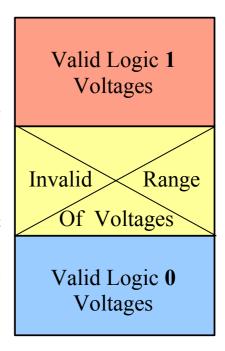
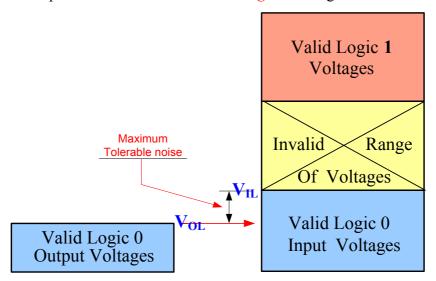
Practical Aspects Of Logic Gates

Introduction & Objectives

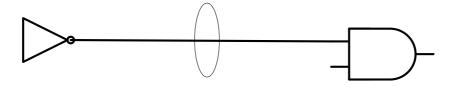

- □ Logic gates are physically implemented as Integrated Circuits (IC).
- □ Integrated circuits are implemented in several technologies.
- □ Two landmark IC technologies are the **TTL** and the **CMOS** technologies.
- □ Major physical properties of a digital IC depend on the implementation technology.
- ☐ In this lesson, the following major properties of digital IC's are described:
 - 1. Allowed physical range of voltages for logic 0 and logic 1,
 - 2. Gate propagation delay/ speed,
 - 3. The fanin and fanout of a gate,
 - 4. The use of buffers, and
 - 5. Tri-State drivers

Allowed Voltage Levels

- □ Practically, logic 0 is represented by a **certain** *RANGE* of Voltages rather than by a single voltage level.
- □ .In other words, if the voltage level of a signal falls in this range, the signal has a logic 0 value.
- □ Likewise, logic 1 is represented by a different *RANGE* of **valid** voltages.
- □ The range of voltages between the highest logic 0 voltage level and the lowest logic 1 voltage level is an "*Illegal Voltage Range*".
- □ No signal is allowed to assume a voltage value in this range.

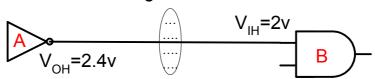

Input & Output Voltage Ranges

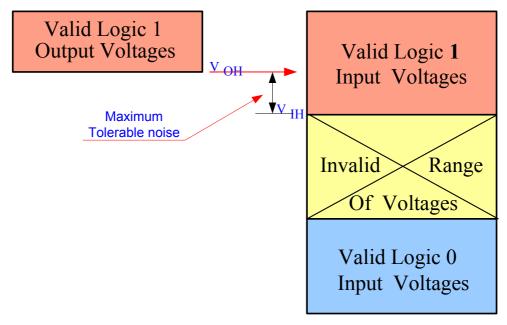
- □ Inputs and outputs of IC's <u>do not have the same allowed range of voltages</u> neither for logic 0 nor for logic 1.
- \Box VIL is the maximum <u>input</u> voltage that considered a <u>Logic</u> 0.
- \Box Vol is the maximum <u>output</u> voltage that considered a <u>Logic 0</u>.
- □ Vol must be lower than VIL to guard against noise disturbance.



Why is $V_{IL} > V_{OL}$?

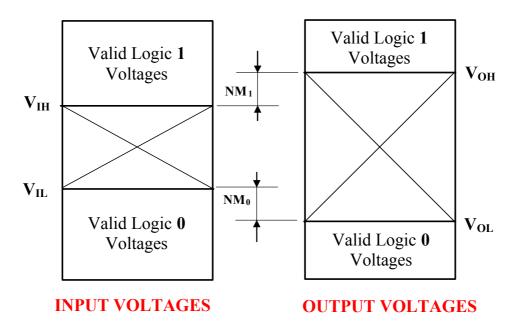
- □ Consider the case of connecting the output of gate A to the input of another gate B:
- The logic 0 output of **A** must be within the range of acceptable logic 0 voltages of gate **B** inputs.
- Voltage level at the input of \mathbf{B} = Voltage level at the output of \mathbf{A} + Noise Voltage
- If the highest logic 0 output voltage of **A** (Vol) is equal to the highest logic 0 input voltage of **B** (Vil), then the noise signal can cause the actual voltage at the input of **B** to fall in the *invalid range* of voltages.


□ Accordingly, Vol is designed to be lower than VIL to allow for some noise margin.


- The difference (VIL Vol.) is thus known as the noise margin for logic 0 (NM_0).
- □ Vih is the minimum *input* voltage that considered a *Logic 1*.
- □ Voн is the minimum *output* voltage that considered a *Logic 1*.
- □ Voн must be higher than Viн to guard against noise signals.

Why is $V_{OH} > V_{IH}$?

