COE 301/ICS 233, Term 172

Computer Architecture \& Assembly Language

HW\# 2 Solution

Q.1. Carry out resulting from addition of unsigned numbers can be used to check if the result of addition is incorrect. Write the shortest sequence of MIPS instructions to determine if there is a carry out from the addition of two registers $\$ \mathrm{t} 1$ and $\$ \mathrm{t} 2$. Place the carry out (0 or $1)$ in register $\$ \mathrm{t} 0$.

When adding two numbers and there is a carryout this implies that the result must be smaller than each of the added operands. Thus, we can use the following sequence of instructions to check that we have a carry out:
add \$t0, \$t1, \$t2
sltu \$t0, \$t0, \$t1
Q.2. Write a MIPS assembly program that asks the user to enter an integer, reads the integer and then displays the integer representation in both binary and hexadecimal, assuming 32bit representation. A sample execution of the program is given below:

Enter an integer: -5
Number representation in binary is: 11111111111111111111111111111011
Number representation in hexadecimal is: FFFFFFFB
.DATA
prompt: .asciiz "\n Enter an integer:"
msg1: .asciiz "\n Number representation in binary is:"
msg2: .asciiz "\n Number representation in hexadecimal is:"
table: .asciiz "0123456789ABCDEF"
.TEXT
.GLOBL main
main:
li \$t3, 32
\# Printing prompt message to read an integer
li $\$ v 0,4 \quad$ \# system call code for print string
la \$a0, prompt \# loads address of prompt into \$a0
syscall \# print the prompt message
\# Reading the integer. Read integer is stored $\$ \mathrm{v} 0$
li \$v0, 5 \# system call code for read integer
syscall
move $\$ \mathrm{t} 0, \$ \mathrm{v} 0$
\# Displaying the entered number in binary
\# Printing msg1 to display binary number
li \$v0, $4 \quad$ \# system call code for print string
la \$a0, msg1 \# loads address of prompt into \$a0
syscall \# print the prompt message
\# Initializing loop counter \$t3
li \$t3, 32
loop:
rol \$t0, \$t0, 1
andi $\$ \mathrm{a} 0, \$ \mathrm{t} 0,1$
\# Print the integer result in a0
li $\quad \$ \mathrm{v} 0,1 \quad$ \# Load the system call number
syscall
sub \$t3, \$t3, 1
bne \$t3, \$zero, loop
\# Printing msg2 to display hexadecimal number
li $\$ \mathrm{v} 0,4 \quad$ \# system call code for print string
la \$a0, msg2 \# loads address of prompt into \$a0
syscall \# print the prompt message
\# Initializing loop counter \$t3
li \$t3, 8
loop2:
rol $\$ \mathrm{t} 0, \$ \mathrm{t} 0,4$
andi $\$ \mathrm{a} 0, \$ \mathrm{t} 0,15$
\# Converting number into in $\$ \mathrm{a} 0$ to hex character
la \$t1, table
addu $\$ \mathrm{t} 1, \$ \mathrm{t} 1, \$ \mathrm{a} 0$
lb \$t1, 0(\$t1)
move $\$ \mathrm{a} 0, \$ \mathrm{t} 1$
\# Print the character result in a0
li $\quad \$ \mathrm{v} 0,11 \quad$ \# Load the system call number
syscall
sub \$t3, \$t3, 1
bne \$t3, \$zero, loop2
\# Return to operating system

li $\quad \$ \mathrm{v} 0,10 \quad$| \# Load the system call number. |
| :--- |
| syscall |

\# Return.
Q.3. Write a program to implement the procedure, SelectionSort, to sort an array of integers (i.e. 32-bit signed numbers) in an ascending order.

The pseudo code for the SelectionSort procedure is given below:

```
SelectionSort (Array, Size)
        for (position= 0 to Size-2)
            MinValue \(=\) Array[position]
            MinPosition = position
            for ( \(\mathrm{j}=\) position+1 to Size-1)
                if (Array[j] < MinValue) then
                    MinValue = Array[j]
                    MinPosition \(=\mathrm{j}\)
            end if
            end for
            if (position \(\neq\) MinPosition) then
                Array[MinPosition] = Array[Position]
                    Array[Position] \(=\) MinValue
            end if
    end for
end SelectionSort
```

