

Computer Networks Lab Winter 2002

Technion - Israel Institute of Technology

Electrical Engineering

Computer Networks Lab

DNS Client – Server Model on

OPNET.

DNS Client – Server Model on

OPNET.

Authors: Amit Dolev.

 Amir Wiener.

Instructor: Nir Arad.

Project site: http://www.comnet.technion.ac.il/~cn10w02

1

Computer Networks Lab Winter 2002

Index

INDEX ...1

ABSTRACT ..4

1. INTRODUCTION ..5
1.1 PROJECT GOAL ..5
1.2 DOMAIN NAME SYSTEM ..5
1.3 OPNET PLATFORM..5

1.6.1 Preparations ..6
1.6.2 Operating the dns_app project ..6

1.7 USING THE DNS CLIENT-SERVER MODEL ..6
2. THEORETICAL BACKGROUND - THE DOMAIN NAME SYSTEM8

2.1 GENERAL...8
2.2 DESCRIPTION...8
2.3 DNS STRUCTURE ..8
2.4 DNS DATABASE ITEMS ..11
2.5 DNS PACKET FORMAT ...11
2.6 DNS RESOLUTION ALGORITHMS..12

2.6.1 The recursive algorithm...12
2.6.2 The iterative algorithm ..13

3. THEORETICAL BACKGROUND - OPNET MODELER BACKGROUND........................16
3.1 GENERAL...16
3.2 SIMULATION STRUCTURE...16
3.3 MODELING DOMAINS..16

3.3.1 Network Domain..17
3.3.2 Node Domain...17
3.3.3 Process Domain...18

3.4 DERIVED MODEL...21
4. THE SERVER DATABASE..22

4.1 CLASS RESOURCE_RECORD ..23
4.2 CLASS ZONE..23
4.3 CLASS DB ...24

5. THE CLIENT / SERVER MODULES...26
5.1 ETHERNET BASE MODEL ..26
5.2 GENERAL OVERVIEW OF OPNET DNS SENARIO ...27
5.3 DNS PACKET...28
5.4 CLIENT NODE MODEL...32

5.4.1 General background ..32
5.4.2 Application node – process hierarchy ...33
5.4.3 Dns node – process hierarchy ...35
5.4.4 Tpal node – process hierarchy ..37

5.5 SERVER NODE MODEL ..39
5.5.1 General background ..39
5.5.2 Application node – process hierarchy ...40
5.5.3 Tpal node – process hierarchy ..43
5.5.4 UDP node – process hierarchy..43

6. SUMMARY AND CONCLUSIONS...44
6.1 SUMMARY ...44
6.2 COMPARISON OF GOALS WITH RESULTS...44
6.3 REMARKS ON PROJECT PROBLEMS ...45

Project site: http://www.comnet.technion.ac.il/~cn10w02

2

Computer Networks Lab Winter 2002

6.4 FUTURE ENHANCEMENTS...45
7. BIBLIOGRAPHY...46

7.1 RFC’S ...46
8. APPENDIXES ..47

8.1 RESOURCE RECORDS ...47
8.2 HEADER FILES ...49

Project site: http://www.comnet.technion.ac.il/~cn10w02

3

Computer Networks Lab Winter 2002

Abstract

Throughout the World Wide Web the DNS protocol fills a main role in allowing

people use the network and find their way around. Enabling the transparent

translation from human language to computer’s, the DNS lets us know where we

want to go in the net without knowing the 32-bit IP-address of our destination but

by knowing a meaningful name representing it.

In this project we designed DNS compliant client and server models. The DNS

server model is a Name Server and it is programmed to resolve DNS queries using

the two protocol based algorithms. Using these basic objects the simulation was

configured.

The models and simulation of the DNS protocol was designed using the OPNET

modeler platform, written in C++.

The project, through its independent models, allows for future projects the use of

the designed model for creating more simulations or other enhancements.

One such enhancement will be done in part B of this project in which we will add

real delays taken from experimental measurements. The system allows for easy

adding of different delay times to be used by the simulation, in order to allow for

analysis of reality based timing.

Project site: http://www.comnet.technion.ac.il/~cn10w02

4

Computer Networks Lab Winter 2002

1. Introduction

1.1 Project Goal

The DNS client-server model designed in this project was implemented in order to

have an accurate, precise, to the bit model for simulation of DNS transactions.

The project allows running a simulation of DNS transaction-

1. Client generates a query, sends it to its server.

2. Server receives and analyzes the client's query.

3. Server resolves the query and sends the response back to the

client.

1.2 Domain Name System

The Domain Name System protocol is a basic protocol in the Internet, and is in use

by all Internet users throughout the world, and by many networks besides the

Internet.

The DNS protocol's main functionality is to allow the use of names instead of

numbers, the computers use, to distinguish between different web sites (and other

Internet based information).

1.3 OPNET platform

The model is based on the OPNET platform – a network simulation environment

that enables simulation of different protocols, and different scenarios.

The OPNET has a high abstraction level ranging from graphical interface

representation of a network and its nodes, easy ways of creating network

topologies, down to C++ code implementation of protocols.

The OPNET has many models based on different protocols built-in and included.

The OPNET simulation platform allows adding user-defined modules and objects to

its own, built-in, modules so that adding functionality of a new protocol is possible.

In the simulations we can collect different statistics regarding network traffic.

Project site: http://www.comnet.technion.ac.il/~cn10w02

5

Computer Networks Lab Winter 2002

1.4 General Description

The DNS client-server model includes three main components:

1. Client model – creates and sends DNS queries. This is a new

OPNET model we implemented derived from a built-in base client

model.

2. Server model – receives, analyzes, and resolves the query and

sends response. This is a new OPNET model we implemented

derived from a built-in base server model.

3. Database – the server's DNS "knowledge" resource. A C++

package which we implemented is used by the server model.

1.5 Development Environment

The DNS client-server model is implemented on:

 OOPPNNEETT mmooddeelleerr 88..00

1.6 Operating the program

1.6.1 Preparations

(In edit-preferances)
• Mod_dirs – dns op_model location (in first line in the directory list).

• The resource-record file location & name – the file should be located in the

same directory as the OPNET modeler executable file. It's name should be

<model_name>.txt (e.g. yahoo_com.txt where the server's name is edited to

be yahoo_com).

1.6.2 Operating the dns_app project

• Start the OPNET modeler.

• Open the dns_app project.

• Run simulation.

1.7 Using the DNS client-server model

 (for future use - new scenarios)
• Start the OPNET modeler.

• Open a new project.

Project site: http://www.comnet.technion.ac.il/~cn10w02

6

Computer Networks Lab Winter 2002

• Insert in it the DNS models:

dns_server Node Model – the server model.

Dns_client Node Model – the client model.

• Configure the topology.

• Configure the server names (using Edit Attributes).

• Match the server names to the names appearing in the resource record file

under NS (name servers) records (OPNET cannot operate with "." in

names). The simple option is to change "." to "_".

• Make sure resource-record files (named properly – according to the server’s

name) are in relevant directory (as explained earlier in the section).

• Run simulation.

Project site: http://www.comnet.technion.ac.il/~cn10w02

7

Computer Networks Lab Winter 2002

2. Theoretical background - the Domain Name System

This next chapter will give you better understanding of the DNS protocol, its

structure and algorithms.

This is the foundation on which the "DNS client-server model" project leans

upon.

2.1 General

Almost every one knows some Internet sites address, such as www.cnn.com.

What would it be like if we needed to remember this instead- 192.10.155.23?

The DNS – Domain Name System gives us the comfort of “knowing” Internet

addresses, by knowing an understandable and easy to remember name, which on the

system will be translated to an actual 32 bit Internet address.

The DNS protocol provides the mechanism to make the translation possible,

dynamic, fast, and available on many locations.

This system is used for different web sites (e.g. http, ftp, and telnet) and for other

net-based application mainly – e-mail. The protocol is implemented over UDP

transport protocol.

2.2 Description

The Domain Name System is a distributed database. This allows local control of the

segments of the overall database, yet data in each segment are available across the

entire network through a client-server scheme.

Name Servers constitute the server half of the DNS's client-server mechanism.

Name Servers contain information about some segments of the database and make

it available to clients.

2.3 DNS Structure

The structure of the DNS database is very similar to the structure of the UNIX file

system. The database appears as an inverted tree, with the root node at the top. Each

node has a text label- an identifier relative to its parent.

Project site: http://www.comnet.technion.ac.il/~cn10w02

8

http://www.cnn.com/

Computer Networks Lab Winter 2002

The domain names are divided starting at the root. The second level in the tree is

consisted of three groups: generic domains; country domains; inverse domain.

In figure 2.1 we can see the top division of the domain tree.

 The root "."

arpa gov com edu uk il

Country domains Inverse domain Generic domains

 Figure 2.1 – DNS top domains

The relative identifier, along with its chain of parent nodes' labels separated by dots,

creates a unique name.

For example – the name of the node "comnet" in the figure 2.2 is:

comnet.technion.ac.il (the root does not add an extra ".") as seen by the arrows.

 The root "."

il uk

ac co edu

technion biu

comnet

Figure 2.2 – DNS database structure

Each node may also be the root of a new subtree – a domain.

Every domain has a unique name (according to its identifier and path to the root).

Project site: http://www.comnet.technion.ac.il/~cn10w02

9

Computer Networks Lab Winter 2002

In DNS each domain can be administrated by a different organization. Each

organization can then break its domain into a number of subdomains and handout

responsibilities for those subdomains to others. For example the "ac.il" domain is

administrated by a central organization in Israel while the "technion.ac.il" domain is

administrated by the technion itself.