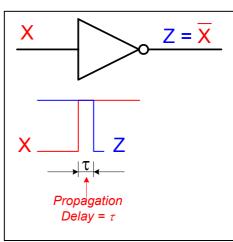
Allowed Noise Margin of 0.4v


- \Box Consider the case of connecting the output of gate **A** to the input of another gate **B**:
 - The logic 1 output of A must accepted as logic 1 by the input of gate B.
 - Thus, the logic 1 output of **A** must be <u>within</u> the range of voltages which are acceptable as logic 1 input for gate **B**.
 - If the lowest logic 1 output voltage of **A** (Voh) is equal to the lowest logic 1 input voltage of **B** (Vih), then noise signals can cause the actual voltage at the input of **B** to fall in the *invalid range* of input voltages.

- Accordingly, Voн is designed to be higher than Viн to allow for some noise margin.
- \Box The difference (Voн Viн) is thus known as the noise margin for logic 1 (NM₁).

Definition

□ Noise margin is the maximum noise voltage that can be added to the input signal of a digital circuit without causing an undesirable change in the circuit output..

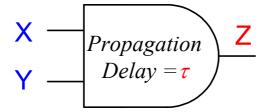

Propagation Delay

Consider the shown inverter with input X and output Z.

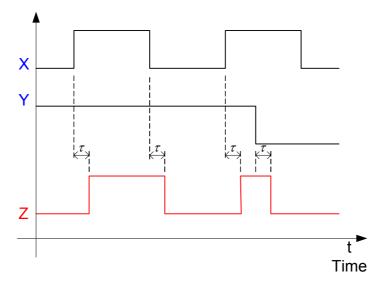
- □ A change in the input (X) from 0 to 1 causes the inverter output (Z) to change from 1 to 0.
- □ The change in the output (Z), however is □ not instantaneous. Rather, it occurs slightly after the input change.
- This *delay* between an input signal change and the corresponding output signal change is what is known as the *propagation delay*.

In general,

- □ A signal change on the input of some IC takes a finite amount of time to cause a corresponding change on the output.
- □ This finite delay time is known as **Propagation Delay**.
- □ Faster circuits are characterized by smaller propagation delays.
- Higher performance systems require higher speeds (smaller propagation delays).



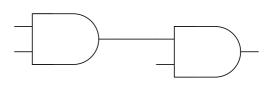
Timing Diagrams


- ❖ A timing diagram shows the logic values of signals in a circuit versus time
- ❖ A signal shape versus time is typically referred to as *Waveform*.

Example

The figure shows the timing diagram of a 2-input AND gate. The gate is assumed to have a propagation delay of τ .

- \Box The timing diagram shown Figure illustrates the waveforms of signals X, Y, and Z.
- Note how the output Z is delayed from changes of the input signals X &
 Y by the amount of the gate Propagation Delay τ.


Fanin Limitations

- riangle The fanin of a gate is the number of inputs of this gate.
- ❖ Thus, a 4-input AND gate is said to have a *fanin* of 4.
- ❖ A physical gate cannot have a large number of inputs (*fanin*).

- ❖ •For CMOS technology, the more inputs a gate has the slower it is (larger propagation delay). For example, a 4-input AND gate is slower than a 2-input one.
- ❖ In CMOS technology, no more than 4-input gates are typically built since more than 4 inputs makes the devices too slow.
- ❖ TTL gates can have more inputs (e.g, 8 input NAND 7430).

Fanout Limitations

❖ If the output of some gate A is connected to the input of another gate B, gate A is said to be driving gate, while gate B is said to be the load gate.

- ❖ As the Figure shows, a driver gate may have more than one load gate.
- ❖ There is a limit to the number of gate inputs that a single output can drive.
- ❖ The fanout of a gate is the largest number of gate inputs this gate can drive.
- ❖ For TTL, the *fanout* limit is based on CURRENT.

- A TTL *output* can supply a maximum current $I_{OL} = 16$ mA (milliamps)
- A TTL *input* requires a current of $I_{IL} = 1.6$ mA.
- Thus, the *fanout* for TTL is 16mA/1.6 mA = 10 loads.
- ❖ For CMOS, the limit is based on SPEED/propagation delay.
 - A CMOS input resembles a capacitive load (≈10 pf picofarads).
 - The more inputs tied to a single output, the higher the capacitive load.
 - The HIGHER the capacitive load, the SLOWER the propagation delay.

- Typically, it is advisable to avoid loads much higher than about 8 loads.
- **Q**. What is meant by the *DRIVE* of a gate?
- **A**. It is the "*CURRENT*" <u>driving-ability</u> of a gate. In other words, it is the amount of current the gate can deliver to its load devices.
 - A gate with *high-drive* is capable of driving more load gates than another with *low-drive*.
- Q. How to drive a number of load gates that is larger than the fanout of the driver gate?
- **A**. In this case, we can use one of two methods:
 - 1. Use high drive buffers
 - 2. Use multiple drivers.

