1; 
      } 
   } 
} 
 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 16

It is interesting to run this program and notice what happens. Actually, what happens is everytime 
the switch is pressed, many copies of the same message are printed. This is due to a mechanical 
side effect of switches. A switch bounces when pressed and does not settle until some time after it 
is pressed. This time is small and is in the order of few tens of milliseconds. 

Debouncing the switch 
Inserting a call to a procedure that introduces a delay of 20 ms fixes the problem. The following 
program illustrates this change. 
//********************************************************************* 
// King Fahd University of Petroleum and Minerals 
// College of Computer Science and Engineering 
// Computer Engineering Department 
//--------------------------------------------------------------------- 
// COE-400 Digital Systems Design Lab. 
// Author:         Dr. Abdelhafid Bouhraoua 
//--------------------------------------------------------------------- 
// file:            pushbutton_deb.c 
//  
// Version:         1.0 
// Released:        08/20/2007 
// Description:     This program changes the status of a LED using the 
//                  value input from a toggle switch. 
//                  The toggle switch is connected on PB3 and the LED  
//                  is connected on PB5. 
//                  Change the value only when the toggle switch first  
//                  goes to 1. Use the "toggle" flag to ensure that 
//                  the LED status is not changed continuously when  
//                  the toggle switch is connected to Vdd. 
//********************************************************************* 
#class auto 
 
#define KEY_IN 3 
 
void wait_20ms(); 
 
main() { 
   int key_flag; 
 
   BitWrPortI(PBDDR, &PBDDRShadow, 0, KEY_IN); // Set as input 
 
   key_flag = 1; 
 
   while(1) { 
      if((BitRdPortI(PBDR,KEY_IN)== 0) && (key_flag == 1)) { 
          printf("Pushbutton pressed\n"); 
          key_flag = 0; 
      } 
      if((BitRdPortI(PBDR,KEY_IN)== 1) && (key_flag == 0)) { 
     printf("Pushbutton released\n"); 
          key_flag = 1; 
      } 
   } 
} 
 
 
 
 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 17

void wait_20ms() { 
   unsigned long snapshot; 
 
   snapshot = MS_TIMER;         // internal millisecond timer 
   while((MS_TIMER – snapshot) < 20); 
} 

Lab Work 
Connect and write the code for interfacing a 4x3 keypad switch with the RCM3600. The 
schematic of the switch and the connector are given in Figures 3.6. 

 
Figure 3.6: Picture and diagram of the 4x3 keypad 

 
The connector is a row connector whose connections are given in the table below. 
 

Output Pin No Symbol 
1 ROW 1 
2 ROW 2 
3 ROW 3 
4 ROW 4 
5 COL 1 
6 COL 2 
7 COL 3 

 
 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 18

Lab 4: Using the Serial UART 
 

Contents 
 

Objective 
To be able to use serial ports 

The Rabbit Serial Ports 
The Rabbit 3000 has 6 on-chip serial ports designated A, B, C, D, E, and F. All the ports can 
perform asynchronous serial communications at high baud rates. Ports A-D can operate as 
clocked ports. Ports A and B can be switched to alternate pins. Ports E and F support 
SDLC/HDLC synchronous communications in addition to standard asynchronous 
communications. Port A has the special capability of being used to remote boot the 
microprocessor via asynchronous, synchronous, or IrDA (asynchronous serial). 

 
Figure 4.1: Serial Ports 

 
 
 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 19

Serial Ports Accessible on the RCM3600 core 

There are only five serial ports that are available on the RCM3600. These ports are designated as 
serial ports A, C, D, E, and F. All five serial ports can operate in an asynchronous mode up to the 
baud rate of the system clock divided by 8. An asynchronous port can handle 7 or 8 data bits. A 
9th bit address scheme, where an additional bit is sent to mark the first byte of a message, is also 
supported.  

Serial Port A is normally used as a programming port, but may be used either as an asynchronous 
or as a clocked serial port once the RCM3600 has been programmed and is operating in the Run 
Mode.  

Serial Ports C and D can also be operated in the clocked serial mode. In this mode, a clock line 
synchronously clocks the data in or out. Either of the two communicating devices can supply the 
clock.  

Serial Ports E and F can also be configured as HDLC serial ports. The IrDA protocol is also 
supported in SDLC format by these two ports.  

Either Serial Ports C and D or Serial Port F can be used at one time because these ports share 
some common pins on header J1. The selection of port(s) depends on your need for two clocked 
serial ports (Serial Ports C and D) vs. a second HDLC serial port (Serial Port F).  

The serial ports used are selected with the serXOpen function call, where X is the serial 
port (C, D, or F). Remember that Serial Ports C and D cannot be used if Serial Port F is 
being used  

Sending and Receiving Data Using Two Ports 
Two serial ports are used to demonstrate the use of serial ports on the rabbit. These two serial 
ports are connected as follows (on the breadboard or using wires): 

• TXD (PC0)  connected to RXC (PC3) 
• TXC (PC2)  connected to RXD (PC1) 

The following program sends a distinct message on every port simultaneously using the serXputs 
function. It receives both messages and stores them onto distinct buffers using the serXgetc 
function. 

• The serXputs function sends a zero-terminated string over the serial port character by 
character. 

• The serXgetc gets a single character from the serial port. 
 