Domains can contain both hosts and subdomains. Each host on a network has a

domain name, which points to it.

The delegation of subdomains creates different zones. A zone is a part of a domain,

which is under the administration of a single authority – a specific name server. A

name server who is authoritative for a zone must have all the information needed

for its zone.

Using this structure we have a distributed complete database of all the hosts

throughout the network. Each authoritative name server holds all required

information ranging from lower zones’ name servers which were delegated by it

(lower subdomains which are not administered by it) to application specific

information on a host (e.g. information for t2.technion.ac.il mail-server & for its

telnet server etc.). Using the protocol’s algorithms we can reach the needed

information from somewhere in this database.

In figure 2.3 there is an illustration of the domain and zone structure.

ac.il domain

comnet

biutechnion

coac edu

ukil

 The root "."

technion.ac.il domain

technion.ac.il zone

comnet.technion.ac.il zone

Figure 2.3 – DNS database –

Domains & zones

Project site: http://www.comnet.technion.ac.il/~cn10w02

10

Computer Networks Lab Winter 2002

2.4 DNS database items

The database includes different types of Resource Records (rr’s). A resource record

holds information regarding address translation, name servers or mail exchange

server. For each information type is a resource record type (e.g. resource record for

address, resource record for name server etc.). This information in the name server

is derived from a local text file in the name server. This file (as implied earlier) has

the complete information of the name server’s authoritative zone. Other resource

records regarding other zones may be held by the name server as cached resource

records for a limited time (to insure dynamic update). From the information in the

resource record the server can resolve a query (using address resource record:

name=IP address), or help continue the search by sending the query to a closer

name server (using name server resource record: xx.yy name server’s IP

address=X).

A detailed example of a resource record is shown in the appendix (appendix a).

2.5 DNS packet format

The protocol works with a unique packet format. The same format is used for both

the query and the response. In the query the fields that are designated for holding

the response information are empty. Figure 2.4 shows the format.

Query Response

identical
Header

Question section

Answer section

Authoritative section

Additional section

Header

Question section

Figure 2.4 - DNS packet format

Project site: http://www.comnet.technion.ac.il/~cn10w02

11

Computer Networks Lab Winter 2002

2.6 DNS resolution algorithms

There are two algorithms in the DNS protocol, both enable the client get the most

accurate and authoritative answer. The two options differ from each other in the

client’s designated name server behavior.

According to these algorithms the resolving process in the OPNET DNS server

model is implemented.

The two resolution options of mapping requests are recursive and iterative.

Recursive resolution:

The server acts as resolver querying another server and so on recursively, until it

receives final answer, and sends it to client.

Iterative resolution:

The server repeats the same query to multiple servers until receives answer, which

is sent back to the client.

In both examples (figures 2.5 & 2.6) the clients DNS server is walla.com.

2.6.1 The recursive algorithm

(shown in figure 2.5)

1.Resolver accesses it’s DNS server with a mapping request. (First time it’s the

client, the next times it’s another server).

2.1.Server has the authority.

2.1.1 Server has the IP (lowest authority-zone/ cached)- sends response.

2.1.2 Server doesn’t have IP – sends request to lower server in hierarchy.(server is

.ac.il and needs to resolve xxx.technion.ac.il) and waits for response- then sends it

back to resolver.

2.2 Server Doesn’t have authority.

2.2.1 Server has the IP (cached)- sends response.

2.2.2 Server doesn’t have IP – sends request to another server (usually parent or

cached closest authorized DNS server) and waits for response- then sends it back to

resolver.

Project site: http://www.comnet.technion.ac.il/~cn10w02

12

Computer Networks Lab Winter 2002

if cached

if cached if cached

if cached

12

11

10 9

8

7

6

5

4
3

2
if cached

Query= comnet.technion.ac.il
1

technion.ac.il

ac.il

il

Root server

com

walla.com

 Figure 2.5 – recursive resolution exapmle.

2.6.2 The iterative algorithm 2.6.2 The iterative algorithm

(shown in figure 2.6) (shown in figure 2.6)

1.Client accesses DNS server1.Client accesses DNS server with a mapping request.

2.1.Server has the lowest authority (in it’s zone).

2.1.1 Server has the IP - sends response.

2.2 Server has authority (but request not in it’s zone)

2.2.1 Server has the IP (cached) - sends response.

2.1.2 Server doesn’t have IP – sends query to closest server it knows, that might

have address (lower in the hierarchy).(server is .ac.il and needs to resolve

xxx.technion.ac.il). It will receive requested IP or IP to closer name server. Server

will continue in this iterative step to a new given name server and so on until

receives the final IP and then send it back to client.

Project site: http://www.comnet.technion.ac.il/~cn10w02

13

Computer Networks Lab Winter 2002

2.3 Server Doesn’t have authority.

2.3.1 Server has the IP (cached)- sends response.

2.3.2 Server doesn’t have IP – sends query to closest server it knows, that might

have address (usually parent or cached closest authorized DNS server). It will

receive requested IP back or IP to closer name server. Server will continue in this

iterative step to new given name server and so on until receives final IP and then

send it back to client.

1.Name server accesses another name server with an iterative mapping request.

2.1 Server has Authority –

2.1.1 Server has IP (lowest authority-zone/cached) – sends response with requested

IP.2.1.2 Server doesn’t have IP – sends back IP to another name server lower in the

hierarchy that is closer to the requested address.

2.2 Server doesn’t have authority –

2.2.1 Server has IP (cached) - sends response with requested IP.

2.2.2 Server doesn’t have IP - sends back IP closest name server to requested

address (parent/cached name server).

ac.il com (has ac.il NS IP)

Q:comnet.technion.ac.il

if cached

3

4
 if cached

5 Q:comnet.technion.ac.il

2 technion.ac.il

if cached 7
8

Q:comnet.technion.ac.il
6

Q:Comnet.technion.ac.il
1

walla.com

 figure 2.6 – iterative resolution example (Q=query)

Project site: http://www.comnet.technion.ac.il/~cn10w02

14

Computer Networks Lab Winter 2002

Comment: In both algorithms in case of an illegal mapping query:

1.Client accesses DNS server with a mapping request.

2. Server finds the request illegal –

The requested address doesn’t exist (cached) or bad format of address - sends

response that there is no such address.

Project site: http://www.comnet.technion.ac.il/~cn10w02

15

Computer Networks Lab Winter 2002

3. Theoretical background - OPNET modeler background

This chapter unfolds the capabilities and programming issues of the OPNET

modeler, the simulation platform on which the “DNS client-server model” is

implemented.

3.1 General

OPNET provides a comprehensive development environment supporting the

modeling of communication networks and distributed systems. Both behavior and

performance of modeled systems can be analyzed by performing discrete event

simulations. The OPNET environment incorporates tools for all phases of a study,

including model design, simulation, data collection, and data analysis.

3.2 Simulation structure

A simulation is run on a network. A network is made of a certain topology (shown

graphically), and certain defined behavioral profiles. The bricks that build the

scenario are connected nodes (Node models). A node model is a programmed

design of a device such as server or workstation. Each node consists various

hierarchical processes. A process implements a certain behavior of the program.

3.3 modeling domains

The Network, Node, and Process modeling environments are sometimes referred to

as the modeling domains of OPNET, since they essentially span all the hierarchical

levels of a model. As mentioned earlier, the capabilities offered by the three

modeling domains mirror the types of structures found in an actual network system;

the issues addressed by each domain are summarized in the following table and then

briefly described in the remainder of this section (3.3).

Project site: http://www.comnet.technion.ac.il/~cn10w02

16

Computer Networks Lab Winter 2002

3.3.1 Network Domain

The Network Domain’s role is to define the topology of a communication network.

The communicating entities are called nodes and the specific capabilities of each

node are defined by designating their model. Within a single network model, there

may be many nodes that are based on the same node model; the term node instance

is used to refer to an individual node, in order to distinguish it from the class of

nodes sharing the same model. However, in general, when the term node is used by

itself, in the context of the network domain, it can be assumed that a node instance

is being referred to, rather than a node model.

3.3.2 Node Domain

The Node Domain provides for the modeling of communication devices that can be

deployed and interconnected at the network level. In OPNET terms, these devices

are called nodes, and in the real world they may correspond to various types of

computing and communicating equipment such as routers, bridges, workstations,

terminals, mainframe computers, file servers, and so on.

Node models are expressed in terms of smaller building blocks called modules.

Some modules offer capability that is substantially predefined and can only be

configured through a set of built-in parameters. These include various transmitters

and receivers allowing a node to be attached to communication links in the network

domain. Another module, called processor, is highly programmable, its behavior

being prescribed by an assigned process model.

A node model can consist of any number of modules of different types. Three types

of connections are provided to support interaction between modules. These are

called packet streams, statistic wires (also sometimes referred to as streams and

statwires, respectively), and logical associations. Packet streams allow formatted

Project site: http://www.comnet.technion.ac.il/~cn10w02

17

Computer Networks Lab Winter 2002

messages called packets to be conveyed from one module to another. Statistic wires

convey simple numeric signals or control information between modules, and are

typically used when one module needs to monitor the performance or state of

another. Both packet streams and statistic wires have parameters that may be set to

configure aspects of their behavior. Logical associations identify a binding between

modules.

The modeling paradigm selected for the Node Domain was designed to support

general modeling of high-level communication devices. It is particularly well suited

to modeling arrangements of “layered” communication protocols. A device that

relies on a particular stack of protocols, can be modeled by creating a processor

object for each layer of that stack and defining packet streams between neighboring

layers.