Buffer Symbol

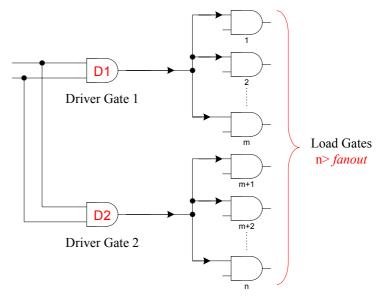
Use of High-Drive Buffers:

❖ A buffer is a single input, single output gate where the logic value of the output equals that of the input.

- ❖ The logic symbol of the buffer is shown in the Figure.
- ❖ The buffer provides the necessary drive capability which allows driving larger loads.
- ❖ Note that the symbol of the buffer resembles the inverter symbol except that it does not have the inverting circle that the inverter symbol has.
- ❖ The figure shows how the buffer is used to drive the large load.

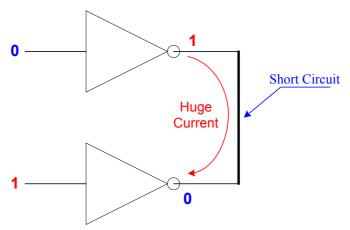
High Drive Buffer Driver Gate

Load Gates


n> fanout (D)

Use of Multiple Drivers:

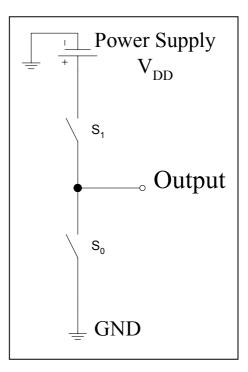
- ❖ The Figure shows the case of 2 identical drivers driving the load gates.
- ❖ In general, the large number of load


gates is divided among more than one driver such that each of the identical drivers is driving no more than the fanout.

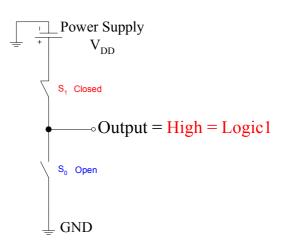
❖ The multiple driver gates (D1, D2) are of identical type and should be connected to the same input signals

Tri-State Outputs

- Q. Can the outputs of 2 ICs, or 2 gates, be directly connected?
- A. Generally, Noooooooooo!!! This is only possible if special types of gates are used.
- Q. Why cann't the outputs of 2 normal gates be directly connected?
- A. Because this causes a *short Circuit* that results in huge current flow with a subsequent potential for damaging the circuit.
 - This is obvious since one output may be at logic 1 (High voltage), while the other output may be at logic 0 (Low voltage).
 - Furthermore, the common voltage level of the shorted outputs will most likely fall in the invalid range of voltage levels.


- Q. What are the types of IC output pins that can be directly connected?
- A. These are pins/gates with special output drivers. The two main types are:
 - Open-Collector outputs \rightarrow this will not be discussed in this course.
 - Outputs with Tri-State capability.

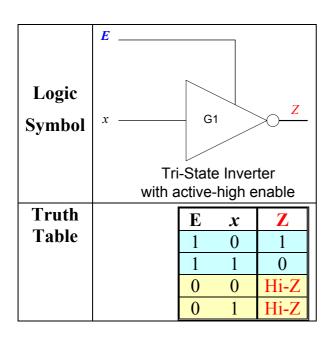
Gates with Tri-State Outputs

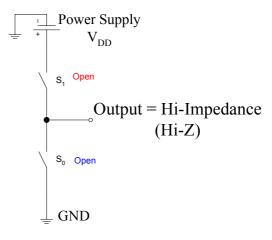

- These gates can be in one of 2 possible states:
 - 1. An enabled state where the output may assume one of two possible values:
 - ➤ Logic 0 value (low voltage)
 - ➤ Logic 1 value (high voltage)
 - 2. A disabled state where the gate output is in a the Hi-impedance (Hi-Z) state. In this case, the gate output is disconnected (open-circuit) from the wire it is driving.
- An enable input (E) is used to control the gate into either the enabled or disabled state.
- The enable input (E) may be either active high or active low.
- Any gate or IC output may be provided with tri-state capability.