//********************************************************************* 
// King Fahd University of Petroleum and Minerals 
// College of Computer Science and Engineering 
// Computer Engineering Department 
//--------------------------------------------------------------------- 
// COE-400 Digital Systems Design Lab. 
// Author:         Dr. Abdelhafid Bouhraoua 
//--------------------------------------------------------------------- 
// file:            serial_loop.c 
//  
// Version:         1.0 
// Released:        08/20/2007 
// Description:     This program establishes communication between two 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 20

//                  serial ports: port C and port D. 
//                  Two distinct text messages are sent from each port 
//                  to the other port and are received and stored in a 
//                  buffer associated with each port. 
//********************************************************************* 
 
#class auto 
 
#define _BD_RATE 19200 
 
#define CINBUFSIZE  31 
#define COUTBUFSIZE 31 
 
#define DINBUFSIZE  31 
#define DOUTBUFSIZE 31 
 
main() { 
   static char msg1[50],msg2[50], buf1[50],buf2[50], rt; 
   auto int nIn1, nIn2, cnt1, cnt2; 
 
   rt = 0x0d; 
   sprintf(msg1,"This is a message from the C port%c\0",rt); 
   sprintf(msg1,"But This message is from the D port%c\0",rt);    
   BitWrPortI(PEDR, &PEDRShadow, 0, 5); //set low to enable serial 
device 
   BitWrPortI(PCFR, &PCFRShadow, 1, 0);   //set low to enable serial 
port 
                                     // serial library functions  
   serCopen(_BD_RATE);               // open serial session 
   serDopen(_BD_RATE); 
   serCwrFlush();                    // flush write buffer 
   serCrdFlush();                    // flush read buffer 
   serDwrFlush();                    // flush write buffer 
   serDrdFlush();                    // flush read buffer 
 
   serCputs(msg1); 
   serDputs(msg2); 
   cnt1=0; 
   cnt2=0; 
   while((cnt1 != -1) || (cnt2 != -1)) { 
      if((cnt1 != -1) && (nIn1=serCgetc() != -1)) { 
         if(nIn1 == 0x0d) { 
            buf1[cnt1] = 0; 
            cnt1 = -1; 
         } 
         else { 
            buf1[cnt1] = (char) nIn1; 
            cnt1++; 
         } 
      } 
 if((cnt2 != -1) && (nIn2=serDgetc() != -1)) { 
         if(nIn2 == 0x0d) { 
            buf2[cnt2] = 0; 
            cnt2 = -1; 
         } 
         else { 
            buf2[cnt2] = (char) nIn2; 
            cnt2++; 
         } 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 21

      } 
   } 
   printf("Received from C: %s\n",buf1); 
   printf("Received from D: %s\n",buf2); 
} 
 

Lab Work 1 
Connect a RCM3600 to the PC and send a predefined text message continuously at a 
predefined data rate of 19200 bauds. 
 

Lab Work 2 
Connect a RCM3600 to a PC serial port and resend text entered from the keyboard to 
realize the “echo” function. 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 22

 
Lab 5: Signal Acquisition, Generation and Control 

 

Contents 

Objectives 

DAC Board using the MCP4921 
The DAC board available uses a chip from Microchip, the MCP4921 single channel Digital-to-
Analog-Converter. The microcontroller side interface of this DAC is serial. It follows the SPI 
protocol. However, it is unidirectional. Figure 5.1 shows a pinout of the chip. 
 

 
Figure 5.1: MCP4921 DAC 

 
The board is a single channel board that has a 5V reference voltage. Its picture is shown in Figure 
5.2. It provides the analog voltage output along with the ground on one edge through a terminal 
block connector. The digital interface, power supply and ground are accessible through a two-
row, 10 pins female header which layout is given in Figure 5.3. 
 

 
Figure 5.2: DAC board 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3: Board connector pins 
 
 

PIC

8051
AVR 

Board 
Edge Pin 1 

2 
 
3 
 
4 
 
5 

10 
 

9 
 

8 
 

7 
 

6 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 23

The Board connections are given in the following table: 
Board Pin MCP4921 Signal
1 CS~ 
2 nc 
3 nc 
4 nc 
5 VDD 
6 AVSS & LDAC~ 
7 Nc 
8 SDI 
9 SCK 
10 nc 

 
The datasheet of the MCP4921 shows the way conversion is performed and how the conversion 
data is sent to it. 

Generating a predefined voltage 
The first experiment is to generate a predefined voltage. The voltage of 1.5V is the target voltage. 
The board schematic shows that the reference voltage is 5V. This corresponds to 4095, the 
maximum value that can be represented on 12 bits. Therefore, the value corresponding to 1.5V is 
given by: 
 

Value = (4095 * 1.5) / 5 = 1228.5 approximated to 1229 = 0x04cd in hexadecimal 
 
The following program generates this voltage. Run this program and verify that it actually 
generates a voltage that is approximately 1.5V. 
//********************************************************************* 
// King Fahd University of Petroleum and Minerals 
// College of Computer Science and Engineering 
// Computer Engineering Department 
//--------------------------------------------------------------------- 
// COE-400 Digital Systems Design Lab. 
// Author:         Dr. Abdelhafid Bouhraoua 
//--------------------------------------------------------------------- 
// file:            DAC_single.c 
//  
// Version:         1.0 
// Released:        08/20/2007 
// Description:     This program puts a single voltage on the output of 
//                  a small DAC board using the Microchip MCP4921 DAC 
//                  chip. 
//                  The data is sent to the chip using the SPI  
//                  interface. SPI is programmed in assembly for   
//                  fast execution. 
//********************************************************************* 
#class auto 
 
#define DAC_CS 0 
#define DAC_SDI 4 
#define DAC_SCK 5 
 
static unsigned long flength, block_size, length2; 
static unsigned char buf[40]; 
static unsigned char dt1,dt2; 
 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 24

void dac_send(); 
void dac_put_byte(); 
 
main() { 
   int i; 
 