3.3.3 Process Domain

As mentioned earlier in the discussion of the Node Domain, processor modules are

user-programmable elements that are key elements of communication nodes. The

tasks that these modules execute are called processes. A process can in many ways

be thought of as similar to an executing software program, since it includes a set of

instructions and maintains state memory.

Processes in OPNET are based on process models. The relationship between

process model and process is similar to the relationship between a program and a

particular session of that program running as a task (in fact, the term “process” is

used in many operating systems as well).

The process modeling paradigm of OPNET supports the concepts of process

groups. A process group consists of multiple processes that execute within the same

processor. When a simulation begins, each module has only one process, termed the

root process. This process can later create new processes, which can in turn create

others as well, etc. When a process creates another one, it is termed the new

process’ parent; the new process is called the child of the process that created it.

Processes that are created during the simulation are referred to as dynamic

processes. OPNET places no limits on the number of processes that may be created

in a particular processor. Processes may be created and destroyed based on dynamic

conditions that are analyzed by the logic of the executing processes. This paradigm

provides a very natural framework for modeling many common systems. In

Project site: http://www.comnet.technion.ac.il/~cn10w02

18

Computer Networks Lab Winter 2002

particular, multitasking operating systems where the root process represents the

operating system itself and the dynamically created processes correspond to new

tasks; and multi-context protocols where the root process represents a session

manager, for example, and each new session that is requested is modeled by

creating a new process of the appropriate type. Only one process may be executing

at any time. A process is considered to be executing when it is progressing through

new instructions that are part of its process model. When a process begins execution

it is said to be invoked. A process that is currently executing can invoke another

process in its process group to cause it to begin executing. When this happens, the

invoking process is temporarily suspended until the invoked process blocks. A

process blocks by indicating that it has completed its processing for its current

invocation. Once the invoked process has blocked, the invoking process resumes

execution where it had left off, in a manner similar to the procedure-call mechanism

in a programming language such as C.

Processes in OPNET are designed to respond to interrupts and/or invocations.

Interrupts are events that are directed at a process and that may require it to take

some action. They may be generated by sources external to a process group, by

other members of a process group, or by a process for itself. Interrupts typically

correspond to events such as messages arriving, timers expiring, resources being

released, or state changes in other modules. Once a process has been invoked due to

an interrupt, it may invoke other processes in the group and these may in turn

invoke other processes, etc. An interrupt’s processing is completed when the first

process that was invoked blocks.

An important feature used in relation to interrupts is the ICI. In OPNET an ICI

(Interface Control Information), a configurable data structure, can be associated

with an interrupt or data stream. This mechanism enables the inter process

communication needed for sharing information in OPNET’s architecture.

OPNET’s expresses process models in a language called Proto-C, which is

specifically designed to support development of protocols and algorithms. Proto-C
is based on a combination of state transition diagrams (STDs), a library of high-

level commands known as Kernel Procedures, and the general facilities of the C or

C++ programming language. A process model’s STD defines a set of primary

modes or states that the process can enter and, for each state, the conditions that

would cause the process to move to another state. The condition needed for a

Project site: http://www.comnet.technion.ac.il/~cn10w02

19

Computer Networks Lab Winter 2002

particular change in state to occur and the associated destination state are called a

transition.

Proto-C models allow actions to be specified at various points in the finite state

machine. The actions can be extremely general in nature since they are expressed as

C or C++ statements. In addition, because Proto-C is focused on modeling

protocols and algorithms, it provides an extensive library of over 300 Kernel

Procedures (also known as KPs) that can be invoked to perform commonly needed

actions.

The state transition diagram representation of Proto-C is well suited to the

specification of an interrupt-driven system because it methodically decomposes the

states of the system and the processing that should take place at each interrupt.

STDs developed in OPNET’s Process Editor have a number of extensions beyond

the capabilities offered by traditional state-transition diagram approaches:

• State Variables: Processes maintain private state variables with named

variables of arbitrary data types, including OPNET-specific, general C/C++

language, and user-defined types. This capability allows a process to

flexibly maintain counters, routing tables, statistics related to its

performance, or messages requiring retransmission. Arbitrary combinations

of state variable values may be used in all decisions and actions

implemented by a process.

• State Executives: Each state of a process can specify arbitrarily complex

actions associated with the process entering or leaving that state. These

actions, called state executives, are expressed with the full flexibility of the

C/C++ language. Typical actions include modifying state information,

creating or receiving messages, updating the contents of and sending

messages, updating statistics, and setting or responding to timers.

• Transition Conditions: Transition condition statements, which determine

whether a transition should be traversed, may be expressed as general

C/C++ language booleans that make reference to properties of a new

interrupt as well as to combinations of state variables.

• Transition Executives: Transitions may specify general actions, called

executives, which are implemented each time that they are traversed.

Project site: http://www.comnet.technion.ac.il/~cn10w02

20

Computer Networks Lab Winter 2002

3.4 Derived Model

As in the “DNS client-server model”, there was a need to customize an existing

model (The Ethernet server & Ethernet workstation).

Using the OPNET capabilities we added new packet, ici’s, nodes in the node-model

and specific processes, all of which allow the implementation of the protocol.

Project site: http://www.comnet.technion.ac.il/~cn10w02

21

Computer Networks Lab Winter 2002

4. The server Database

Each DNS server stores db files. Most Entries in the db files are called DNS

“resource records”. Here are the contents of the file “db.root|”:

T

c

I

t

E

t

. IN SOA sjc-sp-dns-01.supplier01-int.com. hostmaster.supplier01-int.com. (
 4 ;serial number
 10800 ;Refresh after 3 hours
 3600 ;Retry after 1 hour
 604800 ;Expire after 1 week
 86400) ;Minimum TTL of 1 day

. IN NS sjc-sp-dns-01.supplier01-int.com.

supplier01-int.com. IN NS sjc-sp-dns-01.supplier01-int.com.

sjc-sp-dns-01.supplier01-int.com IN A 192.168.2.13

reskit.com. IN NS sea-rk-dc-01.reskit.com.
reskit.com. IN NS sea-rk-dc-02.reskit.com.

sea-rk-dc-01.reskit.com. IN A 172.16.4.11
sea-rk-dc-02.reskit.com. IN A 172.16.4.12

avionics01-int.com. IN NS sea-av-dns-01.avionics01-int.com.

sea-av-dns-01.avionics01-int.com. IN A 172.16.12.13

acquired01-int.com. IN NS hkg-ac-dc-01.acquired01-int.com.

hkg-ac-dc-01.acquired01-int.com. IN A 172.16.88.11

16.172.in-addr.arpa. IN NS sea-rk-dc-01.reskit.com.
2.168.192.in-addr.arpa. IN NS sjc-sp-dns-01.supplier01-int.com.
Figure 4.1 - Resource Record example.

he db are formatted as an ASCII file. we can see that for each type of record we

an see its details (ip address, alias record and etc.)

n order for the server to process request and look up the database, we need to

ransfer it to some kind of data structure.

ach resource record has it’s own class, and all specific resource record is based on

he base resource record.

Project site: http://www.comnet.technion.ac.il/~cn10w02

22

Computer Networks Lab Winter 2002

4.1 Class Resource_Record

RecordType type;
char domain[STRING_LENGTH];

 RecordType type – NS, ADDRESS , SOA ,etc.

 char domain – the name of the domain that resource record belongs to.

The class includes also internal function for adding/resolving information of the

resource record.

All other resource record inherits the basic resource records, and includes more

fields according to their type:

Resource_Record:RR_A class

Resource_Record:RR_ns class

basic resource
.record

Resource_Record:RR_soa class Resource_Record :RR_mr class

 Resource_Record:RR_ns class

Figure 4.2 – resource record inheritance.

4.2 Class Zone

char zone_name[STRING_LENGTH];
std::list<RR_A> address_list;
std::list<RR_NS> name_server_list;
std::list<RR_MX> mx_list;
std::list<RR_SOA> soa_list;
std::list<RR_MR> mr_list;

Each zone at db can hold more than on type of resource record, and more than on

entry for each type. For example, a NS can have more than one ip address.

Project site: http://www.comnet.technion.ac.il/~cn10w02

23

Computer Networks Lab Winter 2002

The class includes also internal function for adding resource record (according to

type) to the zone ,resolving a specific resource record, initialize new zone and etc.

The zone data structure is organized as a hash table, while using the STL library for

the linked list and other data structure. All zones that have the same domain are

grouped together under the same domain.

4.3 Class DB

For the whole database we defined a new class : DB class.

The class holds the available domains in the database and provides the interface of

the user (in our case- the opnet) to the database . it is done by the following class

functions:

 DB& DB:DBInit (ifstream f)

Initialize the db given ifstream with is created by external function

database__init.

 Resource_Record& DB:DB_get(RecordType t, char* name)

Resolve a resource record according to type and name.

 void DB:DB_put(RecordType type, char* address, char*

name)

add new resource record to the database. Because the main purpose

of project is getting ip address, we implemented address_RR

insertion.

 char* DB:DB_get_most_likely(char* name)

Incase we already know we don’t have answer at current database,

we try to get the similar answer that database holds.

 database_init(DB& D , char* file_name)

Implemented in external file (init_db). This function is used at opnet, which

gets the db ASCII file name and DB D to initialize.

Project site: http://www.comnet.technion.ac.il/~cn10w02

24

Computer Networks Lab Winter 2002

 We can summarize the whole server DB in the following diagram:

IP address

Mail-exchangers

Name servers

Start of Authority

Zones

Domains

Figure 4.3 – DB in server.

