King Fahd University of Petroleum and Minerals

College of Computer Sciences and Engineering

Department of Computer Engineering

COE 344 - Computer Networks (T152)

Homework \# 04 (due date \& time: Tuesday 12/04/2016 during class period)

Late homework submission will NOT be accepted

*** Show all your work. No credit will be given if work is not shown! ***
Problem \# 1 (24 points):
Consider the following network.

With the indicated link costs, use Dijkstra's shortest-path algorithm, as discussed in class, to compute the shortest path from \boldsymbol{y} to all network nodes using the table given below.

N^{\prime}	$D(s), p(s)$	$D(t), p(t)$	$D(u), p(u)$	$D(v), p(v)$	$D(w), p(w)$	$D(x), p(x)$	$D(z), p(z)$

Problem \# 2 (24 points): Consider the following IP-based network with the assigned IP addresses as shown. For each of the following cases, complete the table regarding the datagram as it is forwarded from the source to the destination.

1. Assume that host \boldsymbol{F} sends an IP datagram to host \boldsymbol{D}.

Source IP address	Destination IP address	Receiving interface IP address that was passed down to the Data Link layer to be used for forwarding

2. Assume that host \boldsymbol{F} sends an IP datagram to host \boldsymbol{E}.

Source IP address	Destination IP address	Receiving interface IP address that was passed down to the Data Link layer to be used for forwarding

3. Assume that host \boldsymbol{F} sends an IP datagram to host \boldsymbol{A}.

Source IP address	Destination IP address	Receiving interface IP address that was passed down to the Data Link layer to be used for forwarding

Problem \# 3 (10 points): Consider a router that interconnects three subnets: Subnet 1, Subnet 2, and Subnet 3. Suppose all of the interfaces in each of these three subnets are required to have the prefix $224.1 .18 / 24$. Also suppose that Subnet 1 is required to support at least 60 interfaces, Subnet 2 is to support at least 11 interfaces, and Subnet 3 is to support at least 91 interfaces. Provide three network addresses (of the form a.b.c.d/x) that satisfy these constraints.

Problem \# 4 ($\mathbf{1 8}$ points): Consider a datagram network using 32-bit host addresses. Suppose a router has five links, numbered 0 through 4 , and datagrams are to be forwarded to the link interfaces as follows:
$\left.\begin{array}{cc}\text { Destination Address Range } & \text { Link Interface } \\ \hline 11100000 \text { 00000000 } 0000000000000000 & 0 \\ \text { through } & 11100000001111111111111111111111\end{array}\right]$
a. Provide an equivalent forwarding table that translates each of the destination address ranges into a single prefix of the form a.b.c. d / x along with the associated link interface. The forwarding table should have six entries (4 for the four given ranges, and 2 for the "otherwise" range).
b. Determine the appropriate link interface for the following datagrams with destination addresses:
i. 11100000010100001100001100111100
ii. 11100001100000000001000101110111
iii. 11100000010000000000100011111111
iv. 11001000100100010101000101010101

Problem \# 5 (24 points): Consider the following network.

Suppose that the link cost $c(0,1)$ has changed from 4 to 1 , re-compute the distance tables for nodes $0,1,2$, and 3 after each iteration of a synchronous version of the distance vector algorithm using as many of the following tables as needed. Note that the current tables' values prior to the link cost change are as shown in the leftmost column of the tables.

\[

\]

cost to				
D^{1}	0	1	2	3
0	0	4	5	5
1	4	0	1	2
2	5	1	0	1
3	∞	∞	∞	∞