   // Using bits B0, B3 and B5 as column inputs 
   BitWrPortI(PBDDR, &PBDDRShadow, 1, DAC_CS); 
   BitWrPortI(PBDDR, &PBDDRShadow, 1, DAC_SDI); 
   BitWrPortI(PBDDR, &PBDDRShadow, 1, DAC_SCK); 
 
   BitWrPortI(PBDR, &PBDRShadow, 1, DAC_CS);    // Disable CS 
 
   dac_send(0x04cd); 
   while(1); 
} 
 
void dac_send(unsigned int smpl) { 
   int data, data1, bit, i; 
   unsigned char d1; 
 
   data = smpl; 
   data = data & 0x0fff; 
   printf("data = %04x\n",data); 
   data1 = (data >> 8) & 0x00F; 
   d1 = (unsigned char) data1; 
   dt1 = 0x70 | d1;                // 7 = 0111 = Channel A 
                                   //            Buffered 
                                   //            1x 
                                   //            Not SHDN 
   data1 = data & 0x0ff; 
   d1 = (unsigned char) data1; 
   dt2 = d1; 
   printf(" DT1 = %02x\n",dt1); 
   printf(" DT2 = %02x\n",dt2); 
   dac_put(); 
} 
 
#define DAC_CS_0 00h 
#define DAC_CS_1 01h 
#define DAC_SDI_0_SCK_0 00h 
#define DAC_SDI_1_SCK_0 10h 
#define DAC_SDI_0_SCK_1 20h 
#define DAC_SDI_1_SCK_1 30h 
 
#asm 
dac_put:: 
   ld   a, DAC_CS_0 
   ioi ld (PBDR), a 
   ld   a, (dt1) 
   ld   d, a 
   ld   a, (dt2) 
   ld   e, a 
   ld   b, 16 
lp1:: 
   rl   de 
   jr   c, send_one 
   ld   a, DAC_SDI_0_SCK_0 
   ioi  ld (PBDR), a 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 25

   ld   a, DAC_SDI_0_SCK_1 
   ioi  ld (PBDR), a 
   ld   a, DAC_SDI_0_SCK_0 
   ioi  ld (PBDR), a 
   jr   after 
send_one:: 
   ld   a, DAC_SDI_1_SCK_0 
   ioi  ld (PBDR), a 
   ld   a, DAC_SDI_1_SCK_1 
   ioi  ld (PBDR), a 
   ld   a, DAC_SDI_1_SCK_0 
   ioi  ld (PBDR), a 
after:: 
   dec  b 
   jr   nz, lp1 
   ld   a, DAC_CS_1 
   ioi  ld (PBDR), a 
   ret 
#endasm 
 

Playing back a .wav audio file 
Another interesting application is to playback a prerecorded sound file saved using the PC wav 
format. The wav format description is available at: 
http://ccrma.stanford.edu/courses/422/projects/WaveFormat/ 
The following program plays a sound file that is uploaded within the program itself using the 
ximport statement. The output of the DAC is connected to a RCA jack that is introduced in the 
PC line-in sound input. The PC amplifier will amplify the analog signal that can be heard on the 
PC speaker. A separate audio amplifier and speaker can be used as well. 
The sound file has been created using the Windows sound recorder utility. The sampling rate and 
format are: PCM 8-bits, 8 kHz, Mono. 
//********************************************************************* 
// King Fahd University of Petroleum and Minerals 
// College of Computer Science and Engineering 
// Computer Engineering Department 
//--------------------------------------------------------------------- 
// COE-400 Digital Systems Design Lab. 
// Author:         Dr. Abdelhafid Bouhraoua 
//--------------------------------------------------------------------- 
// file:            DAC_wav.c 
//  
// Version:         1.0 
// Released:        08/20/2007 
// Description:     This program plays back a single audio file on the  
//                  output of a small DAC board using the Microchip  
//                  MCP4921 DAC chip. 
//                  The data is sent to the chip using the SPI  
//                  interface. SPI is programmed in assembly for   
//                  fast execution. 
//********************************************************************* 
 
#class auto 
 
#ximport "C:\Documents and Settings\USER\Desktop\CSource\shaheed.wav" 
aya1 
 
#define DAC_CS 0 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 26

#define DAC_SDI 4 
#define DAC_SCK 5 
 
static unsigned long flength, block_size, length2; 
static unsigned char buf[40]; 
static unsigned char dt1,dt2; 
 
void dac_start(); 
int get_data_start(); 
void dac_send(); 
void dac_put_byte(); 
 
main() { 
 
   // Using bits B0, B3 and B5 as column inputs 
   BitWrPortI(PBDDR, &PBDDRShadow, 1, DAC_CS); 
   BitWrPortI(PBDDR, &PBDDRShadow, 1, DAC_SDI); 
   BitWrPortI(PBDDR, &PBDDRShadow, 1, DAC_SCK); 
 
