ICS 233, Term 172

Computer Architecture \& Assembly Language

HW\# 6 Solution

Q.1. We wish to compare the performance of two different computers: M1 and M2. The following measurements have been made on these computers:

Program	Time on M1	Time on M2
1	2.0 seconds	1.5 seconds
2	5.0 seconds	10.0 seconds

Program	Instructions executed on M1	Instructions executed on M2
1	5×10^{9}	6×10^{9}

(i) Which computer is faster for each program, and how many times as fast is it?

Computer M2 is faster for program 1 and it is faster by a factor $=2 / 1.5=1.33$ Computer M1 is faster for program 2 and it is faster by a factor $=10 / 5=2$
(ii) Find the instruction execution rate (instructions per second) for each computer when running program 1.

Instruction execution rate for M1 $=5 \times 10^{9} / 2=2.5 \times 10^{9}$ (instructions per second) Instruction execution rate for M2 $=6 \times 10^{9} / 1.5=4 \times 10^{9}$ (instructions per second)
(iii) The clock rates for M 1 and M 2 are 3 GHz and 5 GHz respectively. Find the CPI for program 1 on both machines.

CPI for program 1 on $\mathrm{M} 1=\left(3 \times 10^{9} \times 2\right) / 5 \times 10^{9}=1.2$
CPI for program 1 on M2 $=\left(5 \times 10^{9} \times 1.5\right) / 6 \times 10^{9}=1.25$
(iv) Suppose that program 1 must be executed 1600 times each hour. Any remaining time should be used to run program 2. Which computer is faster for this workload? Performance is measured here by the throughput of program 2.

Executing program 1 on M1 1600 times each hour will consume $1600 \times 2=3200$ seconds. Remaining time for running program 2 on $\mathrm{M} 1=3600-3200=400$ seconds. Thus, program 2 can be run in M1 400/5=80 times.

Executing program 1 on M2 1600 times each hour will consume 1600x1.5=2400 seconds. Remaining time for running program 2 on $\mathrm{M} 1=3600-2400=1200$ seconds. Thus, program 2 can be run in M2 1200/10=120 times. Thus, for this workload computer M2 is faster.
Q.2. Suppose you wish to run a program P with 7.5×10^{9} instructions on a 5 GHz machine with a CPI of 1.2.
(i) What is the CPU execution time?

CPU execution time $=\left(7.5 \times 10^{9} \times 1.2\right) / 5 \times 10^{9}=1.8$ seconds.
(ii) When you run program P , it takes 3 seconds of wall time to complete. What is the percentage of the CPU time program P received?

The percentage of the CPU time program P received $=1.8 / 3=60 \%$
Q.3. Consider two different implementations, M 1 and M 2 , of the same instruction set. There are five classes of instructions (A, B, C, D and E) in the instruction set. M1 has a clock rate of 4 GHz and M 2 has a clock rate of 6 GHz .

Class	CPI on M1	CPI on M2
A	1	2
B	2	2
C	3	2
D	4	4
E	3	4

(i) Assume that peak performance is defined as the fastest rate that a computer can execute any instruction sequence. What are the peak performances of M1 and M2 expressed in instructions per second?

The peak performance of M1 is when it executes instructions of class $\mathrm{A}=4 \times 10^{9}$ instructions per second.
The peak performance of M2 is when it executes instructions of class A, B or $\mathrm{C}=6 / 2$ x $10^{9}=3 \times 10^{9}$ instructions per second.
(ii) If the number of instructions executed in a certain program is divided equally among the classes of instructions, except that for class A, which occurs twice as often as each of the others, how much faster is M2 than M1?

CPI for M1 $=(2 \times 1+1 \times 2+1 \times 3+1 \times 4+1 \times 3) /(2+1+1+1+1)=14 / 6=2.33$
CPI for M2 $=(2 \times 2+1 \times 2+1 \times 2+1 \times 4+1 \times 4) /(2+1+1+1+1)=16 / 6=2.67$
M 2 is faster than M 1 by a factor $=\left(\operatorname{IC} \times 2.33 \times 6 \times 10^{9}\right) /\left(\operatorname{IC} \times 2.67 \times 4 \times 10^{9}\right)=1.31$
Q.4. Consider two different implementations, M1 and M2, of the same instruction set. There are three classes of instructions (A, B, and C) in the instruction set. M1 has a clock rate of 6 GHz and M2 has a clock rate of 3 GHz . The CPI for each instruction class on M1 and M 2 is given in the following table:

Class	CPI on M1	CPI on M2	C1 Usage	C2 Usage	C3 Usage
A	2	1	40%	40%	60%
B	3	2	40%	20%	15%
C	5	2	20%	40%	25%

The above table also contains a summary of the usage of instruction classes generated by three different compilers: C1, C2, and C3. Assume that each compiler generates the same number of instructions for a given program.
(i) Using C1 compiler on both M1 and M2, how much faster is M1 than M2?

CPI for M1 using C1 compiler $=2 \times 0.4+3 \times 0.4+5 \times 0.2=3$
CPI for M2 using C1 compiler $=1 \times 0.4+2 \times 0.4+2 \times 0.2=1.6$
M 1 is faster than M 2 using C 1 compiler by a factor $=$ $\left(\right.$ IC x $\left.1.6 \times 6 \times 10^{9}\right) /\left(\right.$ IC $\left.\times 3 \times 3 \times 10^{9}\right)=1.07$
(ii) Using C2 compiler on both M1 and M2, how much faster is M2 than M1?

