
J. SYSTEMS SOFIWARE 163 
1993; 20~163-167 

Functional Languages: A Performance Study 

S. Mansoor Sarwar 
Department of Electrical Engineeting, Multnomah School of Engineering, University of Portland, Portland, Oregon 

Marwan H. Abu-Amara 
Department of Electrical Engineering, Texas A h M University College Station, Texas 

This article describes a study evaluating the run time 
behavior of two functional languages, combin- 
ator-based SASL and environment-based Franz LISP, 
for a set of algorithms. The idea was to measure the 
effectiveness of the instruction set of a conventional 
processor and Turner’s combinators as the instruction 
set for a processor that runs functional languages. 
The study shows that, statistically, the com- 
binator-based implementation of SASL is better than 
the environment-based implementation of Franz LISP 
in space and time for at least small to medium-size 
input data sets. 

INTRODUCTION AND PROBLEM STATEMENT 

An implementation technique for functional lan- 
guages that has received considerable attention in 
recent years is combinator-based graph reduction 
[l-5]. This technique was first introduced by Turner 
131 in his implementation of a purely applicative 
language called SASL. In the SASL environment, 
the bound variables are abstracted (removed) from 
expressions and replaced by a number of constants 
called combinators. The resulting variable-free ex- 
pression is then complied into a general digraph 
which is progressively reduced at run time until it is 
no longer reducible, and is called the normal form 
(answer> of the given expression. 

The main focus of this article is to describe a 
study which was conducted to find out how environ- 
ment-based implementation of functional Franz 
LISP [6-S] and combinator-based implementation of 
SASL compare with each other for a set of algo- 
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rithms. Our study primarily focused on collecting the 
following statistics: 

l The static code sizes, i.e., the number of memory 
words needed to store the compiled codes for a set 
of abstract data types (ADTs) and small to 
medium-size programs for SASL and Franz LISP. 

l The ratio of the number of memory references 
made by SASL and LISP versions of the programs 
for small to medium-size input data sets. 

These statistics established the space and time be- 
haviors of environment- and combinator-based graph 
reduction models for a set of representative algo- 
rithms. They can be used to design a processor 
instruction set that efficiently supports the execution 
of functional languages. 

In this study, Turner’s combinators were assumed 
to comprise the instruction set of a hypothetical 
processor. The number of memory references made 
for SASL programs was based on the assumption 
that SASL programs are executed on such a proces- 
sor. This assumption is realistic because, for our test 
programs, the average number of arguments needed 
for a VAX 8350 instruction and a Turner combina- 
tor came out to be about 1.67 and 2.65, respectively. 
Also, the number of arguments for the Turner com- 
binators used in the SASL environment varies be- 
tween 1 and 4, which is very similar to the range of 
arguments needed by the instructions for a typical 
conventional processor. To make our analysis as fair 
as possible, we implemented the same algorithms in 
both language environments. We tried to use similar 
language constructs and functions (primitive as well 
as nonprimitive) in both languages. In addition, the 
overhead code generated as part of the compiled 
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version of a LISP program was not considered while the relative performance of various sorting and 
calculating the number of memory references made searching algorithms in SASL and Franz LISP envi- 
by the program during its execution. ronments. 

PERFORMANCE EVALUATION METHODOLOGY 

To obtain the required statistics, the SASL run time 
system was tailored to get execution time data for a 
set of representative ADTs and small to medium-size 
programs. Our modified system lets us view the 
initial combinatory graph, the combinatory graph 
after every reduction step, the initial combinatory 
string, the combinatory string after each reduction 
step, the contents of a range of graph nodes, and 
total and percent usage of each combinator for a 
given program execution. 

To collect statistics for the LISP counterparts of 
the SASL programs, the Franz LISP compiler Liszt 
was used to generate assembly versions of source 
programs. The assembly code for each program was 
then passed through a filter that gave its static code 
size as output. Since we did not have the source 
code for Liszt, a set of counters were placed at 
appropriate places in a LISP program to calculate 
the frequency of execution of each function in the 
program. These instruction frequencies were then 
processed to calculate the number of assembly lan- 
guage instructions executed and the number of 
memory references made for the given program. 