   BitWrPortI(PBDR, &PBDRShadow, 1, DAC_CS); 
   BitWrPortI(TACSR, &TACSRShadow, 1, 0);    // Enable main clock 
   BitWrPortI(TACSR, &TACSRShadow, 0, 1);    // Disable interrupts 
   BitWrPortI(TACR, &TACRShadow, 1, 2);      // Timer 2 clocked by 
output of A1 
   BitWrPortI(TAPR, &TAPRShadow, 1, 2);      // Clock of Timer A1 is 
perclk/2 
   WrPortI(TAT1R, &TAT1RShadow, 0x0A);       // set to 11 to generate a 
1 us clk 
   WrPortI(TAT2R, &TAT2RShadow, 0x7C);       // set to 124 to generate 
a 125 us clk 
 
   dac_start(); 
} 
 
void dac_start() { 
char fnd; 
int id; 
 
    xmem2root(&flength, aya1, sizeof(long)); 
    printf("length = %d\n", flength); 
    length2 = 0; 
    block_size = 32; 
    fnd = 0; 
    while(fnd == 0) { 
      xmem2root(buf, aya1+4+length2,(int) block_size); 
      id = get_data_start(); 
      if(id != -1) { 
         fnd = 1; 
         printf("data fnd\n"); 
         block_size = block_size - id - 4; 
      } 
      else length2 = length2+block_size; 
    } 
    while(length2 < flength) { 
       printf("length2 = %d\n",length2); 
       length2 = length2 + block_size; 
       while(block_size > 0){ 
          dac_send(buf[(int) (32-block_size)]); 
          block_size--; 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 27

       } 
       block_size = flength - length2; 
       if(block_size > 32) block_size = 32; 
       xmem2root(buf, aya1+4+length2,(int) block_size); 
    } 
    printf("DONE\n"); 
} 
 
int get_data_start() { 
    char key[5],wd[5]; 
    int i,j; 
 
    key[0] = 'd'; 
    key[1] = 'a'; 
    key[2] = 't'; 
    key[3] = 'a'; 
    key[4] = 0; 
    i=0; 
    while(i<(block_size-4)) { 
      for(j=0;j<4;j++) 
        wd[j] = buf[i+j]; 
      wd[4] = 0; 
      printf("wd = %s\n", wd); 
      if(strcmp(key,wd)!= 0) i++; 
      else return(i+4); 
    } 
    return(-1); 
} 
 
void dac_send(unsigned char smpl) { 
   int data, data1; 
   unsigned char d1; 
 
   data = smpl; 
   data = data - 0x7F; 
   data = data * 8; 
   data = data + 0x07FF; 
   data1 = (data >> 8) & 0x00F; 
   d1 = (unsigned char) data1; 
   dt1 = 0x70 | d1; 
   data1 = data & 0x0ff; 
   d1 = (unsigned char) data1; 
   dt2 = d1; 
   dac_put_byte(); 
} 
 
#define DAC_CS_0 00h 
#define DAC_CS_1 01h 
#define DAC_SDI_0_SCK_0 00h 
#define DAC_SDI_1_SCK_0 10h 
#define DAC_SDI_0_SCK_1 20h 
#define DAC_SDI_1_SCK_1 30h 
 
#asm 
dac_put_byte:: 
   ioi ld  a, (TACSR) 
   bit  2, a 
   jr       z, dac_put_byte 
   ld   a, DAC_CS_0 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 28

   ioi ld (PBDR), a 
   ld   a, (dt1) 
   ld   d, a 
   ld   a, (dt2) 
   ld   e, a 
   ld   b, 16 
lp1:: 
   rl   de 
   jr   c, send_one 
   ld   a, DAC_SDI_0_SCK_0 
   ioi  ld (PBDR), a 
   ld   a, DAC_SDI_0_SCK_1 
   ioi  ld (PBDR), a 
   ld   a, DAC_SDI_0_SCK_0 
   ioi  ld (PBDR), a 
   jr       after 
send_one:: 
   ld   a, DAC_SDI_1_SCK_0 
   ioi  ld (PBDR), a 
   ld   a, DAC_SDI_1_SCK_1 
   ioi  ld (PBDR), a 
   ld   a, DAC_SDI_1_SCK_0 
   ioi  ld (PBDR), a 
after:: 
 dec  b 
   jr   nz, lp1 
   ld   a, DAC_CS_1 
   ioi  ld (PBDR), a 
   ret 
#endasm 
 

Lab work 1 
Generate 16 different voltages using the DAC board: 
• The voltages are generated one by one in a loop.  
• Changing the voltage from the current one to the next is controlled by the user through a 

pushbutton switch.  
• The voltages are chosen so that they cover as much of the 0-5V range as possible. 
• Everytime a voltage is generated, the user measures the output of the DAC using a 

multimeter. The measurements are recorded is the following table: 
 

Index Hex Value (sent to DAC) Expected Voltage Measured Voltage Error
1     

…     
16     

 

 
 
 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 29

ADC Board using the MCP3204 
The used ADC board is built around the MCP3204 ADC chip from Microchip. The MCP3204 is 
a four channel ADC that can convert single or differential analog signals. The communication 
interface with microcontrollers is a 4-wire SPI interface. Figure 5.4 shows a pinout of the chip. 
 

 
Figure 5.4: MCP3204 ADC 

 
The ADC board is built so that all the four channels are accessible through terminal blocks. The 
supply voltage is 5V. The reference voltage is, however, 4.09 V. This is a deliberate choice from 
the designers of the board to make the maximum value that can be represented on 12 bits, 4095, 
correspond to 4.09 V. This way, a direct correspondence between the voltage value and the 
produced number is realized without any division. The equation governing the relation between 
the number produced by the ADC n and the input voltage v is given below: 

 
n = v * 1000 

 
Figure 5.5 below shows a picture of the ADC board. The digital interface, power supply and 
ground are accessible through a two-row, 10 pins female header which layout is given in Figure 
5.6. 

