King Fahd University of Petroleum and Minerals

College of Computer Sciences and Engineering

 Department of Computer Engineering
COE 451 - Computer and Network Security (T151)

Homework \# 03 (due date \& time: Sunday 04/10/2015 during class period)

Problem \# 1: Solve problem 4 of Chapter 3 of the textbook.
Problem \# 2: Use the A5/1 algorithm. Suppose that, after a particular step, the values in the registers are

$$
\begin{aligned}
X=\left(x_{0}, x_{1}, \ldots, x_{18}\right) & =(1010101010101010110) \\
Y=\left(y_{0}, y_{1}, \ldots, y_{21}\right) & =(1100110001101100010011) \\
Z=\left(z_{0}, z_{1}, \ldots, z_{22}\right) & =(11100101110000011000011)
\end{aligned}
$$

List the next 8 keystream bits and give the contents of X, Y, and Z after the generation of each of these 8 bits.

Problem \# 3: Consider a Feistel cipher with three rounds. Then the plaintext is denoted as $P=$ (L_{0}, R_{0}) and the corresponding ciphertext is $C=\left(L_{3}, R_{3}\right)$. What is the simplest form of the ciphertext C, in terms of L_{0}, R_{0}, and the subkey, for each of the following round functions?
a. $\quad F\left(R_{i-1}, K_{i}\right)=K_{i}$
b. $\quad F\left(R_{i-1}, K_{i}\right)=\overline{R_{i-1}}$, where $\overline{R_{i-1}}$ is the logical complement of R_{i-1}
c. $\quad F\left(R_{i-1}, K_{i}\right)=R_{i-1} \oplus K_{i}$

Problem \# 4: Solve problem 13 of Chapter 3 of the textbook.
Problem \# 5: Solve problem 25 of Chapter 3 of the textbook.
Problem \# 6: Solve problem 43 of Chapter 3 of the textbook.