All the source code for the server database was written in C++, and compiled via

opnet - declared as external files.

The resource record files should be located in the same directory as the OPNET

executable file.

In order to support more than one server, we look for resource record file named

<server_name>.txt in each server (The server name can be edited in the node's

attributes).

Project site: http://www.comnet.technion.ac.il/~cn10w02

25

Computer Networks Lab Winter 2002

5. The client / server modules

This chapter explains first in general and then in details the design and function of

the client and server models.

5.1 Ethernet base model

The client/server modules are based on the Ethernet workstation/server

implemented at opnet as “node model”.

Ethernet is the most popular physical layer LAN technology in use today. Other

LAN types include Token Ring, Fast Ethernet, Fiber Distributed Data Interface

(FDDI), Asynchronous Transfer Mode (ATM) and LocalTalk. Ethernet is popular

because it strikes a good balance between speed, cost and ease of installation. These

benefits, combined with wide acceptance in the computer marketplace and the

ability to support virtually all popular network protocols, make Ethernet an ideal

networking technology for most computer users today. The Institute for Electrical

and Electronic Engineers (IEEE) defines the Ethernet standard as IEEE Standard

802.3. This standard defines rules for configuring an Ethernet network as well as

specifying how elements in an Ethernet network interact with one another. By

adhering to the IEEE standard, network equipment and network protocols can

communicate efficiently.

figure 5.1 - Ethernet's Logical Relationship to the ISO Reference Model

Project site: http://www.comnet.technion.ac.il/~cn10w02

26

Computer Networks Lab Winter 2002

The dns is implemented at the application layer, however according to the unique

model of opnet node model, additional modifications needed at lower levels,

especially the tpal layer.

On the opnet Ethernet node model, the tpal layer is an interface between the

application and the transport layer, in order to easy on the user to prevent prom the

user to deal with the different type of transport protocols (udp, tcp).

The tpal layer is responsible for opening session according to the transport protocol

delivered from the upper layer, and signaling for application that session is ready

for communication.

5.2 General overview of OPNET DNS senario

In the project we created a client-server topology (one client, one server), and the

simulation runs a scenario. The DNS scenario starts with the initialization of client

and server variables, registering the process and waiting for interrupts to arrive.

We can describe the DNS scenario with the following flow chart:

A process in The
application layer at
client model generate
a query request,
encapsulate it in a
regular packet.

The packet is transmitted
to the server, and the
dns_packet is
decapsulated at
application layer
according to the dns
port.

The server check the
arriving packet.
If it’s a response, it
forward it to the
source,else check for
answer to the query.

The packet arrives to
the dns node. a new
tpal session is
established with the
server, and the packet
is sent to lower layer.

The client check the
response packet for
the answer to the
query at the dns
node process, and
destroy the packet.

The answer is inserted
to the dns packet
according to the server
resource record
database., and the
modified packet is
transmitted back to the
client.

End of dns senario.

Figure 5.2 – DNS scenario.

Project site: http://www.comnet.technion.ac.il/~cn10w02

27

Computer Networks Lab Winter 2002

5.3 dns packet

figure 5.3 – The DNS packet in OPNET

The dns packet is created using the opnet packet editor. Each field can be from any

type (integer, structure, packet and etc.). each field is predefined with it’s size, and

can be set with a default value at creation. The dns packet fields are:

ID A 16 bit identifier assigned by the program that

 generates any kind of query. This identifier is copied

 the corresponding reply and can be used by the requester

 to match up replies to outstanding queries.

QR A one bit field that specifies whether this message is a

 query (0), or a response (1).

OPCODE A four bit field that specifies kind of query in this

 message. This value is set by the originator of a query

 and copied into the response. The values are:

 0 a standard query (QUERY)

 1 an inverse query (IQUERY) (not supported)

 2 a server status request (STATUS) (not supported)

AA Authoritative Answer - this bit is valid in responses,

Project site: http://www.comnet.technion.ac.il/~cn10w02

28

Computer Networks Lab Winter 2002

 and specifies that the responding name server is an

 authority for the domain name in question section.

TC TrunCation - specifies that this message was truncated

 due to length greater than that permitted on the

 transmission channel. (not implemented)

RD Recursion Desired - this bit may be set in a query and

 is copied into the response. If RD is set, it directs

 the name server to pursue the query recursively.

 Recursive query support is optional.

RA Recursion Available - this be is set or cleared in a

 response, and denotes whether recursive query support is

 available in the name server.

Z Reserved for future use at an original dns packet.

 We used this bit to indicate wheres a packet came from client or a server

RCODE Response code - this 4 bit field is set as part of

 responses. The values have the following

 interpretation:

 0 No error condition

 1 Format error - The name server was

 unable to interpret the query.

 3 Name Error - Meaningful only for

 responses from an authoritative name

 server, this code signifies that the

 domain name referenced in the query does

 not exist.

QDCOUNT An unsigned 16 bit integer specifying the number of

 entries in the question section.

Project site: http://www.comnet.technion.ac.il/~cn10w02

29

Computer Networks Lab Winter 2002

ANCOUNT An unsigned 16 bit integer specifying the number of

 resource records in the answer section.

NSCOUNT An unsigned 16 bit integer specifying the number of name

 server resource records in the authority records

 section.

ARCOUNT An unsigned 16 bit integer specifying the number of

 resource records in the additional records section.

QUARY NAME A domain name represented as a sequence of labels,

 where each label consists of a length octet followed by that

 number of octets. The domain name terminates with the

 zero length octet for the null label of the root.

QUERY TYPE A two octet code which specifies the type of the query.

 The values for this field include all codes valid for a

 TYPE field, together with some more general codes which

 can match more than one type of RR.

QUERY CLASS A two octet code that specifies the class of the query.

 For example, the QCLASS field is IN for the Internet.

DOMAIN NAME A domain name to which this resource record pertains.

DOMAIN TYPE two octets containing one of the RR type codes. This

 field specifies the meaning of the data in the RDATA

 field.

DOMAIN CLASS two octets which specify the class of the data in the

ANSWER field.

Project site: http://www.comnet.technion.ac.il/~cn10w02

30

Computer Networks Lab Winter 2002

TIME TO LIVE A 32 bit unsigned integer that specifies the time

 interval (in seconds) that the resource record may be

 cached before it should be discarded. (not implemented).

RESOURCE DATA LENGTH unsigned 16 bit integer that specifies the length

 in octets of the ANSWER field.

ANSWER A variable length string of octets that describes the

 resource. The format of this information varies

 according to the TYPE and CLASS of the resource record.

 For example, the if the TYPE is A and the CLASS is IN,

 the ANSWER field is a 4 octet ARPA Internet address.

ADDITIONAL A variable length string of octets that describes the

resource. This resource record usualll is sent by server with server

address that may hold the answer for the query.

Project site: http://www.comnet.technion.ac.il/~cn10w02

31

Computer Networks Lab Winter 2002

5.4 Client node model

Figure 5.4 – client model

5.4.1 General background

The client Ethernet workstation is based on the ISO seven layer model with some

changes. The tpal layer was added to deliver common interface to the transport

layer.

The ip_incap/ip layer are separated and presentation layer is missing also.

The dns application implemented at the application layer, but the dns node was

added parallel to the application node, in order to supply service to other

applications which may need dns service.

Project site: http://www.comnet.technion.ac.il/~cn10w02

32

Computer Networks Lab Winter 2002

Each node in working according to main process, and the main process can invoke

more child processes. The changes to the existing Ethernet workstation were done

at the application node, the new dns node and tpal layer.

The basic functionality of the client model is as follows: A DNS query is generated

in the application node and passed to the DNS node. The DNS node starts a new

process (held by entry in process array), that encapsulates the query, sends it to the

designated DNS server and enters a wait state for the response. When a response

returns to the client, it is passed to the DNS node, in which the response is matched

to a waiting process and only then the process ends and the array entry is freed.

This mechanism allows for a number of queries to be sent in parallel from the

client, and not wait for a query to be resolved before treating a new query.

5.4.2 Application node – process hierarchy

gna_custom_mgr

gna_profile_mgr

gna_video_called_mgr

gna_voice_called_mgr

dns_pkt_generator

gna custom mgr

gna ace task mgr

gna database mgr

gna email mgr

gna ftp mgr

gna http mgr

gna print mgr

gna rlogin mgr

gna video calling mgr

gna voice calling mgr

gna ftp cli

gna http cli

gna print cli

gna email cli gna_ace_task_cli

dns_cli_gna_clstr_mgr

Figure 5.5 – client application

process hierarchy

Project site: http://www.comnet.technion.ac.il/~cn10w02

33

Computer Networks Lab Winter 2002

Dns_cli_gna_clstr_mgr

This process is the main process of the application node at client model. The

process is responsible of initializing the lower levels nodes, waiting for interrupts to

arrive (stream, remote,process,self),and invoking the child process according to

application type and interrupt type.

the dns modifications made at the following states:

 wait state – invokes the pkt_generator child process.

Dns_pkt_generator

this process is responsible of generating new queries packets .

 init state – initialize local variable.

 Send state – create 2 types of packet : dns_packet and the gna_packet.

The dns_packet holds the query . the gna_packet is the

supported packet by the model, so the dns packet is

encapsulated in the gna packet, and send through output

stream to the dns node. destroy process.