 
Figure 5.5: ADC board 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.6: ADC board connector pins 

PIC

AVR

Board 
Edge Pin 1 

2 
 
3 
 
4 
 
5 

10 
 

9 
 

8 
 

7 
 

6 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 30

Board Pin MCP3204 Signal
1 CS~/SHDN 
2 nc 
3 DOUT 
4 nc 
5 VDD 
6 AGND & DGND 
7 nc 
8 DIN 
9 CLK 
10 nc 

 
The board has a potentiometer attached to channel 0. The potentiometer input is connected to the 
reference voltage. The output of the potentiometer is connected to channel 0 input through a 
jumper.  
 

Sampling and converting the voltage generated on Channel0 
The availability of a virtual voltage generation through the potentiometer makes the ADC board 
directly usable for education purposes without any external component. Thus, the first usage of 
the ADC board will be to sample and convert a voltage generated through channel 0. 
The following program realizes the conversion on channel 0 and displays it on the standard 
output. It is advisable to vary the potentiometer to change the voltage. The input voltage should 
be measured with a multimeter to verify that the converted value is reasonably close to the 
measured one. 
//********************************************************************* 
// King Fahd University of Petroleum and Minerals 
// College of Computer Science and Engineering 
// Computer Engineering Department 
//--------------------------------------------------------------------- 
// COE-400 Digital Systems Design Lab. 
// Author:         Dr. Abdelhafid Bouhraoua 
//--------------------------------------------------------------------- 
// file:            ADC_simple.c 
//  
// Version:         1.0 
// Released:        08/20/2007 
// Description:     This program converts a single voltage from channel 
//                  0 of a small ADC board using the Microchip MCP3204  
//                  ADC chip. 
//                  The data is sent to the chip using the SPI  
//                  interface.  
//********************************************************************* 
#class auto 
 
#define DAC_CS 0 
#define DAC_SDI 4 
#define DAC_SCK 5 
 
#define ADC_CS 7 
#define ADC_SDI 4 
#define ADC_SDO 2 
#define ADC_SCK 5 
 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 31

#define KEY_IN 0 
 
static unsigned char dt1,dt2; 
 
void wait_10s(); 
void wait_20ms(); 
void adc_get(unsigned char channel); 
 
main() { 
   int i,b; 
 
   // Using bits B0, B3 and B5 as column inputs 
   BitWrPortI(PBDDR, &PBDDRShadow, 1, ADC_CS); 
   BitWrPortI(PBDDR, &PBDDRShadow, 1, ADC_SDI); 
   BitWrPortI(PBDDR, &PBDDRShadow, 1, ADC_SCK); 
   BitWrPortI(PBDDR, &PBDDRShadow, 1, DAC_CS); 
   BitWrPortI(PBDDR, &PBDDRShadow, 0, ADC_SDO); 
 
   BitWrPortI(PFDDR, &PFDDRShadow, 0, KEY_IN); 
 
   BitWrPortI(PBDR, &PBDRShadow, 1, DAC_CS); 
   BitWrPortI(PBDR, &PBDRShadow, 1, ADC_CS); 
   adc_get(0); 
   while(1); 
} 
 
void wait_10s() { 
 unsigned long snapshot; 
 
   snapshot = SEC_TIMER; 
   while((SEC_TIMER - snapshot < 2)); 
} 
 
void wait_20ms() { 
 unsigned long snapshot; 
 
   snapshot = MS_TIMER; 
   while((MS_TIMER - snapshot < 20)); 
} 
 
 
#define ADC_CS_0 0x01 
#define ADC_CS_1 0x81 
#define ADC_SDI_0_SCK_0 0x01 
#define ADC_SDI_1_SCK_0 0x11 
#define ADC_SDI_0_SCK_1 0x21 
#define ADC_SDI_1_SCK_1 0x31 
 
void adc_get(unsigned char channel) { 
   unsigned char d1; 
   int i; 
   unsigned int data, bit; 
 
   d1 = channel & 0x07; 
   d1 = d1 | 0x18; 
 
   //printf("d1 = %02x\n",d1); 
 
   WrPortI(PBDR, NULL, ADC_CS_0); 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 32

   for(i=0;i<5;i++) { 
     bit = (d1 >> (4 - i)) & 0x01; 
     if(bit == 1){ 
        //printf("BIT = 1\n"); 
        WrPortI(PBDR, NULL, ADC_SDI_1_SCK_0); 
        WrPortI(PBDR, NULL, ADC_SDI_1_SCK_1); 
        WrPortI(PBDR, NULL, ADC_SDI_1_SCK_0); 
     } 
     else { 
        //printf("BIT = 0\n"); 
        WrPortI(PBDR, NULL, ADC_SDI_0_SCK_0); 
        WrPortI(PBDR, NULL, ADC_SDI_0_SCK_1); 
        WrPortI(PBDR, NULL, ADC_SDI_0_SCK_0); 
     } 
   } 
   WrPortI(PBDR, NULL, ADC_SDI_0_SCK_1); 
   WrPortI(PBDR, NULL, ADC_SDI_0_SCK_1); 
   WrPortI(PBDR, NULL, ADC_SDI_0_SCK_0); 
   WrPortI(PBDR, NULL, ADC_SDI_0_SCK_0); 
   WrPortI(PBDR, NULL, ADC_SDI_0_SCK_1); 
   WrPortI(PBDR, NULL, ADC_SDI_0_SCK_1); 
   WrPortI(PBDR, NULL, ADC_SDI_0_SCK_0); 
   WrPortI(PBDR, NULL, ADC_SDI_0_SCK_0); 
   data = 0; 
   for(i=0;i<12;i++) { 
      bit = BitRdPortI(PBDR, ADC_SDO); 
      //printf("Read bit = %d\n", bit); 
      data = (data << 1); 
      data = data | bit; 
      WrPortI(PBDR, NULL, ADC_SDI_0_SCK_1); 
      WrPortI(PBDR, NULL, ADC_SDI_0_SCK_1); 
      WrPortI(PBDR, NULL, ADC_SDI_0_SCK_0); 
      WrPortI(PBDR, NULL, ADC_SDI_0_SCK_0); 
   } 
   printf("ADC Value = %03x\n",data); 
} 