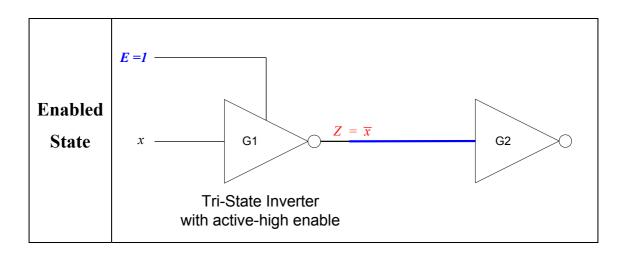
Output State Illustrations

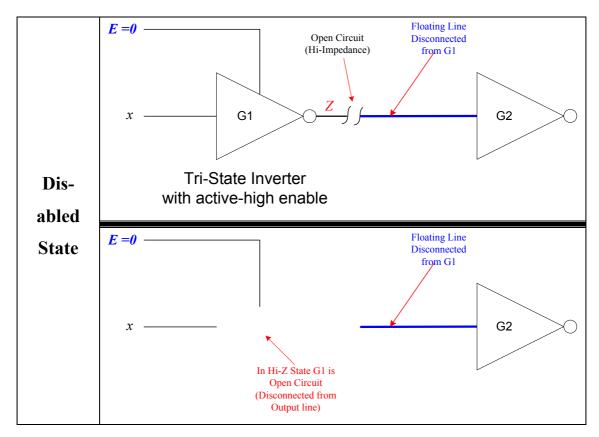
- A generalized output driver can be simply modeled using 2 switches S_1 and S_0 as shown in Figure.
- The output state is defined by the state of the 2 switches (closed -open)
- If S_1 is closed and S_0 is open, the output is high (logic 1) since it is connected to the power supply (V_{DD}) .

• If S_1 is open and S_0 is closed, the output is low (logic 0) since it is connected to the ground voltage (0 volt).

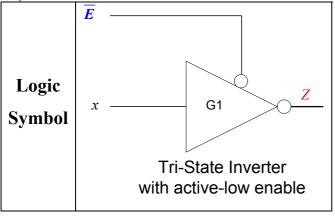


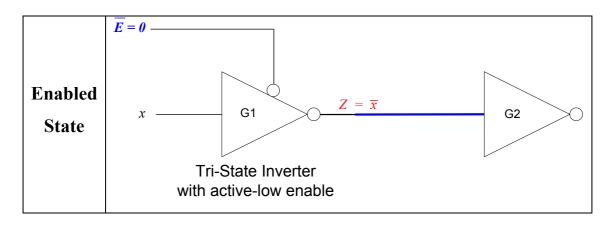

• If, however, both S_1 is and S_0 are open, then the output is neither connected to ground nor to the power supply. In this case, the output node is floating or is in the Hi-Impedance (Hi-Z) state.

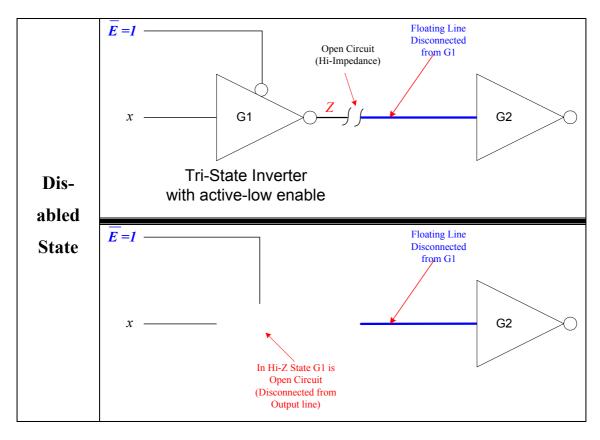

Power Supply V_{DD} $s_{1} \stackrel{\text{Open}}{\longrightarrow} Output = Low = Logic 0$ $s_{0} \stackrel{\text{Closed}}{\longrightarrow} GND$


Examples

a) Tri-State Inverter with active high enable

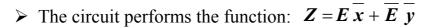


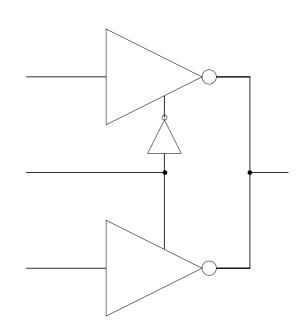




b) Tri-State Inverter with active low enable

	\overline{E}	x	Z
Truth	0	0	1
Table	0	1	0
	1	0	Hi-Z
	1	1	Hi-Z




Condition for Connecting Outputs of Tri-State Gates

- ➤ Two or more tri-state *outputs* may be connected provided that *at most one* of these outputs is *enabled* while *all others are in the Hi-Z state*.
- This avoids conflict situations where one gate output is high while another is low.

Circuit Examples

- ➤ The shown circuit has tri-state inverters with active high enable inputs.
- The outputs of these 2 inverters are shorted together as a common output signal Z
- ➤ The 2 gates are NEVER enabled at the same time.
- ➤ G1 is enabled when E=1, while G2 is enabled when E=0