Project site: http://www.comnet.technion.ac.il/~cn10w02

34

Computer Networks Lab Winter 2002

5.4.3 Dns node – process hierarchy

Dns_cli_query_send

Dns_cli_mgr

 Figure 5.6 – client DNS

process hierarchy

Dns_cli_mgr

this process is the main process of the dns node at client model. The process is

responsible of analyzing the type of packets arriving, sending them to the right

stream index according to type, and invoking child process in case of new query.

 init0 state – register the process, initialize array of query requests for

statistics.

 init1 state – waiting for initialization of lower process, and initiate local

variable.

 start state – locate the tpal module, sending ici to tpal node with

information about

 dns application – port, service name,protocol.

 Idle state – wait for interrupt.

 In case of stream interrupt (packet arrival):

Project site: http://www.comnet.technion.ac.il/~cn10w02

35

Computer Networks Lab Winter 2002

1. check for packet type (dns_packet). If its dns packet, check QR

bit for query or response.

2. if not dns packet , send to upper/down node.

In case of remote interrupt (from tpal), session is established beetwen

client/server tpal’s.

 tpal_ind state – session is established, get session pointer from ici and

invoke the session.

 query state – add query to the statistics query array, invoke child process

with the packet and other parameters (output stream, tpal id, default server

name).

 response state – check the response packet and Destroy packet.

 app_to_tpal state – send packet to tpal (not dns packet).

 tpal_to_app state – send packet to app (not dns packet).

Dns_cli_query_send

this process is responsible of the opening new session , sending packet after session

established, and closing the process.

 open state – resolve the parameters from the father process (dns_cli_mgr).

Initiate ici with session properties (protocol, application

type, ports , destination, flags and etc). Open tpal

connection with the server, wait for tpal OPEN

confirmation (exit state), install ici to the packet and send

it through output stream.

Project site: http://www.comnet.technion.ac.il/~cn10w02

36

Computer Networks Lab Winter 2002

 Send state – in case of incoming packet, check for tpal CLOSE. If close is

 requested by tpal, close session.

 closed state – dealocate memory and destroy process.

5.4.4 Tpal node – process hierarchy

Tpal_intf_aal5_v2

Tpal_intf_udp_v3_dns

Tpal_intf_tcp_v3

Tpal_intf_rsvp

Tpal_intf_ncp_v2

Tpal_intf_fr_v2

Tpal_v3_dns

Tpal_intf_x25_v2

Figure 5.7 – client TPAL
process hierarchy

Project site: http://www.comnet.technion.ac.il/~cn10w02

37

Computer Networks Lab Winter 2002

tpal_intf_udp_v3_dns

this process is responsible of processing udp packets.

the dns modifications made at the following states:

 data_rcv state – in case of dns packet and the process is at client node

(according to tpal address), change the output stream index for the index of

the dns node). Send packet and destroy the encapsulate packet.

Project site: http://www.comnet.technion.ac.il/~cn10w02

38

Computer Networks Lab Winter 2002

5.5 server node model

Figure 5.8 – server model

5.5.1 General background

The dns Ethernet based server ,like the dns Ethernet workstation, is based on the

ISO seven layer. Most of the changes to the current model were made at top level,

at the applications node, but some modifications made also at tpal and udp layer,

result of a new application added to the model.

The DNS resolution in the server node in general is as follows:

The server receives a query – a resolution process starts. If it has answer, send to

sender (sender=client/another server) and kill process.

If no answer available – send query to another server, the process enters wait state.

When a response reaches server - the relevant waiting process is resumed (known

through ici information), and the response is sent back to the sender of the query.

This mechanism allows for an unlimited number of queries to be on resolution

process in a server.

Project site: http://www.comnet.technion.ac.il/~cn10w02

39

Computer Networks Lab Winter 2002

5.5.2 Application node – process hierarchy

Figure 5.9 – server application
process hierarchy

dns svr return dns svr query

gna print cli

gna http cli

gna ftp cli

gna email cli

gna voice calling mgr

gna video calling mgr

gna rlogin mgr

gna print mgr

gna http mgr

gna ftp mgr

gna email mgr

gna database mgr

gna ace task mgr

gna custom mgr

gna_ace_task_cli

dns_svr_mgr

gna_voice_called_mgr

gna_video_called_mgr

gna_profile_mgr

gna_custom_mgr

dns_gna_clstr_mgr

dns_svr_mgr

Project site: http://www.comnet.technion.ac.il/~cn10w02

40

Computer Networks Lab Winter 2002

this process is spawned from the application layer at the server. In case this is a

query request, the process opens a new child process to handle the request. In case

of response from another server, the process signal child process at query state to

wake and check the returned packet.

 init0 state – initialize process id and register the process.

 init1 state - wait for lower levels to be initialized.

 start state – initialize the server database, locate the tpal module and

prepare parameters for a new session (port, server name, application type

,etc.)

 idle state – wait for interrupt.

 In case of stream interrupt, check for dns packet. If it’s dns one,

 check for QR bit for query or response.

 tpal_ind state – a remote interrupt from tpal layer arrived, invoke the

session

 according to ici attached.

 query state – create a new child process to handle query, and invoke it .

 response state – resolve the process id from ici and invoke the child process

 waiting at query state.

dns_svr_query

Project site: http://www.comnet.technion.ac.il/~cn10w02

41

Computer Networks Lab Winter 2002

this process is responsible for checking at server database an answer for the query.

If the query is found at server database, a reply is sent to the sender, else we look

for the best next server available at current database to send the query, wait for an

answer and update the current database with the answer.

 init state – resolve the parameters passed from father process, the tpal

address and the fields from the ici attached to dns packet.

 db_lookup state – look for the query at the database. If matched, go to

reply.

 If we at soa of the query, send reply that address is no

available.

 else look for the best next server available at current database,

 and go to query state.

 query state – prepare parameters for a new child process to handle sending

 query to other server. At exit resolve the parameters returned.

 db_update state – check the response received. In case of new resource

 record, update the current server database.

 reply state – prepare the response packet, update all packet fields and

invoke

 a process to handle the return.

 terminate state – destroy the current process- deallocate memory.

dns_svr_return

this process responsible of returning the reply to the query sender.

 Open state – resolve the parameters passed from father process, and create a

 new session record.

 Exit state – send the packet through output stream and destroy the process.

Project site: http://www.comnet.technion.ac.il/~cn10w02

42

Computer Networks Lab Winter 2002

5.5.3 Tpal node – process hierarchy

Same as the client.

5.5.4 UDP node – process hierarchy

Rip_udp_v3

 Figure 5.10 – server UDP

process hierarchy

3Rip_udp_v

This is the main process of the udp node at client/server model. The process is

responsible of creating new ports, processing udp datagrams arriving from ip layer,

and sending the decapsulated/encapsulated packet to application/ip layer.

The dns modifications made at the following states:

 create state – in case of dns packet and the server don’t have dns port, open

one.

Project site: http://www.comnet.technion.ac.il/~cn10w02

43

Computer Networks Lab Winter 2002

6. Summary and Conclusions

This chapter discusses the conclusions of the project. It also includes a comparison

between the project goals to its results. In the end of this chapter are suggestion for

future use and enhancements possible for the "DNS client-server model".

6.1 Summary

Through the "DNS client-server model" project we became familiar with a new

protocol, simulation tool and working methodologies.

In both models (client & server) the implementation of the DNS protocol required

us to dig deep into the base Ethernet model in order to fully simulate the protocol.

The project reached a certain point, in which we saw fit for it to be presented as the

end of part A (comment: this is part A of a two part project). This point

disadvantage is, in our view, in the lack of debug of more different scenarios and

topologies.

The point the DNS project is in leaves room for future enhancements – whether in

adding real time delays (to be done in part B), or in creating new and more complex

topologies of a simulation.

6.2 Comparison of goals with results

The main project goals were achieved.

1. A client model sends DNS query.

2. A server receives and analyzes the request.

3. The server resolves the query and sends a response.

The main issue that was not achieved was full debugging of the server model. The

server was only partially debugged, not for all possible behavior.

The levels and depth in the base models we had to reach in the implementation, due

to bad interface in the Ethernet model, took up a lot of time, and required very

detailed and close debugging in various processes which are part of the Ethernet

model, and not our DNS specific processes. This unexpected code and debug effort

on the OPNET's internal code caused a long delay.

Project site: http://www.comnet.technion.ac.il/~cn10w02

44

Computer Networks Lab Winter 2002

The learning goals were fully achieved:

• Get familiar with the DNS protocol.

• Get to know the OPNET modeler platform: we reached a very good level in the

OPNET due to the complexity of implementation of the protocol on OPNET.

Due to the need to fully understand the Ethernet model and debug the DNS protocol

we also got familiar with the TCP/IP and UDP protocols.

6.3 Remarks on project problems

As mentioned earlier, from this project we learned the OPNET built-in models to be

a problematic base for enhancements. There is no clean interface in which you can

easily add new nodes or processes. The lack of good interface resulted in debugging

inside OPNETs own modules, and in reaching implementation of lower layers than

we intended (or for that matter needed for the DNS protocol). Due to this we did not

complete the debugging of some of the server related features.

Even though it seems like a bad choice of base model, we still find it the best model

to base the DNS models on.

As can be concluded from this, we feel that the future OPNET oriented projects

should focus on "from scratch" models and not on adding functionality to existing

OPNET built-in models. The OPNET modeler built-in models should mostly be

used for simulating traffic with the already implemented protocols, and not

implement new protocols on them.

6.4 Future enhancements

The "DNS client-server model" as we see it can be taken to two main directions:

1. Model enhancement – add delays in the model.

2. Simulation enhancements – build and run more complex topologies of

client-server networks.