Lab Work 2 
Connect the ADC board’s Channel other than 0 to the DAC board’s output. The DAC board is 
setup to operate under the conditions of the experiment of lab work 1. After every press on the 
pushbutton: 

• Convert the DAC generated voltage with the ADC and display it on the stdio. 
• Generate the next voltage on the DAC’s list 
• Wait for the pushbutton to be pressed.



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 33

 
Lab 6: Motor Control 

 

Contents 

Objectives 
To familiarize the students with the interfacing of motors and their related circuits. 

Driving a stepper motor 
A stepper motor is an electric motor that can divide a full rotation into a large number of steps, 
for example, 200 steps. These motors have several coils that are individually controlled. Each coil 
can be controlled using a single wire. When the proper sequence is applied to the wires 
controlling the motor, the motor's position can be controlled precisely. 
 
The setup used is an educational kit that is built around a small stepper motor that has four coils. 
The coils are controlled by 4 inputs labeled INA, INB, INC and IND. Each input is connected to a 
Darlington transistor that drives one of the coils. The board picture is given in Figure 6.1. 

 
Figure 6.1: Stepper motor board 

 
The control of stepper motors is widely known. The following link gives good explanations on 
how to control a stepper motor: http://www.doc.ic.ac.uk/~ih/doc/stepper/control2/sequence.html  
 
The principle is to enable one coil at a time in a sequence. The sequence is designed to enable two 
consecutive rows sequentially so that a full rotation is achieved after all the whole sequence is 
completed. The following table shows the sequence items. It starts with enabling Coil A while all 
the other coils are disabled. It continues step by step enabling successively every coil, one by one. 
To every sequence item corresponds a rotation of the motor by a quarter round. 
 
 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 34

Sequence Coil A Coil B Coil C Coil D
1 on off  off off 
2 off on off off 
3 off off on off 
4 off off off on 

 
Figure 6.2 below shows the application of the sequence  

 

              
 

Figure 6.2: Stepper motor sequences 
 
The previous sequence suggests that the angle by which the motor turns is 90 degrees.  To reduce 
the step from 90 to 45 degrees, the following sequence is applied: 
 

Sequence Coil A Coil B Coil C Coil D
1 on off  off off 
2 on on off off 
3 off on off off 
4 off on on off 
5 off off on off 
6 off off on on 
7 off off off on 
8 on off off on 

 
The following program generates the sequence items used to turn the stepper motor by 45 
degrees. A pushbutton switch is used to make the user enable the next step. 
//********************************************************************* 
// King Fahd University of Petroleum and Minerals 
// College of Computer Science and Engineering 
// Computer Engineering Department 
//--------------------------------------------------------------------- 
// COE-400 Digital Systems Design Lab. 
// Author:         Dr. Abdelhafid Bouhraoua 
//--------------------------------------------------------------------- 
// file:            Stepper.c 
//  
// Version:         1.0 
// Released:        08/20/2007 
// Description:     The following program generates the sequence  
//                  items used to turn the stepper motor by  
//                  45 degrees. A pushbutton switch is used to  
//                  make the user enable the next step. 
//********************************************************************* 
 
#class auto 
 
#define KEY_IN 0 
#define INA    3 
#define INB  2 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 35

#define INC  4 
#define IND  5 
 
void wait_20ms(); 
 
main() { 
   int key, seq_num; 
 
   BitWrPortI(PBDDR, &PBDDRShadow, 0, KEY_IN); 
   BitWrPortI(PBDDR, &PBDDRShadow, 1, INA); 
   BitWrPortI(PBDDR, &PBDDRShadow, 1, INB); 
   BitWrPortI(PBDDR, &PBDDRShadow, 1, INC); 
   BitWrPortI(PBDDR, &PBDDRShadow, 1, IND); 
 
   BitWrPortI(PBDR, &PBDRShadow, 0, INA); 
   BitWrPortI(PBDR, &PBDRShadow, 0, INB); 
   BitWrPortI(PBDR, &PBDRShadow, 0, INC); 
   BitWrPortI(PBDR, &PBDRShadow, 0, IND); 
 
   key = 0; 
   seq_num = 0; 
 
   while(1) { 
      if((BitRdPortI(PBDR,KEY_IN)== 0) && (key == 0)) { 
          key = 1; 
          seq_num++; 
          if(seq_num == 9) seq_num = 1; 
          switch(seq_num) { 
          case 1: 
             BitWrPortI(PBDR, &PBDRShadow, 0, IND); 
             BitWrPortI(PBDR, &PBDRShadow, 1, INA); 
             break; 
          case 2: 
             BitWrPortI(PBDR, &PBDRShadow, 1, INA); 
             BitWrPortI(PBDR, &PBDRShadow, 1, INB); 
             break; 
          case 3: 
             BitWrPortI(PBDR, &PBDRShadow, 0, INA); 
             BitWrPortI(PBDR, &PBDRShadow, 1, INB); 
             break; 
          case 4: 
             BitWrPortI(PBDR, &PBDRShadow, 1, INB); 
             BitWrPortI(PBDR, &PBDRShadow, 1, INC); 
             break; 
          case 5: 
             BitWrPortI(PBDR, &PBDRShadow, 0, INB); 
             BitWrPortI(PBDR, &PBDRShadow, 1, INC); 
             break; 
          case 6: 
             BitWrPortI(PBDR, &PBDRShadow, 1, INC); 
             BitWrPortI(PBDR, &PBDRShadow, 1, IND); 
             break; 
          case 7: 
             BitWrPortI(PBDR, &PBDRShadow, 0, INC); 
             BitWrPortI(PBDR, &PBDRShadow, 1, IND); 
             break; 
          case 8: 
             BitWrPortI(PBDR, &PBDRShadow, 1, IND); 
             BitWrPortI(PBDR, &PBDRShadow, 1, INA); 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 36

