- Write the sum-of-minterms and product-of-maxterms expressions for both the true and the complement form of the following Boolean expressions:
- $\bar{X} \bar{Z}+Y \bar{Z}+X Y Z$
- $\bar{A} \bar{B}+A \overline{C D}+\bar{B} C+\bar{A} B \bar{C} \bar{D}$
- Write the sum-of-minterms and product-of-maxterms expressions for both the true and the complement form of the following Boolean expressions:
- $\bar{X} \bar{Z}+Y \bar{Z}+X Y Z$

X	Y	Z	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$
\begin{aligned}
& F(X, Y, Z)=\sum(0,2,6,7)=\prod(1,3,4,5) \\
& \bar{F}(X, Y, Z)=\sum(1,3,4,5)=\prod(0,2,6,7)
\end{aligned}
$$

or through algebraic manipulation:

$$
\begin{aligned}
F(X, Y, Z) & =\bar{X} \bar{Z}+Y \bar{Z}+X Y Z \\
& =\bar{X}(\bar{Y}+Y) \bar{Z}+(\bar{X}+X) Y \bar{Z}+X Y Z \\
& =\bar{X} \bar{Y} \bar{Z}+\bar{X} Y \bar{Z}+\bar{X} Y \bar{Z}+X Y \bar{Z}+X Y Z \\
& =m_{0}+m_{2}+m_{6}+m_{7}=\sum(0,2,6,7)=\prod(1,3,4,5)
\end{aligned}
$$

- $\bar{A} \bar{B}+A \overline{C D}+\bar{B} C+\bar{A} B \bar{C} \bar{D}$

A	B	C	D	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

$F(A, B, C, D)=\sum(0,1,2,3,4,9,10,11,13)=\prod(5,6,7,8,12,14,15)$
$\bar{F}(A, B, C, D)=\sum(5,6,7,8,12,14,15)=\prod(0,1,2,3,4,9,10,11,13)$
Again, the above can be found through algebraic manipulation.