In the next part of this project we will improve the model and add the real delays in

the server model, based on experimental values of DNS traffic.

The second direction of enhancement can be achieved by taking the client and

server models, and building new network topologies to simulate and analyze. This

enhancement would be more interesting and effective after the finish of part B of

the project, in which real time delays will be added in the server model.

Project site: http://www.comnet.technion.ac.il/~cn10w02

45

Computer Networks Lab Winter 2002

7. Bibliography

1. DNS & BIND 3rd edition. Paul Albitz, Cricket Liu. ; O’Reilly &

Associates, 1998.
2. TCP/IP Protocol Suite. Behiouz, A. Forouzan ; McGraw – Hill

international edition, 2000.
3. Windows NT DNS. Michael P. Masterson, H. Knief, S. Vinick; New

Riders Publishing, 1998.
4. Windows NT Resource Kit, vol. 2; Microsoft Press, 1995.

7.1 RFC’s

RFC 1034.
RFC 1035.

Project site: http://www.comnet.technion.ac.il/~cn10w02

46

Computer Networks Lab Winter 2002

8. Appendixes

8.1 Resource Records

(example):

MX- mail exchanger

netvision.net.il MX 1 mx20.netvision.net.il
netvision.net.il MX 10 mx17.netvision.net.il
netvision.net.il MX 50 mxtlv.netvision.net.il
netvision.net.il MX 100 nypop.elron.net

owner ; class- IN (internet- not shown) ; MX ; preferance ; exchange

PREFERENCE A 16 bit integer which specifies the preference given to
 this RR among others at the same owner. Lower values
 are preferred.

EXCHANGE A <domain-name> which specifies a host willing to act as

 a mail exchange for the owner name.

MR- mail rename (experimental)

netvision.net.il MR mailgw.netvision.net.il

owner ; class- IN (internet- not shown) ; MR ; new_mbox

NEWNAME A <domain-name> which specifies a mailbox which is the
 proper rename of the specified mailbox.

A- address
netvision.net.il A 194.90.1.6

owner ; class- IN (internet- not shown) ; A ; address

ADDRESS - 32 bit internet address (4 octets(

NS- name server
netvision.net.il NS dns.netvision.net.il
netvision.net.il NS nypop.elron.net

owner ; class- IN (internet- not shown) ; NS ; name-server-dname

NSDNAME A <domain-name> which specifies a host which should be
 authoritative for the specified class and domain.

Project site: http://www.comnet.technion.ac.il/~cn10w02

47

Computer Networks Lab Winter 2002

SOA- start of authority

netvision.net.il SOA dns.netvision.net.il
hostmaster.netvision.net.il(

2001121604 ; serial (version)
 28800 ; refresh period (8 hours)

7200 ; retry interval (2 hours)
604800 ; expire time (1 week)
86400 ; default ttl (1 day)

)

owner ; class- IN (internet- not shown) ; SOA ; source-dname ; mbox (
 serial refresh retry expire minimum)

MNAME The <domain-name> of the name server that was the
 original or primary source of data for this zone.

RNAME A <domain-name> which specifies the mailbox of the
 person responsible for this zone.

SERIAL The unsigned 32 bit version number of the original copy
 of the zone. Zone transfers preserve this value. This
 value wraps and should be compared using sequence space
 arithmetic.

REFRESH A 32 bit time interval before the zone should be
 refreshed.

RETRY A 32 bit time interval that should elapse before a
 failed refresh should be retried.

EXPIRE A 32 bit time value that specifies the upper limit on

the time interval that can elapse before the zone is no longer
authoritative.

MINIMUM The unsigned 32 bit minimum TTL field that should be
 exported with any RR from this zone.

Project site: http://www.comnet.technion.ac.il/~cn10w02

48

Computer Networks Lab Winter 2002

8.2 Header files

The process header block:
• dns_pkt_genaretor.header block:

OPC_COMPILE_CPP

#include "dns_gna_mgr.h"
#include "dns_gna_support.h"

enum connnectivity{APP2DNS=1};

• dns_cli_mgr.header block:

OPC_COMPILE_CPP

#include "dns_gna_mgr.h"
#include "dns_gna_support.h"
#include "oms_pr.h"
#include "oms_data_def.h"
#include "oms_bgutil.h"
#include "oms_dist_support.h"
#include "oms_resource_defs.h"
#include <oms_tan.h>
#include "tpal_const.h"
#include "db.h"

/* declare the input stream from application */

#define NUM_OF_QUERY 1000
#define STR_LENGTH 250

 /***** Macro definitions *****/

/* Code to deifne interrupt code used to schedule */
/* self-interrupt for lower layer synchronization. */
#define GNAC_LOWER_LAYER_INIT_INTRPT_COUNT 3
#define GNAC_LOWER_LAYER_INIT_WAIT -1
#define GNAC_SELF_INIT_START -2
#define GNAC_REGISTRATION_WAIT -3

 /* Special values */
#define TPALC_CMD_SERV_REG_DNS 4

#define DEFAULT_SERVER "Office Network.mx20_yahoo_net_il"

Project site: http://www.comnet.technion.ac.il/~cn10w02

49

Computer Networks Lab Winter 2002

enum streams{DNS2APP,DNS2TPAL,APP2DNS,TPAL2DNS};
enum State{EMPTY,IN_PROCESS};

typedef struct Cli_send_param
 {
 Objid* tpal_ptr;
 Packet* gna_dns_pkt;
 char rm_host[STR_LENGTH];
 int stream;
 }cli_send_param;

typedef struct packet_id
 {
 int id;
 State state;
 }packet_id_struct;

enum enum_intrpt_cause
{
 intrpt_unknown,
 intrpt_query,
 intrpt_response,
 intrpt_app2tpal,
 intrpt_tpal2app,
 intrpt_init_wait,
 intrpt_init_complete,
 intrpt_tpal_indication
};

#define QUERY (intrpt.cause == intrpt_query)
#define RESPONSE (intrpt.cause == intrpt_response)
#define APP2TPAL (intrpt.cause == intrpt_app2tpal)
#define TPAL2APP (intrpt.cause == intrpt_tpal2app)

/* Interrupt for initial lower layer initialization */
#define INIT_WAIT (intrpt.cause == intrpt_init_wait)
#define INIT_COMPLETE (intrpt.cause == intrpt_init_complete)
#define TPAL_IND (intrpt.cause == intrpt_tpal_indication)

Project site: http://www.comnet.technion.ac.il/~cn10w02

50

Computer Networks Lab Winter 2002

• dns_cli_query_send.header block:
OPC_COMPILE_CPP

#include "dns_gna_mgr.h"
#include "dns_gna_support.h"
#include "oms_pr.h"
#include "oms_data_def.h"
#include "oms_bgutil.h"
#include "oms_dist_support.h"
#include "oms_resource_defs.h"
#include <oms_tan.h>
#include "tpal_const.h"
#include "tpal_global_dns.h"

 /* Special values */
#define TPALC_PORT_UNSPEC -1
#define STR_LENGTH 250

Ici* tpal_app_dns_session_open (int type_of_session, char*
remote_host_, char* service_name_, int remote_port_, int
local_port, char* protocol_, GnaT_Cli_Mgr_Session* sess_ptr_,
Objid tpal_objid_, GnaT_Rsvp_Config_Params* rsvp_params_ptr,
OmsT_Qm_Tos tos, Boolean trace_active);

enum streams{DNS2APP,DNS2TPAL,APP2DNS,TPAL2DNS};

enum enum_intrpt_cause
{
 intrpt_unknown,
 intrpt_estab,
 intrpt_closed,
 intrpt_abort
};

typedef struct Cli_send_param
 {
 Objid* tpal_ptr;
 Packet* gna_dns_pkt;
 char rm_host[STR_LENGTH];
 int stream;
 }cli_send_param;

/* these next belong in the lower process query_send need to
open per query a process, and from there open a socket to the
tpal layer, send it, and close it

Project site: http://www.comnet.technion.ac.il/~cn10w02

51

Computer Networks Lab Winter 2002

remove it from the */

#define CLOSED (intrpt.cause == intrpt_closed)
/*((intrpt_type == OPC_INTRPT_REMOTE) && ((intrpt_code ==
TPALC_EV_IND_CLOSE) || (intrpt_code ==
TPALC_EV_IND_ABORT)))*/

#define ESTAB (intrpt.cause == intrpt_estab)
/*((intrpt_type == OPC_INTRPT_REMOTE) && (intrpt_code ==
TPALC_EV_CONF_OPEN)) */

#define ABORT (intrpt.cause == intrpt_abort)
/*(intrpt_code == TPALC_EV_IND_ABORT) */

• dns_svr_mgr.header block:

OPC_COMPILE_CPP
#include <oms_dist_support.h>
#include "dns_gna_mgr.h"
#include "dns_gna_support.h"
#include <iostream.h>
#include "tpal_const.h"
#include "db.h"

/* Macros dedinitions. */
#define DNS_KILL -4
#define INTRPT_FROM_FATHER 999
#define GNAC_LOWER_LAYER_INIT_INTRPT_COUNT 3
#define GNAC_LOWER_LAYER_INIT_WAIT -1
#define GNAC_SELF_INIT_START -2
#define GNAC_REGISTRATION_WAIT -3

#define DEFAULT_CLIENT "Office Network.client"