             break; 
          default: break; 
        } 
          wait_20ms(); 
      } 
      if((BitRdPortI(PBDR,KEY_IN)== 1) && (key == 1)) 
          key = 0; 
   } 
} 
 
void wait_20ms() { 
   unsigned long snapshot; 
 
   snapshot = MS_TIMER; 
   while((MS_TIMER - snapshot) < 20); 
} 

Lab Work 1 
The goal is to write a program that will generate the proper sequence to turn the stepper motor 
with a certain angle (multiple of 45 degrees). It is advised to use the 1/8 round sequence. 
 

Driving a DC motor  
DC motors are electric motors that are driven with DC electric current. Their use is widespread in 
electronically controlled mechanical systems. More precisely, they are used in applications where 
the precision is way beyond a single rotation like propulsion or translation. 
 
The main issue with DC motors is the speed control. For most applications, the speed is an 
important factor that will determine system’s quality of operation. Another feature in many 
applications is controlling the rotation direction. DC motors have two electrodes. Connecting the 
electrodes to respectively power and ground will turn the motor in one direction. Switching the 
two electrodes will make the motor turn in the opposite direction.  

 
Figure 6.3: Pulse Width Modulation 

 
Controlling the speed of DC motors is realized either through varying the voltage or through 
delivering the power as pulses. Pulsing on and off the power on one of the electrodes will provide 
drive to the motor for a fraction of the time. This has an effect to set the speed to a more or less 
stable value. The pulse frequency and duty cycle will fix the amount of current per unit of time 
received by the motor coils and thus determines the rotation speed. The speed control logic uses a 
feedback loop that continuously adjusts the pulse width and frequency. It receives speed 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 37

measurement using speed encoders called optical sensors or optical shaft encoders. These 
encoders are attached to the motor’s shaft. The rotation of a disc that has precisely drilled holes 
will alternatively cut the light beam of an attached but not rotating optical sensor. The output of 
this assembly is a square wave digital signal which pulse duration corresponds to the time 
between two holes. Given the fact that the angle between two consecutive holes is known, it 
becomes easy to compute the rotation speed of the motor.  
 

 
Figure 6.4: Generic H-bridge diagram 

Direction is controlled through changing the polarization of the motor. It is obviously impractical 
to manually change the connections of the motor every time a change of direction is needed. 
Therefore, this operation is done electronically using power transistors. A structure, commonly 
called H-bridge, is used for this purpose. Figure 6.4 shows a generic H-bridge. 
 
The used DC Motor board is an educational kit specially designed for learning how to control and 
monitor DC motors. It is a compact and easy to use mini board that includes a small DC Motor 
together with a standard L293 control IC (Dual H-bridge) along with a photo-interrupter for 
measuring motor speed. 
  

 
Figure 6.5: DC motor board 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 38

Control is easily achieved using a 5 pin control connection. Refer to the L293 datasheet for more 
information on controlling this unit. Easy to connect standard male and female header pins are 
included on the board for interfacing to your development board. Together with direction LED's 
for indication of left or right direction. Figure 6.5 shows the DC motor board. The following table 
shows how to control the motor through the L293 chip. 

EN IN1 IN2 Effect
0 X X Stop 
1 1 0 Right 
1 0 1 Left 
1 1 1 Brake 

Changing the direction of the motor 
The change of direction in the motor is given by the following program. A pushbutton switch 
which output is attached to port PB0 (configured as input) is used to enable the change of 
direction. 
//********************************************************************* 
// King Fahd University of Petroleum and Minerals 
// College of Computer Science and Engineering 
// Computer Engineering Department 
//--------------------------------------------------------------------- 
// COE-400 Digital Systems Design Lab. 
// Author:         Dr. Abdelhafid Bouhraoua 
//--------------------------------------------------------------------- 
// file:            DC_MOTOR_DIR.c 
//  
// Version:         1.0 
// Released:        08/20/2007 
// Description:     This program changes the direction of a DC motor by 
//                  alternatively driving 10 and 01 on the inputs IN1  
//                  and IN2 of the ETT miniature DC motor board. 
//                  This board uses the L293 dual H-bridge chip. 
//                  A pushbutton switch is used as the user interface. 
//                  When pressed, the program changes the direction of 
//                  the motor by changing the polarity of the IN1 and  
//                  IN2 outputs. 
//********************************************************************* 
 
#class auto 
 
#define KEY_IN 0 
#define IN1    4 
#define ENB  2 
#define IN2  3 
 
 
void wait_20ms(); 
 
main() { 
   int key, dir; 
 
