COE 301 / ICS 233 - Computer Organization MIPS Programming Assignment 3, Term 171

Due date: Wednesday 21/03/2018 at 11:59 PM (Late submission = 0 points)

The roots of a quadratic equation $a x^{2}+b x+c=0$ can be found as $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
Paraphrasing Wikipedia: The expression underneath the square root sign, $\Delta=b^{2}-4 a c$, is called the discriminant. Based on the discriminant, a quadratic equation with real coefficients can have two distinct real roots, duplicate real roots, or two distinct complex roots. The three cases are as follows:

1. If the discriminant is positive, then there are two distinct real roots at

$$
\frac{-b+\sqrt{\Delta}}{2 a} \text { and } \frac{-b-\sqrt{\Delta}}{2 a}
$$

2. If the discriminant is zero, then there are duplicate real roots at

$$
\frac{-b}{2 a}
$$

3. If the discriminant is negative, then are two distinct (non-real) complex roots at

$$
\left(\frac{-b}{2 a}+i \frac{\sqrt{-\Delta}}{2 a}\right) \text { and }\left(\frac{-b}{2 a}-i \frac{\sqrt{-\Delta}}{2 a}\right) \text { where } i=\sqrt{-1}
$$

Write a MIPS code that will find the roots of the quadratic equation $a x^{2}+b x+c=0$, where a, b, and c are entered by the user as integer values. Once read, these integer values should be stored in $\$ \mathrm{a} 0, \$ \mathrm{a} 1$, and $\$ \mathrm{a} 2$, respectively. The main code should call a procedure roots that computes the roots of the quadratic equation as double-precision floating point numbers. The roots procedure should return the real part of the roots in the ($\$ \mathbf{f 1 \$ f 0}$) and the ($\$ \mathbf{f} \mathbf{\$ f} \mathbf{f}$) pairs. If there are imaginary parts to the roots (i.e., the part that is multiplied by $i=\sqrt{-1}$), then they should be returned by the roots procedure in the ($\$ \mathbf{f} 5 \mathbf{\$ f 4}$) and the ($\$ \mathrm{f} 7 \$ \mathrm{f} 6$) pairs. A zero value in the ($\$ \mathbf{f 5} \$ \mathrm{f4}$) and the ($\$ \mathbf{7} \mathbf{\$ f 6}$) pairs signify that the roots do not have an imaginary part (i.e., the roots are real). After returning from the roots procedure call, the main code should print the results by first printing the nature of the roots (i.e., two distinct real roots, duplicate real roots, or two distinct complex roots), then printing the values of the roots. Print each root value as two parts; real and imaginary. To verify your code, compare your results with the results obtained by an online quadratic equation solver (example: https://www.mathsisfun.com/quadratic-equation-solver.html).

Submission Guidelines:

All submissions should be done through Blackboard. Submit the source code of the program. Make sure that your program is well written and documented. The program will be graded according to its correctness and documentation. It is your responsibility to make sure that the program works. A program that does not assemble or run will receive zero on correctness. Copying programming assignment is not allowed. This is individual work. Detected copies will get zero grades. This includes the one who wrote the program and the one who copied it.

Grading Scheme:

Dividing the code to main code and a procedure and passing parameters properly	$[\mathbf{3}$ points $]$
Reading a, b, and c of the quadratic equation from the user	$[\mathbf{1}$ point $]$
Properly computing the roots	$[\mathbf{6}$ points $]$
Printing the nature of the roots	$[\mathbf{2}$ points $]$
Printing the values of the roots	$[\mathbf{2}$ points $]$
Program readability and comments	$[\mathbf{1}$ point $]$
Total	$[\mathbf{1 5}$ points $]$