/* Define a transition condition corresponding */
/* to a application start.
 */
#define QUERY (intrpt.cause == intrpt_query)
#define RESPONSE (intrpt.cause == intrpt_response)
#define END_OF_APPLICATION (interrupt_code == DNS_KILL)
#define INIT_WAIT (intrpt.cause == intrpt_init_wait)
#define INIT_COMPLETE (intrpt.cause == intrpt_init_complete)
#define TPAL_IND (intrpt.cause ==
intrpt_tpal_indication)

Project site: http://www.comnet.technion.ac.il/~cn10w02

52

Computer Networks Lab Winter 2002

typedef struct packet_id
 {
 int id;
 result state;
 }packet_id_struct;

enum enum_intrpt_cause
{
 intrpt_unknown,
 intrpt_init_wait,
 intrpt_init_complete,
 intrpt_query,
 intrpt_response,
 intrpt_tpal_indication
};
/******** Function prototypes ********/
DB& database_init(DB& D,char *file_name);
static void dns_mgr_error (const char*, const char*, const
char*);

• dns_svr_query.header block:

OPC_COMPILE_CPP
#include "dns_gna_mgr.h"
#include "dns_gna_support.h"
#include <oms_dist_support.h>
#include <opnet.h>
#include <oms_qm.h>
#include <iostream.h>
#include "tpal_const.h"
#include "db.h"

/* Macros dedinitions. */
#define SVR_QUERY -1
#define SVR_CACHED -2
#define GNAC_DNS_STAT_DIM 32
#define DNS_2_TPAL 0
#define TR_LENGTH 250

enum packet_type{Q,R};
enum code_type{NONE_ERROR,FORMAT_ERROR,SERVER_FAILURE,
NAME_ERROR,NOT_IMPLEMENTED,REFUSED};

Project site: http://www.comnet.technion.ac.il/~cn10w02

53

Computer Networks Lab Winter 2002

typedef struct Cli_send_param
 {
 Objid* tpal_ptr;
 Packet* gna_dns_pkt;
 char rm_host[STR_LENGTH];
 int stream;
 int session_id;
 }cli_send_param;

/* Define a transition condition corresponding */
/* to a application start. */
#define QUERY (server_db == SVR_QUERY)
#define CACHED (server_db == SVR_CACHED)

Ici* dns_tpal_app_session_open(int, char*, char*, int, int , char* ,
GnaT_Cli_Mgr_Session* , Objid,
GnaT_Rsvp_Config_Params*,OmsT_Qm_Tos, Boolean, char*);

static void app_pk_to_tpal_send (Packet*);
static void dns_cli_error (const char* , const char* , const
char*);

• dns_svr_return.header block:

OPC_COMPILE_CPP
#include "dns_gna_mgr.h"
#include "dns_gna_support.h"
#include "tpal_const.h"

#define STR_LENGTH 250

enum enum_intrpt_cause
{
 intrpt_unknown,
 intrpt_estab,
 intrpt_closed,
 intrpt_abort
};

Project site: http://www.comnet.technion.ac.il/~cn10w02

54

Computer Networks Lab Winter 2002

 typedef struct Cli_send_param
 {
 Objid* tpal_ptr;
 Packet* gna_dns_pkt;
 char rm_host[STR_LENGTH];
 int stream;
 int session_id;
 }cli_send_param;

The following header files define the server database:
• RRs.h
• rr_a.h
• rr_ns.h
• rr_mx.h
• rr_mr.h
• rr_soa.h
• Zone.h
• Zonelist.h
• db.h

file: RRs.h
// Resource Records header
// defines the basic resource record and global definitions

#ifndef RR_H
#define RR_H

#include <string>
#include <iostream>

typedef enum record_type{MX,MR,A,NS,SOA} RecordType;
typedef enum result{FAILURE,SUCCESS} Result;
const int STRING_LENGTH = 255;
const int SIZE=26;
const int PREF = 100;

class Resource_Record{
protected:
 RecordType type;
 char domain[STRING_LENGTH];
public:
 Resource_Record(RecordType rt=A,char* dname=""):type(rt){
 strcpy(domain,dname);
 }

Project site: http://www.comnet.technion.ac.il/~cn10w02

55

Computer Networks Lab Winter 2002

 RecordType get_type() { return type;}
 char* get_domain(){return domain;}
 void insert_type(RecordType rt) {type=rt;}
 void insert_domain(char* dname) {strcpy(domain,dname);}
};

#endif

file rr_a.h
// defines the host address resource record

#include "RRs.h"

#ifndef RR_A_H
#define RR_A_H

class RR_A : public Resource_Record
{
 char address[20];
public:
RR_A(char* dname="EMPTY",char*
add="EMPTY"):Resource_Record(A,dname) {
 strcpy(address,add);
 }
 char* get_address(){return address;}
 void insert_address(char* add) { strcpy(address,add);}
};

#endif

file rr_ns.h
// defines the authoritative name server resource record

#include "RRs.h"

#ifndef RR_NS_H
#define RR_NS_H

class RR_NS:public Resource_Record
{
 char nsdname[STRING_LENGTH];

Project site: http://www.comnet.technion.ac.il/~cn10w02

56

Computer Networks Lab Winter 2002

public:
RR_NS(char* dname="EMPTY",char* nsd_name="EMPTY")
:Resource_Record(NS,dname) {strcpy(nsdname,nsd_name);}
 char* get_nsdname(){return nsdname;}
 void insert_nsdname(char* nsd_name)
{strcpy(nsdname,nsd_name);}
};

#endif

file rr_mx.h
// defines the mail exchange resource record

#include "RRs.h"

#ifndef RR_MX_H
#define RR_MX_H

class RR_MX:public Resource_Record{
 int preference;
 char exchange[STRING_LENGTH];
public:
RR_MX(char* dname="",char* mx_name="",int pref=PREF)
:Resource_Record(MX,dname), preference(pref) {
 strcpy(exchange,mx_name);
 }
 int get_preference() { return preference;}
 char* get_exchange(){return exchange;}
 void insert_preference(int pref) {preference=pref;}
 void insert_mx_name(char* mx_name)
{strcpy(exchange,mx_name);}
};
#endif

file rr_mr.h
// define the mail rename domain name (EXPERIMENTAL)

#include "RRs.h"

#ifndef RR_MR_H

Project site: http://www.comnet.technion.ac.il/~cn10w02

57

Computer Networks Lab Winter 2002

#define RR_MR_H

class RR_MR:public Resource_Record{
 char newname[STRING_LENGTH];
public:
RR_MR(char* dname="",char* n_name="")
:Resource_Record(MR,dname) {strcpy(newname,n_name);}
 char* get_newname(){return newname;}
 void insert_newname(char* nw_name)
{strcpy(newname,nw_name);}
};
#endif

file rr_soa.h
// defines the start of a zone of authority resource record

#include "RRs.h"

#ifndef RR_SOA_H
#define RR_SOA_H

class RR_SOA:public Resource_Record{
 char sdname[STRING_LENGTH];
 char mbox[STRING_LENGTH];
 long int serial, refresh, retry, expire ttl;
public:
RR_SOA(char* dname="",char* sd_name="",char* m_box="",long int
s=0,long int rf=0,long int rt=0,long int ex=0,long int tt=0) :
serial(s),refresh(rf),retry(rt),expire(ex),ttl(tt),Resource_Record(SOA,dna
me) {
 strcpy(sdname,sd_name) ;strcpy(mbox,m_box);
 }
 char* get_sdname() {return sdname;}
 char* get_mbox() {return mbox;}
 void insert_sdname(char* sd_name)
{strcpy(sdname,sd_name);}
 void insert_mbox(char* m_box) {strcpy(mbox,m_box);}
 int get_serial() {return serial;}
 int get_refresh() {return refresh;}
 int get_retry() {return retry;}
 int get_expire() {return expire;}
 int get_ttl() {return ttl;}
 void insert_serial(long int s) {serial=s;}

Project site: http://www.comnet.technion.ac.il/~cn10w02

58

Computer Networks Lab Winter 2002

 void insert_refresh(long int rf) {refresh=rf;}
 void insert_retry(long int rt) {retry=rt;}
 void insert_expire(long int ex) {expire=ex;}
 void insert_ttl(long int tt) {ttl=tt;}
};
#endif

file Zone.h
// define the different types of resource record at the zone

#ifndef ZONE_H_
#define ZONE_H_

#include <list>
#include <fstream.h>
#include "RRs.h"
#include "rr_a.h"
#include "rr_ns.h"
#include "rr_soa.h"
#include "rr_mx.h"
#include "rr_mr.h"

class Zone {

 char zone_name[STRING_LENGTH];
 std::list<RR_A> address_list;
 std::list<RR_NS> name_server_list;
 std::list<RR_MX> mx_list;
 std::list<RR_SOA> soa_list;
 std::list<RR_MR> mr_list;

public:
 Zone(char* zname="") {strcpy(zone_name,zname);}
 Result ZoneInit(ifstream f);
 char* get_zone_name();
 RR_A& get_address();
 result Zone::put_address(RR_A&);
 result Zone::put_name_server(RR_NS&);
 RR_NS& get_name_server();
 char* get_ns_name();
 RR_MX& get_mx();
 RR_MR& get_mr();
 RR_SOA& get_soa();

};
#endif

Project site: http://www.comnet.technion.ac.il/~cn10w02

59

Computer Networks Lab Winter 2002

file Zonelist.h
#include "Zone.h"
#ifndef ZONELIST_H_
#define ZONELIST_H_

class ZoneList {
public:
 std::list<Zone> z_list;
 Resource_Record& ZL_get(RecordType type, char *name);
 Resource_Record& ZoneList::ZL_put(RecordType, char*,char*);
};
#endif

file db.h
#include "ZoneList.h"