   BitWrPortI(PBDDR, &PBDDRShadow, 0, KEY_IN); 
   BitWrPortI(PBDDR, &PBDDRShadow, 1, IN1); 
   BitWrPortI(PBDDR, &PBDDRShadow, 1, ENB); 
   BitWrPortI(PBDDR, &PBDDRShadow, 1, IN2); 
 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 39

   BitWrPortI(PBDR, &PBDRShadow, 0, IN1); 
   BitWrPortI(PBDR, &PBDRShadow, 0, ENB); 
   BitWrPortI(PBDR, &PBDRShadow, 0, IN2); 
 
   key = 0; 
   dir = 0; 
 
   while(1) { 
      if((BitRdPortI(PBDR,KEY_IN)== 0) && (key == 0)) { 
          key = 1; 
          if(dir == 0) { 
             BitWrPortI(PBDR, &PBDRShadow, 1, IN1); 
             BitWrPortI(PBDR, &PBDRShadow, 1, ENB); 
             BitWrPortI(PBDR, &PBDRShadow, 0, IN2); 
             dir = 1; 
          } 
          else { 
             BitWrPortI(PBDR, &PBDRShadow, 0, IN1); 
             BitWrPortI(PBDR, &PBDRShadow, 1, ENB); 
             BitWrPortI(PBDR, &PBDRShadow, 1, IN2); 
             dir = 0; 
          } 
 
          wait_20ms(); 
      } 
      if((BitRdPortI(PBDR,KEY_IN)== 1) && (key == 1)) 
          key = 0; 
   } 
} 
 
void wait_20ms() { 
   unsigned long snapshot; 
 
   snapshot = MS_TIMER; 
   while((MS_TIMER - snapshot) < 20); 
} 

Setting the speed of a DC motor 
The motor speed as mentioned earlier in this document is controlled through Pulse Width 
Modulation (PWM). The following program illustrates the speed setting by using the millisecond 
system timer of the Rabbit core MS_TIMER. The PWM is programmed using regular sequence 
control structures and variables. 
//********************************************************************* 
// King Fahd University of Petroleum and Minerals 
// College of Computer Science and Engineering 
// Computer Engineering Department 
//--------------------------------------------------------------------- 
// COE-400 Digital Systems Design Lab. 
// Author:         Dr. Abdelhafid Bouhraoua 
//--------------------------------------------------------------------- 
// file:            DC_MOTOR.c 
//  
// Version:         1.0 
// Released:        08/20/2007 
// Description:     This program sets the speed of a DC motor by 
//                  driving a PWM wave on output IN1 of the ETT  
//                  miniature DC motor board. 
//                  This board uses the L293 dual H-bridge chip. 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 40

//********************************************************************* 
#class auto 
 
#define KEY_IN 0 
#define IN1    4 
#define ENB    2 
#define IN2    3 
#define OPA    7 
#define OPB    5 
 
 
main() { 
   int key, dir, target_speed, pwm_period, pwm_high; 
   long pwm_time_snap, pwm_status; 
   long opa_time_snap1, opa_time_snap2; 
 
   BitWrPortI(PBDDR, &PBDDRShadow, 0, KEY_IN); 
   BitWrPortI(PBDDR, &PBDDRShadow, 0, OPA); 
   BitWrPortI(PBDDR, &PBDDRShadow, 0, OPB); 
   BitWrPortI(PBDDR, &PBDDRShadow, 1, IN1); 
   BitWrPortI(PBDDR, &PBDDRShadow, 1, ENB); 
   BitWrPortI(PBDDR, &PBDDRShadow, 1, IN2); 
 
   BitWrPortI(PBDR, &PBDRShadow, 0, IN1); 
   BitWrPortI(PBDR, &PBDRShadow, 1, ENB); 
   BitWrPortI(PBDR, &PBDRShadow, 0, IN2); 
 
   key = 0; 
   dir = 0; 
   // set to 120 tpm 
   // means 120/60 tps 
   // means 120*1000/60 turns per millisecond 
   // means 2000 milliseconds is the target period. 
   target_speed = 2000;  // in milliseconds 
   pwm_period = 50;      // milliseconds 
   pwm_high = 10;        // milliseconds 
 
   BitWrPortI(PBDR, &PBDRShadow, 1, IN1); 
   pwm_time_snap = MS_TIMER; 
   pwm_status = 1; 
   while(1) { 
      if(pwm_status == 1) { 
         if((MS_TIMER - pwm_time_snap) >= pwm_high) { 
             BitWrPortI(PBDR, &PBDRShadow, 0, IN1); 
             pwm_time_snap = MS_TIMER; 
             pwm_status = 0; 
         } 
      } 
      else { 
       if((MS_TIMER - pwm_time_snap) >= (pwm_period - pwm_high)) { 
             BitWrPortI(PBDR, &PBDRShadow, 1, IN1); 
             pwm_time_snap = MS_TIMER; 
             pwm_status = 1; 
         } 
      } 
   } 
} 



COE 400 Lab Manual                                  

Prepared by Dr. Abdelhafid Bouhraoua                                                  © KFUPM – August 2007 

page 41

Lab Work 2 
• Write a program that measures the actual speed of the motor by reading output OPA (or 

OPB) from the DC motor board. The OPA output is set to logic 1 every time the fan blade of 
the DC motor cuts the photo switch beam. If nothing touches the photo switch, the output is 
set to logic 0. The DC motor control input IN1 is permanently set to 1 and the speed is 
measured and displayed every second. 

• Write a program that drives the DC motor with the appropriate PWM settings to reach a 
target speed and monitors this speed by comparing it to the measured speed. The program 
should change the PWM settings to accommodate the change in speed either by slightly 
increasing or decreasing the projected speed.  