Store the array to be sorted in variable Array as defined below.
Array: .word 10, 2, 0, 15, 25, 30, 7, 22
Your program should display the following:
Array before sorting is: 1020152530722
Array after sorting is: 0271015222530
.DATA
Array: .word 10, 2, 0, 15, 25, 30, 7, 22
msg1: .asciiz " ln Array before sorting is:"
msg2: .asciiz "\n Array after sorting is:"
.TEXT
.GLOBL main
main:

la $\$ \mathrm{~s} 0$, Array	\# Array address
li $\$ \mathrm{~s} 1,8$	\# Size of the array

\# Printing Array before sorting
\# Printing msg1
li \$v0, 4
la $\$ \mathrm{a} 0, \mathrm{msg} 1$
syscall
\# Printing the array
move $\$ \mathrm{t} 0, \$ \mathrm{~s} 1$
li $\$ \mathrm{t} 1,0$
Loop:
addu $\$ \mathrm{t} 2, \$ \mathrm{t} 1, \$ \mathrm{~s} 0$
lw \$a0, 0(\$t2)
\# Print the integer in a0
li $\quad \$ \mathrm{v} 0,1$
syscall
\# Printing a comma
li \$v0, 11
li \$a0,' '
syscall
addi \$t1, \$t1, 4
addi \$t0, \$t0, -1
bgtz \$t0, Loop
\# Sorting the Array
\# for (position= 0 to Size-2)
addi \$s2, \$s1,-2
li $\$ \mathrm{t} 0,0$
ForLoop:
bgt \$t0,\$s2, EndFor
sll \$t1, \$t0, 2
addu \$t1, \$t1, \$s0
lw $\quad \$ \mathrm{t} 2,0(\$ \mathrm{t} 1)$
move \$t3, \$t0
\# for ($\mathrm{j}=$ position+1 to Size-1)
addi $\$ 44, \$$ s1, -1
addi $\$ \mathrm{t} 5, \$ \mathrm{t} 0,1$
ForLoop2:
bgt \$t5,\$t4, EndFor2
sll \$t6, \$t5, 2
addu \$t6, \$t6, \$s0
lw \$t7, 0 (\$t6)
slt \$t8, \$t7, \$t2
beqz $\$ t 8$, Endif

> \# system call code for print string
> \# loads address of prompt into \$a0
> \# print the prompt message
\# loop counter
\# array index
\# address of indexed element
\# Load the system call number
\# increment array index
\# 1st for loop max=Size-2
\# position=0

```
# multiply position by 4
# address of position
# Minvalue
# MinPosition
# 2nd for loop max=Size-1
# j
```

\# multiply j by 4
\# address of j element
\# if (Array[j] < MinValue) then
move \$t2, \$t7
move \$t3, \$t5
Endif:
addi \$t5, \$t5, 1
j ForLoop2
EndFor2:
beq \$t0, \$t3, EndIf2
sll \$t1, \$t0, 2
addu $\$ \mathrm{t} 1, \$ \mathrm{t} 1, \$ \mathrm{~s} 0$
lw $\quad \$ \mathrm{t} 9,0(\$ \mathrm{t} 1)$
sll \$t6, \$t3, 2
addu \$t6, \$t6, \$s0
sw $\quad \$ \mathrm{t} 9,0(\$ \mathrm{t} 6)$
sw $\quad \$ 2,0(\$ t 1)$
EndIf2:
addi \$t0, \$t0, 1
j ForLoop
EndFor:
\# Printing Array after sorting
\# Printing msg2
li $\$ \mathrm{v} 0,4$
la $\$ \mathrm{a} 0, \mathrm{msg} 2$
syscall
\# Printing the array
move $\$ \mathrm{t} 0, \$ \mathrm{~s} 1$
li \$t1, 0
Loop2:
addu $\$ \mathrm{t} 2, \$ \mathrm{t} 1, \$ \mathrm{~s} 0$
lw \$a0, 0(\$t2)
\# Print the integer in a0
li $\quad \$ v 0,1$
syscall
\# Printing a comma
li \$v0, 11
li \$a0, ''
syscall
addi $\$ \mathrm{t} 1, \$ \mathrm{t} 1,4$
addi $\$ \mathrm{t} 0, \$ \mathrm{t} 0,-1$
bgtz \$t0, Loop2
\# Return to operating system
li $\quad \$ v 0,10$
syscall
\# MinValue $=$ Array[j]
\# MinPosition $=\mathrm{j}$
\# multiply position by 4
\# Array[MinPosition] = Array[Position]
\# multiply MinPosition by 4
\# Array[Position] = MinValue
\# system call code for print string
\# loads address of prompt into \$a0
\# print the prompt message
\# loop counter
\# array index
\# address of indexed element
\# Load the system call number
\# increment array index
\# Load the system call number.
\# Return.