#ifndef DB_H_
#define DB_H_

class DB {
 ZoneList z_array[SIZE];
public:
 DB& DBInit(ifstream f);
 Resource_Record& DB_get(RecordType t,char *name);
 void DB_put(RecordType type,char *address, char* name);
 char* DB_get_most_likely(char *name);
};

#endif

Project site: http://www.comnet.technion.ac.il/~cn10w02

60

Computer Networks Lab Winter 2002

the following header files are opnet model header files which were modified to
handle dns application:

• dns_gna_mgr.h (original header : gna_mgr.h)
• dns_gna_support.h (original header file : gna_support.h)

modifications at dns_gna_mgr.h :
/** DNS_gna_mgr.h
 **/
/** Header file containing definition for **/
/** supporting application management and **/
/** inter-processes communication. **/

/**/
/* Copyright (c) 1987 - 2001 */
/* by OPNET Technologies, Inc. */
/* (A Delaware Corporation) */
/* 7255 Woodmont Av., Suite 250 */
/* Bethesda, MD, U.S.A. */
/* All Rights Reserved. */
/**/
/* Protect against multiple includes. */
#ifndef _DNS_GNA_MGR_H_INCLUDED_
#define _DNS_GNA_MGR_H_INCLUDED_

/* Included libraries. */
#include <oms_dist_support.h>
#include <oms_dt.h>
#include <oms_qm.h>
#include <oms_server.h>
#include "dns_gna_support.h"
#include "db.h"

* GnaT_ApType: Specifies various application types, */
/* such as Video , Voice, Email and etc. */

typedef enum
 {
 GnaT_ApType_Dbase = 0,
 GnaT_ApType_Email,
 GnaT_ApType_Ftp,
 GnaT_ApType_Http,
 GnaT_ApType_Rlogin,
 GnaT_ApType_Print,
 GnaT_ApType_Video,
 GnaT_ApType_Voice,
 GnaT_ApType_Custom,
 GnaT_ApType_Stream,
 GnaT_ApType_dns
 } GnaT_ApType;

Project site: http://www.comnet.technion.ac.il/~cn10w02

61

Computer Networks Lab Winter 2002

enum gna_pkt_field{DNS_PACKET=24};

enum dns_packet_fields{ID,QR,OPCODE,AA,TC,RD,RA,Z,RCODE,QDCOUNT,
A,NCOUNT,NSCOUNT,ARCOUNT,QNAME,QT,QC,DN,DT,DC,TTL,RDL,
ANSWER,AUTHORITY,ADDITIONAL};

/* declares struct to hold interrupt information */
typedef struct
{
 int cause;
 int type;
 int code;
 int strm;
 Packet *pkt;
 Packet *dns_pkt;
 } intrpt_struct;

/* GnaT_dns_Desc: Specifies parameters for dns application type*/
typedef struct
 {
 char* symb_server_ptr; /* Symbolic servere name. */
 Boolean rsvp_status; /* Flag to enable RSVP. */
 OmsT_Qm_Tos tos; /* Type of Service for QoS. */
 char* inter_request_time_dist_name_ptr; /* Inter-request time
distribution.*/
 OmsT_Dist_Handle file_size_dist_handle; /* File size distribution. */
 } GnaT_dns_Desc;

/* GnaT_Cli_dns_Params_Info: Specifies parameters passed to an */
/* DNS client by DNS manager at the beginning of each session. */

typedef struct
 {
 GnaT_Application_Type request_type; /* Type of request */
 GnaT_Application_Server** appl_servers_ptr; /* List of defined servers.
 */

char* server_name; /* Server name for DNS session. */
GnaT_Nam_Appl* app_info_ptr; /* Information about application.

 */
OmsT_Qm_Tos tos; /* Type of Service for QoS. */
 DB* db; /* resource record database */
 packet* pkt; /* the gna packet */
 packet* dns_packet;
 Objid tpal;

 } GnaT_Cli_dns_Params_Info;

Project site: http://www.comnet.technion.ac.il/~cn10w02

62

Computer Networks Lab Winter 2002

modifications at dns_gna_support.h :

/* dns_gna_support.h: Definitions and declarations for the */
/* GNA generic network application model. */

/**/
/* Copyright (c) 1987-2001 */
/* by OPNET Technologies, Inc. */
/* (A Delaware Corporation) */
/* 7255 Woodmont Av., Suite 250 */
/* Bethesda, MD, U.S.A. */
/* All Rights Reserved. */
/**/

#ifndef _DNS_GNA_SUPPORT_H_
#define _DNS_GNA_SUPPORT_H_

#include <rsvp_app_support.h>
#include <llm_support.h>
#include <oms_dist_support.h>
#include <oms_data_def_ds_defs.h>
#include <gna_ace_support_v3.h>

#if defined (__cplusplus)
extern "C" {
#endif

/* Application names. */
#define GNAC_APP_ACE "ACE Task"
#define GNAC_APP_CUST "Custom Application"
#define GNAC_APP_DB_QUERY "DB Query Application"
#define GNAC_APP_DB_ENTRY "DB Entry Application"
#define GNAC_APP_EMAIL "Email"
#define GNAC_APP_FTP "Ftp"
#define GNAC_APP_HTTP "Http"
#define GNAC_APP_PRINT "Print"
#define GNAC_APP_RLOGIN "Remote Login"
#define GNAC_APP_VIDEO "Video Conferencing"
#define GNAC_APP_VOICE "Voice"
#define GNAC_APP_DNS "Dns"
/* Enumerated constants for different GNA application types. */
typedef enum GnaT_Application_Name
 {
 GnaC_App_Custom_Application,
 GnaC_App_Database_Entry,
 GnaC_App_Database_Query,
 GnaC_App_Email,
 GnaC_App_Ftp,
 GnaC_App_Http,

Project site: http://www.comnet.technion.ac.il/~cn10w02

63

Computer Networks Lab Winter 2002

Project site: http://www.comnet.technion.ac.il/~cn10w02

64

 GnaC_App_Print,
 GnaC_App_Remote_Login,
 GnaC_App_Video_Conferencing,
 GnaC_App_Voice,
 GnaC_App_Dns
 } GnaT_Application_Name;

/* Enumerated constants for different GNA application types. */
typedef enum GnaT_Application_Type
 {
 GnaC_App_Type_Custom_Application,
 GnaC_App_Type_Database,
 GnaC_App_Type_Email_Send,
 GnaC_App_Type_Email_Recv,
 GnaC_App_Type_Ftp_Get,
 GnaC_App_Type_Ftp_Put,
 GnaC_App_Type_Http,
 GnaC_App_Type_Print,
 GnaC_App_Type_Remote_Login,
 GnaC_App_Type_Video_Conferencing,
 GnaC_App_Type_Voice,
 GnaC_App_Type_Ace,
 GnaC_App_Type_Dns
 } GnaT_Application_Type;

/* GnaT_App: enumerate all applications base on the port numbers. */
typedef enum
 {
 Ftp = 20,
 Rlogin = 23,
 Email = 25,
 Dns=53,
 Http = 80,
 Video = GNAC_PORT_BASE,
 Database,
 Print,
 Cust_App,
 Voice
 } GnaT_App;

	�
	Technion - Israel Institute of Technology
	
	
	
	
	
	
	Electrical Engineering

	Index
	Abstract
	Introduction
	
	
	
	1.1 Project Goal
	1.2 Domain Name System
	1.3 OPNET platform
	1.6.1 Preparations

	(In edit-preferances)
	
	
	1.6.2 Operating the dns_app project

	1.7 Using the DNS client-server model

	(for future use - new scenarios)

	Theoretical background - the Domain Name System
	
	
	
	2.1 General
	2.2 Description
	2.3 DNS Structure
	2.4 DNS database items
	2.5 DNS packet format
	2.6 DNS resolution algorithms
	2.6.1 The recursive algorithm

	(shown in figure 2.5)
	
	
	2.6.2 The iterative algorithm

	(shown in figure 2.6)

	Theoretical background - OPNET modeler background
	
	
	
	3.1 General
	3.2 Simulation structure
	3.3 modeling domains
	3.3.1 Network Domain
	3.3.2 Node Domain
	3.3.3 Process Domain

	3.4 Derived Model

	The server Database
	
	
	
	4.1 Class Resource_Record
	4.2 Class Zone
	4.3 Class DB

	The client / server modules
	
	
	
	5.1 Ethernet base model
	5.2 General overview of OPNET DNS senario
	5.3 dns packet
	5.4 Client node model
	5.4.1 General background
	5.4.2 Application node – process hierarchy

	Dns_cli_gna_clstr_mgr
	Dns_pkt_generator
	
	
	5.4.3 Dns node – process hierarchy

	Dns_cli_mgr
	Dns_cli_query_send
	
	
	5.4.4 Tpal node – process hierarchy

	5.5 server node model
	5.5.1 General background
	5.5.2 Application node – process hierarchy
	5.5.3 Tpal node – process hierarchy
	5.5.4 UDP node – process hierarchy

	Rip_udp_v3

	Summary and Conclusions
	
	
	
	6.1 Summary
	6.2 Comparison of goals with results
	6.3 Remarks on project problems
	6.4 Future enhancements

	Bibliography
	
	
	
	7.1 RFC’s

	Appendixes
	
	
	
	8.1 Resource Records

	(example):
	A- address
	NS- name server

	NSDNAME A <domain-name> which specifies a host which should be
	SOA- start of authority
	
	8.2 Header files