CPI for M1 using C2 compiler $=2 \times 0.4+3 \times 0.2+5 \times 0.4=3.4$
CPI for M2 using C2 compiler $=1 \times 0.4+2 \times 0.2+2 \times 0.4=1.6$
M 2 is faster than M 1 using C 2 compiler by a factor $=$
$\left(\operatorname{IC} \times 3.4 \times 3 \times 10^{9}\right) /\left(\operatorname{IC} \times 1.6 \times 6 \times 10^{9}\right)=1.06$
(iii) If you purchase M1, which compiler would you use?

CPI for M1 using C3 compiler $=2 \times 0.6+3 \times 0.15+5 \times 0.25=2.9$
The compiler with less CPI will have less execution time. Thus, compiler C3 will be used.
(iv) If you purchase M2, which compiler would you use?

CPI for M2 using C3 compiler $=1 \times 0.6+2 \times 0.15+2 \times 0.25=1.4$
Thus, compiler C3 will be used.
(v) Which computer and compiler combination give the best performance?

Computer M2 and compiler C3 will be selected as it is faster that M1 with C3 by a factor=(IC $\left.\times 2.9 \times 3 \times 10^{9}\right) /\left(\mathrm{IC} \times 1.4 \times 6 \times 10^{9}\right)=1.04$
Q.5. A benchmark program runs for 100 seconds. We want to improve the speedup of the benchmark by a factor of 3 . We enhance the floating-point hardware to make floating point instructions run 5 times faster. How much of the initial execution time would floating-point instructions have to account for to show an overall speedup of 3 on this benchmark?

Speedup $=1 /(\mathrm{f} / \mathrm{s}+(1-\mathrm{f}) \Rightarrow 3=1 /(\mathrm{f} / 5+(1-\mathrm{f}) \Rightarrow \mathrm{f} / 5+1-\mathrm{f}=1 / 3 \Rightarrow \mathrm{f}+5-5 \mathrm{f}=5 / 3 \Rightarrow$ $4 \mathrm{f}=3.33 \Rightarrow \mathrm{f}=0.833$

Thus, floating-point instructions must account for 83.3% of the initial execution time to show an overall speedup of 3 on this benchmark.
Q.6. Consider the following fragment of MIPS code. Assume that \mathbf{a} and \mathbf{b} are arrays of words and the base address of \mathbf{a} is in $\$ \mathrm{aO}$ and the base address of \mathbf{b} is in $\$ \mathrm{a} 1$. How many instructions are executed during the running of this code? If ALU instructions (addu and addiu) take 1 cycle to execute, load/store (lw and sw) take 5 cycles to execute, and the branch (bne) instruction takes 3 cycles to execute, how many cycles are needed to execute the following code (all iterations). What is the average CPI?

```
    addu $t0, $zero, $zero # i = 0
    addu $t1, $a0, $zero # $t1 = address of a[i]
    addu $t2, $a1, $zero # $t2 = address of b[i]
    addiu $t3, $zero, 101 # $t3 = 101 (max i)
loop: lw $t4, 0($t2)
addu $t5, $t4, $s0 # $t5 = b[i] + c
sw $t5, 0($t1) # a[i] = b[i] + c
addiu $t0, $t0, 1 # i++
addiu $t1, $t1, 4 # address of next a[i]
addiu $t2, $t2, 4 # address of next b[i]
bne $t0, $t3, loop # loop if (i != 101)
```

The loop body will be executed 101 times. Thus, the total number of instructions executed per class is:

Class	Instruction Count
addu and addiu	$4+101 \times 4=408$
lw and sw	$101 \times 2=202$
bne	101

Thus, the total number of instruction executed $=408+202+101=711$ instruction.
Total number of cycles needed to execute the code $=408 \times 1+202 \times 5+101 \times 3=1721$ cycle.
The average CPI $=1721 / 711=2.42$
Q.7. We want to compare the performance of a single-cycle CPU design with a multicycle CPU. Suppose we add the multiply and divide instructions. The operation times are as follows:

Instruction memory access time $=190 \mathrm{ps}$,
Data memory access time $=190$ ps Register file read access time $=150 \mathrm{ps}$, Register file write access $=150 \mathrm{ps}$ ALU delay for basic instructions $=190 \mathrm{ps}, \quad$ Delay for multiply or divide $=550 \mathrm{ps}$

Ignore the other delays in the multiplexers, control unit, sign-extension, etc.
Assume the following instruction mix: 30% ALU, 15% multiply \& divide, 30% load \& store, 15% branch, and 10% jump.
(i) What is the total delay for each instruction class and the clock cycle for the singlecycle CPU design?

Instruction Class	Instruction Memory	Register Read	ALU Operation	Data Memory	Register Write	Total
ALU	190	150	190		150	680 ps
Load	190	150	190	190	150	870 ps
Store	190	150	190	190		720 ps
Branch	190	150	190			530 ps
Jump	190					190 ps
Mul/div	190	150	550		150	1040 ps

Clock cycle $=1040$ ps determined by the longest delay.
(ii) Assume we fix the clock cycle to 200 ps for a multi-cycle CPU, what is the CPI for each instruction class and the speedup over a fixed-length clock cycle? Note that this implies that multiply and divide operations will be performed in multiple cycles.

Instruction Class	CPI
ALU	4
Load	5
Store	4
Branch	3
Jump	2
Mul/div	6

Average CPI $=4 * 0.3+5^{*} 0.15+4^{*} 0.15+3 * 0.15+2^{*} 0.1+6^{*} 0.15=4.1$
Note that we assumed that load and store instructions have equal percentage.
Speedup $=1040 \mathrm{ps} /(4.1 * 200 \mathrm{ps})=1.268$