RESULTS AND DISCUSSION 

In this section, we analyze the statistics obtained for 
a few of our benchmark programs, including sym- 
bolic differentiation, matrix multiply, and various 
searching and sorting algorithms. We also describe 

Table 1. Static Code Sizes For SASL And Franz 
LISP Programs 

Program 

LISP SASL Ratio 
(VAX 8350 (Turner 
Instructions) Combinators) (LISP/SASL) 

Symbolic 
differentiation 

Matrix multiply 
Sorting 

Insertion 
Quick 
Tree 

Searching 
Sequential 
Binary 
Tree 

Maketree 
Tree traversal 

Inorder 
Preorder 
Postorder 

6629 2382 2.783 
628 67 9.373 

170 54 3.148 
324 59 5.492 
406 134 3.030 

110 31 3.548 
517 95 5.442 
221 63 3.508 
155 88 1.761 

63 30 2.100 
65 31 2.097 
73 34 2.147 

The statistics taken for the benchmark programs 
have shown that the static code sizes for SASL 
programs are always smaller than their LISP coun- 
terparts. Table 1 shows the static code sizes for the 
various benchmark programs and ADTs we ana- 
lyzed. The table clearly shows that the amount of 
memory needed to store the combinatory code ver- 
sion of a program is always smaller than the amount 
of memory needed to store the assembly code ver- 
sion of the same program. The ratio of the static 
code sizes for the matrix multiply program is outside 
the normal range. The primary reason for this ab- 
normality is that SASL has a more powerful library 
function “map” (the most heavily used function in 
our matrix multiply algorithm) than its Franz LISP 
counterpart. Therefore, we wrote our own map func- 
tion to ensure that we used the same algorithm. 
However, this increased the static (hence dynamic) 
code size of the LISP version of matrix multiply. 

As for the average number of memory references 
made during the execution of different programs, 
the LISP version of the symbolic differentiation 
program made about 15% more memory references 
for differentiation of various functions than its SASL 
counterpart. That is, on the average, the combina- 
tor-based version of the symbolic differentiation 
program ran 15% faster than the environment-based 
(standard assembly code) version. For matrix multi- 
ply, the speedup is indicated by the curve shown in 
Figure 1. This curve shows that speedup decreased 
with increase in size of the input matrices and that 
the speedup became almost constant for large matri- 
ces. In fact, the speedup became almost a constant 
1.4 for matrices of size r 10. 

Figures 2 and 3 show the speedup comparisons for 
various sorting and searching algorithms in worst- 
case scenarios. The curves in Figure 2 show that the 
combinatory code executed faster than the normal 
assembly code for all three sorting algorithms. Al- 
though speedups decreased quickly with increase in 
the size of input list, they seemed to become con- 
stant for list lengths of > 80. The curves also show 
that speedup was largest for insertion sort, followed 
by tree sort and Quick sort, respectively. 

The curves in Figure 3 show that among all the 
searching algorithms we analyzed, the combinatoty 
version of sequential search gave the highest speedup 
over its assembly code counterpart. In addition, this 
speedup remained a constant two, whereas the 
speedup for binary and tree search algorithms de- 
creased with increase in input list size. Analysis also 
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Matrix Dlmenslon 

Figure 1. Performance of matrix multiply. 

showed that the speedup ratio for tree sort de- 
creased by about 0.01 for every lOO-element increase 
in the size of the input list. Furthermore, among the 
searching algorithms, sequential search was the most 
efficient, both in space and time, in combinatory as 
well as assembly versions. 

For searching and sorting algorithms, the number 
of memory references needed to execute the recur- 
sive portions in the assembly versions was a little 
larger than the number of memory references 
needed to execute the corresponding portions in the 
combinatory codes. Furthermore, for binary search 
and all sorting algorithms, the nonrecursive portions 
of assembly codes were a little larger than the corre- 
sponding combinatory codes. Therefore, as the size 
of the input list increased, the relative significance 
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Figure 2. Performance of sort algorithms. 
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Figure 3. Performance of search algorithms. 

