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I see designs by technologists who fall in love with specific technologies _and cause problems bccausi: of
overemphasizing them. [ like candy, but candy for breakfast, lunch, and dinner can become qnappealmg,
not to mention unhealthy. Networks are the synthesis of both Layer 2 and Layer 3 technologies, and the
best designs are a balance of these technologies.

—Bill Kelly, Chief Network Architect, Cisco Systems
Upon completion of this chapter, you will be able to do the following:

Describe cabling topologies used in campus LAN designs

Describe and implement distributed backbone designs in campus LANs
Describe and implement collapsed backbone designs in campus LANs
Describe deployment of VLANs and LANE in campus LANs

Determine where to use switches, where to use bridges, and where to use routers in
segmenting campus LANs

CHAPTER

Campus LAN Design Models

Campus LANs have their own set of design ground rules, which, when understood and
implemented, can produce positive results. However, I have seen many network designers
ignore key areas of campus LAN design, such as cabling topologies, or perhaps
unknowingly let VLAN management get out of control. The result is always the same—
unplanned outages and unnecessary network downtime. The techniques presented in
Chapters 1-5 are the network design building blocks and the litmus test for any network
designer, regardless of the protocols, topologies, or devices used. The fundamentals
discussed in these chapters are paramount to network success, yet oddly, these are the very
areas that are most frequently skipped.

Sample Building Layout

Figure 5-1 shows a typical building layout that is referenced throughout the rest of the
chapter.

This sample building layout assumes that user end stations (clients) must access servers and
other end stations. The servers may be identified as those that are local to a workgroup or a
floor, and those that are used more widely (building, campus, or enterprise-wide). End-
station connections will be required for the workgroup, which, as shown in Figure 5-1, is
isolated to a floor. A wiring closet is available on each floor to connect the client
workstations and floor (local) servers. The riser goes between floors and provides a cable
path to interconnect workgroups located throughout the building. The basement houses a
data center, where the most heavily used servers are located, along with cable connections
to other buildings and sites as required.
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Figure 5-1 Sample Building Layout
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Cabling Issues

Cabling recommendations in general call for multimode fiber in the risers bctvtreen floors &
and in the tunnels that typically connect buildings in a campus environment. Fiber allows
the bandwidth to be scaled up as far as necessary (FDDI, 100BaseFX, fiber-based ATM,
Gigabit Ethernet) while providing reliable links that are resistant to sources of :
electromagnetic interference (EMI). As shown in Figure 5-2, network interconnection
devices (hubs, bridges, switches, routers) are typically located in the net\.a.rork clqset on eac.:h
floor, and in the data center in the basement. Category 3 unshielded t\wste?l-pa]: (UTP) in
most cases should be used to link desktop clients and local servers to the active components
in the network closets. A Category 5 UTP segment is generally considered to be usable at
speeds up to 100 Mbps, over a maximum distance of 100 meters.
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Figure 5-2  Building Cabling Schematic
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Distributed Backbones

Distributed backbones are a somewhat less-flexible approach to wiring a building, but they
also spread your risk of a problem over several devices or topologies. Therefore, distributed
backbones generally do not contain a single point of failure. Just like any other design
approach, however, if not selected and designed carefully, there can be several points of
failure. (This situation is often corrected by deploying a second router running Hot Standby
Router Protocol [HSRP] at each backbone location because HRSP automatically detects a
network or router failure and subsequently switches to the alternate router without the end-
user systems noticing that a problem has ever occurred.)

DESIGN RULE Use HSRP to eliminate a single point of failure at the router.

129
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switches, do not have advanced system utilities to quickly correct and isolate network
problems. Therefore, servers on the backbone are not generally recommended.

NOTE Note that we already discussed this principle in Chapter 2, “Hierarchical Design,” when we

stressed that distribution layer services should be kept separate from the access layer.

Distributed Backbones on the Campus

The distributed backbone on the campus is a more resource-efficient solution than in a
building. As depicted in Figure 5-4, this solution involves a single router per building,
typically located in the basement, with a combination of hubs and switches providing user
access throughout the building. Using fewer logical networks per building increases the
ease of user adds, moves, and changes. The only drawback is the lack of flexibility in

connecting to other buildings on the campus. Switching could easily be deployed in the
building, but not across the campus.

Figure 5-4  Distributed Backbone on the Campus

FDDI
Dual Ring

Collapsed Backbones

Collapsed backbones generally represent a much more flexible and cost-effective approach
to wiring a building. For example, Figure 5-5 shows the traditional ring or bus backbone
collapsed inside a single switch or router (Figure 5-5 shows a router), making the device
backplane act as the backborie network. Hubs on each floor connect to the end stations in
the workgroup, and each hub attaches to a separate LAN interface on the router.
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|1

Figure 5-56  Collapsed Backbone—Router/Hub Design

End Stations*
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This design would make moving users a little easier than in the distributed backbone model, .
but the solution is not yet ideal. Also, the router represents a single point of failure. This
situation could be corrected by deploying a second router that attaches to the hub and uses
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: | — Central
Hub

L —— Connection or
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the HSRP and redundant hubs running Multigroup HSRP (MHSRP).

In another option, as shown in Figure 5-6, the hub in the preceding design could easily be
replaced with an Ethernet switch to provide more bandwidth to the workgroup. However, &
the use of a single router represents a bottleneck in the traffic flow and a single pointof =5

failure.

I e
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Figure 5-8  Collapsed Backbone—VLAN
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The trunk links between the floors should then be FDDI or Fast Ethernet, and all frames
would carry the VLAN ID. The router connection to the backbone switch could also be
FDDI or Fast Ethernet and would then receive the VLAN ID. Separate subinterfaces could
then be set up for each VLAN, and the router would route between them accordingly.
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Deploying VLANs Across a Campus

The collapsed backbone concept could be taken further to include the entire campus.
As Figure 5-9 shows, one switch would act as the backbone for the entire campus, which
would allow maximum flexibility in moving users around the campus, either physically

or logically. All servers on the campus could then be placed in one location for ease of
administration.
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]::;}:::ti ‘I:Ja:Ns.I;igure 5-8 shows a typical collapsed bac
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Figure 5-9  Collapsed Backbone—Campus VLAN
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The potential for growth should always be considered an important variable in any network =
design, so you should choose your VLAN assignments carefully and follow a naming =
convention that is easy to troubleshoot, as discussed in Chapter 1, “Internetwork Design
Overview.” Also, note that the potential for wide-scale problems increases if you do not
manage your VLAN implementation carefully. [ have recently seen cases where VLAN
trunking problems have caused a ripple effect of network instability across an entire VLAN
domain, which could be a global enterprise network. This type of problem can be avoided, *
however, with proper planning, regular design reviews, and effective change-management
processes and procedures.
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DESIGN RULE Choose your VLAN assignments carefully. Whenever possible, assign stations to
VLANS such that only 20 percent of their traffic is destined to other VLANs.
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‘What is DHCP?
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a : 6 What is Hot Standby Router Protocol (HSRP), and how can it be used in a VLAN
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subsequent 0 DHCP, the impact of simplifying the add/move/change process with the

benefits of small broadcast domains could be had. DHCP completely conceals the

complexity of the addressing structure.

In a nutshell, as shown in Chapter 7, DHCP permits the ease of
network with the protections and performance of a Layer 3 design. ;

£ configuration of a Layer 24

DESIGN RULE If possible, implement DHCP in your network today.




