COE 301/ICS 233, Term 172

Computer Architecture \& Assembly Language
 HW\# 1

Q.1. Briefly describe the main functionality of the program counter register (PC), the instruction register (IR), and the fetch-execute process in a computer.
Q.2. Describe two advantages for programming in assembly and two advantages for programming in a high-level language.
Q.3. Given a magnetic disk with the following properties: Rotation speed $=7200$ RPM (rotations per minute), Average seek $=8 \mathrm{~ms}$, Sector $=512$ bytes, Track $=200$ sectors. Calculate the following:
(i) Time of one rotation (in milliseconds).
(ii) Average time to access a block of 32 consecutive sectors.
Q.4. Represent the following numbers in binary and hexadecimal. Use as many bits as needed, and approximate the fraction up to 3 digits:
(i) 250.375
(ii) 4444.4
Q.5. Express the following numbers in sign-magnitude, 1`s complement, and 2`s complement notations, assuming 8-bit representation:
(i) -119
(ii) -55
Q.6. Show how the decimal integer -120 would be represented in 2 `s complement notation using: (i) 8 bits (ii) 16 bits Q.7. Perform the following operations assuming 8-bit 2`s complement representation of numbers. Indicate in your answer when an overflow occurs:
(i) $01010011+11111111$
(ii) $10110000-01110110$
(iii) $\mathrm{AF}+\mathrm{FF}$
(iv) $\mathrm{AF}-70$
Q.8. A microcontroller uses 8 -bit registers. Give the following in both binary and decimal:
(i) The maximum unsigned number that can be stored.
(ii) The smallest (negative) number and the largest (positive) number that can be stored using the sign-magnitude notation.
(iii) The smallest (negative) number and the largest (positive) number that can be stored using the 2 's complement notation.
Q.9. If you type the phrase ICS233 on your keyboard, what is the binary sequence sent to the computer using 8 -bit ASCII with the $8^{\text {th }}$ bit being an even parity bit.
Q.10. Suppose that a byte contains the ASCII code of a decimal digit; that is `0 ' to` 9 '. What hex number should be subtracted from the byte to convert it to the numerical form of the characters?