!O 

of the nonrecursive portions decreased, thereby lev- 
eling the speedup curves. For sequential search and 
tree search, however, the ratio of memory refer- 
ences was almost constant, both for recursive as well 
as nonrecursive portions of the codes. Therefore, 
the speedup remained almost constant for these 
algorithms. 

The theoretical complexities of sequential, tree, 
and binary search algorithms are O(n), O(log n), 
and O(log n), respectively. However, actual imple- 
mentation of these searching algorithms has shown 
that binary search is the worst in time behavior, 
followed by tree search and sequential search. Fig- 
ures 4 and 5 further show that sequential search was 
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Figure 4. Performance of SASL search. 
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Figure 5. Performance of LISP search. 

about 2.5 and 2 times faster than tree search in 
SASL and Franz LISP environments, respectively. 
Similarly, sequential search behaved better than bi- 
nary search for list sizes of < 100 elements in Franz 
LISP. In SASL, sequential search continued to be- 
have much better than binary search for lists of 
> 100 elements. Tree search performed better than 
binary search for list sizes of I 17. For lists of 
> 17 elements, binary search behaved better than 
tree search. 

Among the sorting algorithms we analyzed, inser- 
tion sort performed about twice as well as quick sort 
and about 1.6 times as good as tree sort (Figures 6 
and 7). Pe~o~ance was a little better in the SASL 
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Figure 6. Performance of SASL sort. 
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Figure 7. Performance of LISP sort. 

environment. Tree sort performed about 1.2 times as 
well as quick sort in both environments for the 
range of list sizes that we considered. 

CONCLUSIONS AND FINAL REMARKS 

The study shows that for small to medium-size pro- 
grams and input data sets, compiled functional lan- 
guages will execute faster on a processor whose 
instruction set is the combinators Turner used for 
implementing SASL, as opposed to a conventional 
processor. The behavior of a wide range of regular, 
irregular, symbolic, and nonsymbolic programs in 
combinator-based SASL and environment-based 
Franz LISP (on VAX 8350) has clearly demon- 
strated this. Furthermore, among searching algo- 
rithms, sequential search behaved the best, followed 
by binary and tree search. Among sorting algo- 
rithms, insertion sort performed the best, followed 
by tree and quick sort. 

The study further shows that the behavior of an 
algorithm in a given programming language depends 
on the data domains available in the language and 
their implementation. If data domains are sequen- 
tial, then sequential algorithms perform better than 
nonsequential (tree, divide-and-conquer, etc.) algo- 
rithms. If data domains are nonsequential, then non- 
sequential algorithms behave better than sequential 
algorithms. Since SASL and Franz LISP have list as 
one of their heavily used data domains, sequential 
algorithms perform better than nonsequential algo- 
rithms if list is used as the fundamental data struc- 
ture. This behavior is clearly reflected by the curves 
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illustrated in Figures 4-7 for a number of searching 
and sorting algorithms. 

To further the research described here, a set of 
benchmarks are being analyzed to find out most 
often used Turner combinators and combinator 
strings. These statistics can be used to design a 
processor with most heavily used Turner combina- 
tors as its instruction set. Also, some of the most 
often used combinator strings will be substituted by 
equivalent but smaller combinatory strings or new 
families of combinators. The main focus with respect 
to the new combinator families will be on list-mani- 
pulation combinators, because our preliminary study 
has shown that list manipulation is the major bottle- 
neck in functional languages. The reason for this 
bottleneck is that most functional languages have 
list as one of their most heavily used compound data 
domains, but use such primitive list-manipulation 
combinators as cons, car, and cdr. We will focus on 
designing a set of combinator families to efficiently 
support higher level list operations, along with a new 
representation of list to support these combinator 
families. In so doing, we hope to be able to speed up 
vector- and array-like operations by allowing ran- 
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dom access within a list as well as concurrent opera- 
tions on subsets of list elements. 
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